## \_\_\_\_\_ КООРДИНАЦИОННЫЕ \_\_\_ СОЕДИНЕНИЯ \_\_\_

УДК 546.593

# КОМПЛЕКСООБРАЗОВАНИЕ Н[AuCl<sub>4</sub>] С 2-МЕТИЛИМИДАЗОЛОМ

© 2021 г. Д. Бахроми<sup>*a*</sup>, С. М. Сафармамадзода<sup>*a*, \*</sup>, И. О. Фрицкий<sup>*b*</sup>, Д. А. Мубораккадамов<sup>*a*</sup>

<sup>а</sup> Таджикский национальный университет, пр-т Рудаки, 17, Душанбе, 734025 Таджикистан <sup>b</sup> Киевский национальный университет им. Т. Шевченко, ул. Владимирская, 60, Киев, 01601 Украина

> \*e-mail: sash65@mail.ru Поступила в редакцию 28.10.2020 г. После доработки 26.01.2021 г. Принята к публикации 27.01.2021 г.

Потенциометрическим методом изучено комплексообразование H[AuCl<sub>4</sub>] с 2-метилимидазолом при 288–318 К. Установлено, что даже при избытке 2-метилимидазола в растворе происходит замещение трех хлоридных ионов из состава H[AuCl<sub>4</sub>]. Рассчитаны общие константы устойчивости образующихся комплексов в широком интервале температур (при 298 K:  $lg\beta_1 = 8.04 \pm 0.04$ ;  $lg\beta_2 = 13.53 \pm \pm 0.03$ ;  $lg\beta_3 = 19.23 \pm 0.09$ ). С увеличением температуры и ионной силы раствора общие константы устойчивости комплексов увеличиваются. Вычислены термодинамические константы образования комплексов. Показано, что разница в величинах концентрационных и термодинамических констант зависит от величины  $\Delta vz^2$  ( $\Delta vz^2 = \Delta vz_{np,p}^2 - \Delta vz_{ucx,B}^2$ ). Установлено, что образование всех комплексных форм протекает с поглощением энергии. Величина  $\Delta S$  на всех стадиях комплексообразования положительна. Для равновесия [AuCl<sub>4</sub>]<sup>-</sup> + L  $\leftrightarrow$  [AuLCl<sub>1</sub>]<sup>3-i</sup> + (4-i)Cl<sup>-</sup> число молей реагирующих веществ и продуктов реакции остается неизменным. Возрастание энтропии при комплексообразовании, скорее всего, является следствием появления в растворе "размороженной" воды из гидратных оболочек ионов в результате реакций. Величина  $\Delta G$  на всех стадиях комплексообразования отрицательна. Самопроизвольное протекание реакции комплексообразования определяется энтропийной составляющей.

*Ключевые слова:* золото, 2-метилимидазол, константы устойчивости **DOI:** 10.31857/S0044457X21060040

#### **ВВЕДЕНИЕ**

Координационные соединения *d*-переходных металлов с азотсодержащими гетероциклами характеризуются значительным фармакологическим эффектом и участвуют в ключевых процессах жизнедеятельности. Среди комплексных соединений Au(I) детально изучено золотосодержащее производное тиоглюкозы и триэтилфосфина, которое под названием Ауранофин было введено в клиническую практику еще в 1985 г. для лечения ревматоидного артрита. Показано [1], что терапевтический эффект ауранофина обусловлен его противовоспалительным и иммуносупрессивным действием. В работе [2] приведены данные о противоопухолевых свойствах комплексных соединений золота. Комплексные соединения золота (КСЗ) проявляют противоопухолевую активность in vivo на моделях ксенографтов опухолей человека и перевиваемых опухолей животных, а также обладают цитотоксическим эффектом *in vitro*, установленным на широкой панели клеточных линий опухолей человека. КСЗ проявляют цитотоксичность в отношении злокачественных опухолей, резистентных по отношению к соединениям платины. Процессы действия КСЗ и производных *цис*-платины имеют существенные различия. Основными мишенями для действия КСЗ, в отличие от соединений платины, являются белки, в том числе митохондриальная тиоредоксин-редуктаза и протеасома 26s, ингибирование которых соединениями золота ведет к индукции апоптоза.

Имидазолы наряду с химической активностью проявляют также высокую биологическую активность. Имидазольный цикл входит в состав незаменимой аминокислоты гистидина и является структурным фрагментом гистамина, пуриновых оснований, ряда лекарственных средств [3, 4]. Производные имидазола широко применяются в медицине. 2-Метилимидазол используется в качестве исходного сырья для получения противоинфекционных веществ. Широкое применение 2-метилимидазол нашел в производстве ионных жидкостей [5, 6]. Кроме того, он является распространенным отвердителем эпоксидных смол, причем используется как при обычных условиях, так и в процессах горячего отверждения, т.е. вызывает гелеобразование за разумные сроки только при повышенной температуре (от 80–100 до 200–250°C) [7].

На основе производных имидазола готовят препараты, применяемые для лечения гипертонии, сердечной недостаточности, ишемических нарушений, проходимости периферических сосудов, миокардиальной ишемии, диабетической нефропатии, глаукомы, заболеваний желудочнокишечного тракта и мочевого пузыря [8, 9].

Бензимидазол и его производные известны как ингибиторы селективной коррозии латуней в водных растворах и привлекают постоянное внимание [10, 11]. При использовании 2-меркаптобензимидазола для защиты латуни в 0.1 М NH<sub>4</sub>Cl при рН 9.2 на ее поверхности каждый атом меди связывается с двумя лигандами, при этом образуется полимерная пленка, которая вызывает замедление электродных реакций [10].

В работе [12] определены составы соединений [MIm(MtIm)<sub>x</sub>]L, полученных при взаимодействии сукцинитов, фумаратов кобальта(II) и меди(II) состава ML  $\cdot$  *n*H<sub>2</sub>O с имидазолом и 2-метилимидазолом. Проведен анализ процесса термического разложения солей с помошью ЭСП и ИК-спектроскопии. Доказано участие в комплексообразовании пиридинового атома азота имидазола и атомов кислорода карбоксильных анионов. Спектрофотометрическим методом определены состав и устойчивость имидазолатсукцинатных комплексов кобальта(II) и меди(II) в водном растворе, показана их более высокая устойчивость по сравнению с монолигандными комплексами.

Авторами работ [13, 14] установлено, что кадмий(II) с 1-метил-2-меркаптоимидазолом в водном и водно-спиртовых растворах переменного состава образует четыре комплексные формы. При повышении температуры устойчивость комплексов уменьшается, а при добавлении неводного компонента увеличивается.

В работе [15] исследовано комплексообразование имидазола, 2-метилимидазола, бензимидазола, пиразола, 1,2,4-триазола и изучена их донорная способность по отношению к солям ряда ионов металлов (Cu<sup>+</sup>, Ag<sup>+</sup>, Pt<sup>2+</sup>, Pt<sup>4+</sup>, Cu<sup>2+</sup>). В этих комплексах лиганды ведут себя как монодентатные с координацией атома азота. Авторы работы [16] показали, что при взаимодействии хлорида меди с имидазолом местом локализации координационной связи является пиридиновый атом азота, и имидазол ведет себя как монодентатный лиганд. Это подтверждено квантово-химическим расчетом электронного строения, согласно которому наибольший отрицательный заряд сосредоточен на атоме азота  $N_3$  (-0.1704), тогда как у остальных атомов  $N_1$ ,  $C_2$ ,  $C_4$ ,  $C_5$  заряды равны 0.0465, 0.0833, 0.0128 и 0.0715 соответственно.

В обзорной статье [17] приведены данные по химии соединений золота в растворах. Авторы работы на основании литературных и собственных данных пришли к выводу что  $E_{Au^{3+}/Au}^{\circ}$ . можно принять равным 1.0  $\pm$  0.003 В. В этой же работе рас-

смотрена возможность акватации и гидролиз AuCl<sub>4</sub> в зависимости от pH и концентрации хлорид-ионов. Показано, что в солянокислых, но

разбавленных по AuCl<sub>4</sub> растворах наряду с диспропорционированием возможен процесс акватации:

$$AuCl_4^- + H_2O \leftrightarrow AuCl_3 + H_2O + Cl^-$$
.

При повышении рН протекает также и гидролиз по реакции:

$$AuCl_3 + H_2O \leftrightarrow AuCl_3OH^- + H^+$$

Авторы [18] для определения устойчивости димеркаптидных комплексов золота(III) использовали систему Au/AuCl<sub>4</sub><sup>-</sup>. В интервале концентраций AuCl<sub>4</sub><sup>-</sup> 5 × 10<sup>-6</sup>–5 × 10<sup>-5</sup> моль/л и Cl<sup>-</sup> 0.05–1.0 г-ион/л экспериментально определены величины  $E_{Au^{3+}/Au}^{\circ}$ . При этом установлено, что величина  $E^{\circ}$  изменяется в пределах 1.013–1.041 В. Среднее значение  $E^{\circ}$  составило 1.03 ± 0.009 В.

Авторами работы [19] с помощью pH-метрического титрования изучено замещение ионов Cl<sup>-</sup> на OH<sup>-</sup> в комплексном анионе [AuCl<sub>4</sub>]<sup>-</sup>. Константы равновесия ступенчатого замещения Cl<sup>-</sup> на OH<sup>-</sup> в водном растворе при 25°C равны:  $lg\beta_1 =$ = 7.87,  $lg\beta_2 = 14.79$ ,  $lg\beta_3 = 20.92$ ,  $lg\beta_4 = 25.98$ . Исследована зависимость стандартного потенциала

 $E_{Au^{3+}/Au}^{\circ}$ . от pH в растворе с [Cl<sup>-</sup>] = 1 моль/л и общей концентрацией золота(III) 1 моль/л. Из зависимости *E* от pH установлено, что потенциал системы Au/AuCl<sup>-</sup><sub>4</sub> до pH 5 остается неизменным. Возрастание pH > 5 приводит к резкому уменьшению величины потенциала золотого электрода. Авторы работы считают, что во всей области pH > 4 растворы золота(III) являются термодинамически неустойчивыми, т.е. должны распадаться с выделением металлического золота, а при pH > 11 возможен также переход золото(III)  $\rightarrow$  золото(I).

Спектрофотометрическим методом в работе [20] при 298 К, I = 1 моль/л в кислом водном растворе изучены равновесия замещения хлоридионов в составе AuCl<sub>4</sub><sup>-</sup> на пиридин (**ру**), 2,2дипиридил (**bipy**), 1,10-фенантролин (**рhen**). С учетом констант протонирования аминов для равновесия

$$\operatorname{AuCl}_{4}^{-} + \mathrm{L} = \operatorname{AuLCl}_{i}^{3i} + (4 - i)\operatorname{Cl}^{-}$$

константы равновесия составляют:  $\lg \beta_1 = 3.3$  (ру), 8.2 (bipy), 9.5 (phen). В работе [21] спектрофотометрическим и потенциометрическим методами изучены равновесия замещения Cl<sup>-</sup> на аммиак, этилендиамин (**en**), диэтиламин (**dien**) при 298 К. Показано, что для равновесия

$$AuCl_4 + NH_3 = AuCl_3(NH_3) + Cl_3$$

величина константы равновесия составляет  $\lg\beta_1 = 6.73 \pm 0.09$ , а стандартный потенциал системы (Au(NH<sub>3</sub>)<sub>4</sub><sup>3+</sup>/Au<sup>0</sup>) = 0.52 В. Константы равновесия замещения

 $AuCl_{4}^{-} + ien = Auen_{i}Cl_{4-2i} + 2Cl^{-} + 2iH^{+}$ составляют  $\lg \beta_{1} = 16.2$ ,  $\lg \beta_{2} = 27.7$ . Для равновесия

$$\operatorname{AuCl}_{4}^{-} + i\operatorname{dien} = \operatorname{AudienCl}^{2+} + 3\operatorname{Cl}^{-}$$

константа составляет  $\lg \beta_3 = 22.7$ .

В работах [22, 23] с использованием потенциометрического метода изучено комплексообразование золота(III) с триазолом и бензотриазолом. Показано, что оба органических лиганда образуют с золотом(III) четыре комплексные частицы. Установлено, что устойчивость комплексов с увеличением температуры уменьшается. Введение 1,2-бензенного радикала в молекулу триазола оказывает сушественное влияние на устойчивость образующихся комплексов. В работе [22] методом потенциометрии изучено комплексообразование золота(III) с 1-фурфурлиденамино-1,3,4-триазолом. Методом температурного коэффицента определены изменения энтальпии и энтропии реакции образования комплексов. Показано, что самопроизвольное протекание реакций комплексообразования определяется энтальпийной составляющей.

Анализ литературных источников показал, что экспериментальные данные о комплексообразовании золота с имидазолами немногочисленны. В работе [24] проведено исследование кинетики замещения гетероциклического лиганда на хлорид-ионы в составе плоскоквадратных комплексов состава AuCl<sub>3</sub>(nu), где nu — ряд пятичленных N-донорных гетероциклических лигандов, в частности, имидазол и 2-метилимидазол. В настоящей работе также сообщается о синтезе моноядерных комплексов состава [Au(И)Cl<sub>3</sub>] и  $[Au(2-MM)Cl_3]$ , причем идентичность синтезированных соединений подтверждена методами элементного анализа и ЯМР [24]. Установлено, что гетероциклические лиганды входят в состав координационных соединений в нейтральной форме. В то же время в упомянутой работе не проводилось исследование процессов комплексообразования в растворах, приводящих к формированию указанных комплексов, не определялись соответствующие константы устойчивости. Учитывая высокую биологическую активность золота(III), 2-метилимидазола, с научной и практической точки зрения актуальным является исследование комплексообразования в системе H[AuCl<sub>4</sub>]–2метилимидазол–H<sub>2</sub>O.

Цель настоящей работы — определение состава, устойчивости и термодинамических характеристик разнолигандных комплексов состава  $[\operatorname{Au} L_i \operatorname{Cl}_{4-i}]^{-1+i}$  и в дальнейшем иследование их биологической и каталитической активности.

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных соединений использовали 2-метилимидазол (L) и H[AuCl<sub>4</sub>]. Раствор H[AuCl<sub>4</sub>] готовили согласно методике, предложенной в [25]. Начальная концентрация H[AuCl<sub>4</sub>] составляла 1 ×  $10^{-5}$  моль/л, концентрация 2-метилимидазола — 4 ×  $10^{-4}$  моль/л. Для исследования взаимодействия H[AuCl<sub>4</sub>] с 2-метилимидазолом был использован гальванический элемент с переносом: Au/[AuCl<sub>4</sub>]<sup>-</sup> | Ag,AgCl/Cl<sup>-</sup>. Потенциометрическое титрование проводили на рН-метре МИ-150 из полумикробюретки вместимостью 5 мл с ценой деления 0.01 мл. В работе использовали слабокислый раствор H[AuCl<sub>4</sub>] (pH 5) и водный раствор 2-метилимидазола (рН 10.4). Концентрация хлорид-ионов составляла 0.1 моль/л и поддерживалась добавлением в раствор KCl. Ионную силу создавали добавлением в раствор перхлората натрия (I=0.1 моль/л). Потенциометрическое титрование проводили 4-5 раз при каждой температуре. Потенциал системы устанавливался в течение 10-15 мин. Температуру в ячейке поддерживали постоянной при помощи водяного термостата ( $\pm 0.5^{\circ}$ С). Равновесные концентрации золота(III), 2-метилимидазола, образующихся комплексов и их константы устойчивости были определены по программе KEV [26].

### РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Проведенный литературный обзор показал, что использование золотого электрода при потенциометрическом исследовании комплексообразования золота(III) связано с определенными ограничениями, обусловленными непостоянным значением электродного потенциала системы Au/[AuCl<sub>4</sub>]<sup>-</sup>, а также процессами гидролиза при разбавлении раствора H[AuCl<sub>4</sub>].

В этой связи перед исследованием процесса комплексообразования H[AuCl<sub>4</sub>] с 2-метилимидазолом были проведены исследования по уста-



Рис. 1. Зависимость E от  $-lg[AuCl_4]^-$ ,  $C_{KCl} = 1$  моль/л, I = 0.1 моль/л.

новлению обратимости золотого электрода к  $H[AuCl_4]$  и определению электродного потенциала этой системы. На рис. 1 приведена зависимость *E* от  $-lg[AuCl_4]^-$  для системы Au/[AuCl\_4]<sup>-</sup>.

Как видно из рис. 1, зависимость *E* от –lg[AuCl<sub>4</sub>]<sup>–</sup> имеет линейный характер с углом наклона 19.97 мВ, что удовлетворяет уравнению Нернста для электродов первого рода. Стандартный потенциал системы составляет 1038 мВ, что согласуется с литературными данными.

Для установления влияния гидролиза на электродный потенциал Au/[AuCl<sub>4</sub>]<sup>–</sup> нами изучена зависимость электродного потенциала этой системы от pH в растворе с [Cl<sup>–</sup>] = 0.1 моль/л и общей концентрацией золота(III)  $3.59 \times 10^{-3}$  моль/л. На рис. 2 приведена зависимость *E* от pH.

Как следует из рис. 2, в интервале pH 2.5–5 потенциал системы Au/[AuCl<sub>4</sub>]<sup>-</sup> остается постоянным, а начиная с pH 5.5 резко уменьшается, что является следствием протекания гидролитических процессов. На это указывают и авторы работы [19], изучавшие зависимость *E* от pH для этой системы. Авторы [19] также считают, что во всей области pH > 4 растворы золота(III) являются термодинамически неустойчивыми, т.е. должны распадаться с выделением металлического золота. С этим выводом мы не согласны, так как растворы H[AuCl<sub>4</sub>] при pH 5 стабильны и при долгом хранении из них не выпадает осадок металлического золота.

Электродный потенциал системы [AuCl<sub>4</sub>]<sup>-</sup>/Au по отношению к хлорсеребряному электроду при концентрации [AuCl<sub>4</sub>]<sup>-</sup> 1 × 10<sup>-5</sup> моль/л равен 712 мВ. При добавлении к этой системе 2-метилимидазола в интервале температур 278–318 К наблюдается плавное уменьшение потенциала без каких-либо скачков. Такое изменение потенциала свидетельствует о том, что между H[AuCl<sub>4</sub>] и 2-метилимидазолом протекает комплексообразо-



Рис. 2. Зависимость электродного потенциала от pH,  $I = 0.1 \text{ моль/л: } 298 \text{ K}, C_{[AuCl_4]^-} = 3.59 \times 10^{-3} \text{ моль/л},$  $C_{\text{KCI}} = 0.1 \text{ моль/л}.$ 

вание и исключается изменение степени окисления Au(III) в процессе комплексообразования, так как происходит ее термодинамическая стабилизация.

В работе [27] приведено значение  $pK_a$  2-метилимидазола. Используя значение  $pK_a$  2-метилимидазола, мы установили, что максимальная доля накопления молекулярной формы 2-метилимидазола приходится на pH 10–10.5. Ниже pH 10 в растворе начинает накапливаться протонированная форма 2-метилимидазола. Поскольку в проведенных нами исследованиях исходный раствор 2-метилимидазола имел pH 10.4, можно предположить, что в реакции комплексообразования в основном участвует молекулярная форма этого соединения:

В табл. 1 приведены данные потенциометрического титрования  $[AuCl_4]^-$  раствором 2-метилимидазола при 298 К и рассчитанные по программе KEV [26] равновесные концентрации [Au-Cl\_4]<sup>-</sup> и [L].

Для установления характера взаимодействия  $H[AuCl_4]$  с 2-метилимидазолом с помощью данных потенциометрического титрования построена зависимость  $\Delta E$  от  $-lgC_L$ , где  $\Delta E = E_{Hav} - E_{B.K.T}$ . Из рис. 3 видно, что зависимость  $\Delta E$  от  $-lgC_L$  имеет нелинейный характер, что свидетельствует о протекании ступенчатого процесса комплексообразования между  $[AuCl_4]^-$  и 2-метилимидазолом (при образовании единственной комплексной частицы эта зависимость была бы линейной).

Общие константы устойчивости образующихся комплексов рассчитывали по программе KEV. Для расчета констант образования в программу

| $E_{ m эксп}$ , мВ | $C_{[\mathrm{AuCl}_4]} \times 10^6$ | $C_{\rm L} \times 10^6$ | $[AuCl_4]^- \times 10^8$ | $[L] \times 10^{7}$ | <i>Е</i> <sub>теор</sub> , мВ |
|--------------------|-------------------------------------|-------------------------|--------------------------|---------------------|-------------------------------|
| 929.1              | 9.96                                | 1.59                    | 838                      | 0.0191              | 929.8                         |
| 925.7              | 9.92                                | 3.17                    | 677                      | 0.0468              | 928.0                         |
| 923.0              | 9.88                                | 4.74                    | 520                      | 0.0903              | 925.7                         |
| 919.4              | 9.84                                | 6.30                    | 367                      | 0.167               | 922.8                         |
| 915.3              | 9.80                                | 7.84                    | 266                      | 0.326               | 918.6                         |
| 910.7              | 9.77                                | 9.38                    | 113                      | 0.714               | 912.7                         |
| 904.8              | 9.73                                | 10.9                    | 51.2                     | 1.54                | 905.9                         |
| 901.0              | 9.69                                | 12.4                    | 26.1                     | 2.73                | 900.1                         |
| 896.8              | 9.65                                | 13.9                    | 14.9                     | 4.15                | 895.3                         |
| 892.5              | 9.62                                | 15.4                    | 9.16                     | 5.78                | 891.2                         |
| 888.5              | 9.58                                | 16.9                    | 5.77                     | 7.67                | 887.2                         |
| 884.5              | 9.54                                | 18.3                    | 3.79                     | 9.74                | 883.6                         |
| 879.7              | 9.51                                | 19.8                    | 2.42                     | 12.3                | 879.8                         |
| 876.4              | 9.47                                | 21.2                    | 1.57                     | 15.3                | 876.0                         |
| 870.9              | 9.43                                | 22.6                    | 0.999                    | 18.8                | 872.2                         |
| 867.1              | 9.40                                | 24.1                    | 0.608                    | 23.4                | 867.9                         |
| 862.9              | 9.36                                | 25.5                    | 0.372                    | 28.8                | 863.7                         |
| 858.7              | 9.33                                | 26.9                    | 0.226                    | 35.1                | 859.5                         |
| 854.7              | 9.29                                | 28.3                    | 0.136                    | 42.9                | 855.1                         |
| 851.0              | 9.26                                | 29.6                    | 0.0856                   | 51.1                | 851.1                         |
| 847.4              | 9.23                                | 31.0                    | 0.0532                   | 60.9                | 847.1                         |
| 843.9              | 9.19                                | 32.4                    | 0.0336                   | 72.0                | 843.1                         |
| 841.2              | 9.16                                | 33.7                    | 0.0228                   | 82.9                | 839.8                         |
| 837.7              | 9.12                                | 35.0                    | 0.0157                   | 94.5                | 836.6                         |
| 835.8              | 9.09                                | 36.4                    | 0.011                    | 107.0               | 833.5                         |
| 831.2              | 9.06                                | 37.7                    | 0.00804                  | 120.0               | 830.9                         |
| 827.4              | 9.03                                | 39.0                    | 0.00603                  | 132.0               | 828.4                         |
| 824.3              | 8.99                                | 40.3                    | 0.00459                  | 145.0               | 826.1                         |

**Таблица 1.** Данные потенциометрического титрования системы [AuCl<sub>4</sub>]<sup>-</sup> раствором 2-метилимидазола при 298 К.  $C_{\rm L} = 4 \times 10^{-4}$  моль/л;  $C_{\rm LAUCL} = 1 \times 10^{-5}$  моль/л, I = 0.1 моль/л

 $C_{\text{[AuCL]}}$ ,  $C_{\text{L}}$  – концентрации исходных веществ в каждой точке титрования.

вводили данные потенциометрического титрования, концентрации [AuCl<sub>4</sub>]<sup>-</sup> и 2-метилимидазола в каждой точке титрования, предположительно протекающие процессы, т.е. реакцию протонирования 2-метилимидазола, реакции комплексообразования между [AuCl<sub>4</sub>]<sup>-</sup> и 2-метилимидазолом:

$$H^+ + L = HL^+, \tag{1}$$

$$[\operatorname{AuCl}_4]^- + L = [\operatorname{AuLCl}_3] + \operatorname{Cl}^-, \qquad (2)$$

$$[AuCl_4]^- + 2L = [AuL_2Cl_2]^+ + 2Cl^-, \qquad (3)$$

$$[AuCl_4]^- + 3L = [AuL_3Cl]^{2+} + 3Cl^-,$$
(4)

$$[AuCl_4]^- + 4L = [AuL_4]^{3+} + 4Cl^-,$$
(5)

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 6

$$[AuCl_4]^- + HL^+ = [AuCl_3HL]^+ + Cl^-.$$
 (6)

Обработка данных потенциометрического титрования по программе KEV дает удовлетворительные результаты только для образования трех комплексных форм (реакции (2)–(4)). В табл. 2 приведены значения общих констант устойчивости комплексов золота(III) с 2-метилимидазолом при 278–318 К. Достоверность определения констант доказана удовлетворительным совпадением экспериментально найденных значений потенциалов с теоретическими (табл. 1).

Как видно из данных табл. 2, с увеличением температуры и ионной силы раствора наблюдает-

2021



Рис. 3. Зависимость  $\Delta E$  от  $-\lg C_L$  для системы H[AuCl<sub>4</sub>]-2-метилимидазол в диапазоне 278–318 K, I = 0.1 моль/л: I - 278, 2 - 288, 3 - 298, 4 - 308, 5 - 318 K.

ся повышение значений общих констант устойчивости комплексов золота(III).

Для расчета термодинамических функций образования комплексов золота(III) с 2-метилимидазолом необходимы численные значения термодинамических констант устойчивости. В этой связи найденные при двух значениях ионной силы концентрационные константы устойчивости были использованы для определения термодинамических констант 2-метилимидазольных комплексов золота(III) с применением уравнения [28]:

$$\lg \beta_0 = \lg \beta_C - \Delta v z^2 A_r \left( \frac{I^{1/2}}{1 + 1.6I^{1/2}} - 0.05I \right) \alpha J.$$
(7)

Для расчета термодинамической константы устойчивости по уравнению (7) необходимо знать изменение концентрационной константы при переходе от ионной силы 1 к ионной силе 2 ( $\alpha = \log \beta'_{\rm C} - \log \beta'_{\rm C}$ ), которая существенно зависит от свойств реагирующей системы и электролитической среды.

Величину  $\Delta v z^2$  в уравнении (7) находили для каждой комплексной формы по формуле  $\Delta v z^2 = = \Delta v z_{np,p}^2 - \Delta v z_{ucx,B}^2$ . Образование монозамещен-

ного комплекса золота(III) с 2-метилимидазолом протекает по реакции:

$$[\operatorname{AuCl}_4]^- + L \leftrightarrow [\operatorname{AuLCl}_3] + \operatorname{Cl}^-.$$

Величина  $\Delta v z^2$  для этой реакции равна  $(-1)^2 - (-1)^2 = 0$ . Для комплексов золота, содержащих две и три молекулы 2-метилимидазола, величины  $\Delta v z^2$  будут равны 2 и 6 соответственно.

В табл. 3 приведены значения термодинамических констант устойчивости комплексов золота(III), рассчитанные по уравнению (7), при 278–318 К.

Сопоставление концентрационных и термодинамических констант устойчивости показало, что разница в величинах констант во многом зависит от численного значения  $\Delta vz^2$ . Так, для реакции образования [AuLCl<sub>3</sub>]<sup>+</sup> значение  $\Delta vz^2$  равно нулю, реакция изозарядная, поэтому разница в значениях констант незначительна. С увеличением величины  $\Delta vz^2$  для ([AuL<sub>2</sub>Cl<sub>2</sub>]<sup>+</sup> и [AuL<sub>3</sub>Cl]<sup>2+</sup>) разница в величинах термодинамических и концентрационных констант возрастает.

В работе [29] методом потенциометрического титрования исследован процесс комплексообразования Au(III) с 1,2,4-триазолом при 298 К. При этом установлено, что Au(III) с 1,2,4-триазолом реагирует ступенчато. Сопоставление полученных нами данных с данными работы [29] показывает, что при взаимодействии Au(III) с 1,2,4-триазолом образуются четыре комплексные формы, а с 2-метилимидазолом — три. По устойчивости моно- и бизамещенные комплексы Au(III) с 2метилимидазолом превосходят таковые для 1,2,4триазола.

Термодинамические константы устойчивости использовали для определения термодинамических функций образования комплексов методом температурного коэффициента с использованием уравнения:

$$\lg \beta_i^0 = -\frac{\Delta H}{2.3R} \frac{1}{T} + \frac{\Delta S}{2.3R}.$$
(8)

| ΤΥ   | I = 0.1 моль/л          |                                     |                             | I = 0.2 моль/л                                                                   |                                     |                            |
|------|-------------------------|-------------------------------------|-----------------------------|----------------------------------------------------------------------------------|-------------------------------------|----------------------------|
| 1, К | $lg\beta_1 [AuLCl_3]^0$ | $lg\beta_2\left[AuL_2Cl_2\right]^+$ | $lg\beta_3  [AuL_3Cl]^{2+}$ | $\lg \beta_1 \left[ AuLCl_3 \right]^0 \ \lg \beta_2 \left[ AuL_2 Cl_3 \right]^0$ | $lg\beta_2\left[AuL_2Cl_2\right]^+$ | $lg\beta_3 [AuL_3Cl]^{2+}$ |
| 278  | $6.95\pm0.05$           | $11.12\pm0.05$                      | $17.4\pm0.07$               | $7.07\pm0.04$                                                                    | $12.44\pm0.03$                      | $17.67\pm0.08$             |
| 288  | $7.52\pm0.03$           | $12.37\pm0.04$                      | $18.34\pm0.08$              | $7.64\pm0.01$                                                                    | $13.35\pm0.02$                      | $18.6\pm0.08$              |
| 298  | $8.04\pm0.04$           | $13.53\pm0.03$                      | $19.23\pm0.09$              | $8.17\pm0.05$                                                                    | $14.19\pm0.03$                      | $19.48\pm0.05$             |
| 308  | $8.53\pm0.06$           | $14.61\pm0.02$                      | $20.06\pm0.06$              | $8.67\pm0.03$                                                                    | $14.98\pm0.04$                      | $20.27\pm0.06$             |
| 318  | $9.0\pm0.07$            | $15.61\pm0.01$                      | $20.85\pm0.07$              | $9.14\pm0.04$                                                                    | $15.72\pm0.02$                      | $21.05\pm0.06$             |

Таблица 2. Величины общих констант устойчивости 2-метилимидазольных комплексов золота(III)



**Рис. 4.** Зависимость  $\lg \beta_i^0$  от 1/T для комплексов:  $1 - [\operatorname{AuLCl}_3]^0$ ;  $2 - [\operatorname{AuL}_2\operatorname{Cl}_2]^+$ ;  $3 - [\operatorname{AuL}_3\operatorname{Cl}_2]^{2+}$ .

Поскольку уравнение (8) содержит два неизвестных, величины  $\Delta H$  и  $\Delta S$  были найдены графическим методом.

Величину  $\Delta H$  определяли по тангенсу угла наклона прямой зависимости  $\lg \beta_i^0 = f(1/T)$  (рис. 4), а величину  $\Delta S$  – по отрезку, отсекаемому этой прямой на оси ординат. Изменение изобарноизотермического потенциала рассчитывали по уравнению  $\Delta G = \Delta H - T\Delta S$ .

Как видно из данных табл. 4, образование всех трех комплексных форм протекает с поглощением энергии (процесс эндотермический). Такое изменение теплосодержания системы отрицательно сказывается на самопроизвольном протекании реакции комплексообразования. Вместе с

Таблица 3. Величины термодинамических констант устойчивости комплексов золота(III) с 2-метилимидазолом в диапазоне температур 278–318 К

| <i>Т</i> , К | $\lg\beta_1^0$ | $\lg\beta_2^0$ | $lg\beta_3^0$  |
|--------------|----------------|----------------|----------------|
| 278          | $6.93\pm0.03$  | $10.80\pm0.04$ | $16.81\pm0.03$ |
| 288          | $7.50\pm0.04$  | $12.10\pm0.06$ | $17.79\pm0.07$ |
| 298          | $8.02\pm0.05$  | $13.30\pm0.03$ | $18.71\pm0.09$ |
| 308          | $8.51\pm0.03$  | $14.41\pm0.02$ | $19.57\pm0.08$ |
| 318          | $8.98\pm0.01$  | $15.45\pm0.05$ | $20.38\pm0.05$ |

тем при образовании всех комплексных форм величина  $\Delta S$  положительна. В результате реакций:

$$[\operatorname{AuCl}_4]^- + L \leftrightarrow [\operatorname{AuLCl}_3]^0 + \operatorname{Cl}^-,$$
$$[\operatorname{AuCl}_4]^- + 2L \leftrightarrow [\operatorname{AuL}_2\operatorname{Cl}_2]^+ + 2\operatorname{Cl}^-,$$
$$[\operatorname{AuCl}_4]^- + 3L \leftrightarrow [\operatorname{AuL}_3\operatorname{Cl}]^{2+} + 3\operatorname{Cl}^-$$

число молей реагирующих веществ и продуктов реакции остается неизменным. Возрастание энтропии при комплексообразовании, скорее всего, является следствием появления в растворе "размороженной" воды из гидратных оболочек ионов в результате реакций. Величина  $\Delta G$  на всех стадиях комплексообразования отрицательна. Самопроизвольное протекание реакции комплексообразования определяется энтропийной составляющей.

#### ЗАКЛЮЧЕНИЕ

На основании проведенных исследований установлено, что между H[AuCl<sub>4</sub>] и 2-метилимидазолом протекает ступенчатое комплексообразование. Показано, что в реакции комплексообразования участвует молекулярная форма этого соединения. Данный вывод коррелирует с сообщением о получении комплекса состава [AuLCl<sub>3</sub>]<sup>0</sup> с нейтральным гетероциклическим лигандом в работе [24]. Обработка данных потенциометрического титрования по программе KEV дает удовлетворительные результаты для образования трех комплексных форм состава  $[AuLCl_3]^0$ ,  $[AuL_2Cl_2]^+$ ,  $[AuL_3Cl]^{2+}$ . Установлено, что с увеличением температуры устойчивость комплексов золота(III) повышается. Образование как моно-, так и бис- и трис-лигандного комплексов протекает с поглощением энергии. Вместе с тем при образовании всех комплексных форм величина  $\Delta S$  положительна. Наиболее вероятной причиной возрастания энтропии при комплексообразовании является появление в растворе "размороженной" воды из гидратных оболочек ионов в результате реакций. Величина  $\Delta G$  на всех сталиях комплексообразования отрицательна. Самопроизвольное комплексообразования протекание реакции определяется энтропийной составляющей.

Таблица 4. Величины термодинамических функций реакций образования 2-метилимидазольных комплексов золота(III)

| Реакция образования комплексов                           | $\Delta H,$ кДж/моль | $\Delta G,$ кДж/моль | Δ <i>S</i> ,<br>Дж/(моль К) |
|----------------------------------------------------------|----------------------|----------------------|-----------------------------|
| $[AuCl_4]^- + L \leftrightarrow [AuLCl_3]^0 + Cl^-$      | $86.54\pm0.77$       | $-41.44 \pm 0.34$    | $444.42\pm2.60$             |
| $[AuCl_4]^- + 2L \leftrightarrow [AuL_2Cl_2]^+ + 2Cl^-$  | $190.07\pm1.38$      | $-77.2 \pm 0.11$     | $896.77 \pm 4.66$           |
| $[AuCl_4]^- + 3L \leftrightarrow [AuL_3Cl]^{2+} + 3Cl^-$ | $145.98 \pm 1.24$    | $-109.74 \pm 1.38$   | $858.14 \pm 1.38$           |

#### 728

## КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

### СПИСОК ЛИТЕРАТУРЫ

- 1. Nardon C., Boscutti G., Fregona D. // Anticancer Res. 2014. V. 34. P. 487.
- 2. Корман Д.Б., Островская Л.А., Кузьмин В.А. // Вопросы онкологии. 2018. Т. 64. № 6. С. 697.
- 3. *Машковский М.Д.* // Лекарственные средства. 2002. Т. 2. № 14. С. 608.
- Машковский М.Д. // Лекарственные средства. 2005. Т. 2. № 15. С. 1200.
- Olivier-Bourbigou H., Magna L., Morvan D. // Appl. Catal. A. General. 2010. V. 373. P. 1.
- Jarosik A., Krajewski S.R., Lewandowski A., Radzimski P. // J. Mol. Liq. 2006. V. 123. P. 43.
- Мещеряков Ю.Я., Бухтиенко В.И., Плужников В.Н. и др. Эпоксидный олигомер для связующей композиции, способ его получения и способ получения связующей композиции на его основе. Пат. РФ. № 2221816. Заявл. 02.11.2001. Опубл. 10.07.2003.
- Тран Тхан Тун Синтез и физико-химические исследования комплексных соединений бромида меди(II) с азотсодержащими гетероциклическими основаниями. Автореф. ... дис. канд. хим. наук. М., 2007. 17 с.
- 9. Зайцева С.В., Зданович С.А., Койфман О.И. // Макрогетероциклы. 2012. Т. 5. № 1. С. 81.
- Assouli B., Srhiri A. // Idrissi. Corrosion. 2004. V. 60. P. 399.
- 11. *Вахрушев Я.М., Хохлачева Н.А.* // Экспериментальная и клиническая гастроэнтерология. 2010. № 4. С. 105.
- 12. Скорик Н.А., Филиппова М.М., Бухольцева Е.И. и др. // Журн. неорган. химии. 2015. Т. 60. № 6. С. 806.
- 13. Мирзохонов Д.Ч., Мабаткадамзода К.С., Сафармамадов С.М. // Изв. Санкт-Петербургского гос. технол. ин-та. 2018. № 44. С. 3.
- Мирзохонов Д.Ч., Сафармамадов С.М., Мабаткадамова К.С. // ХХVII Междунар. Чугаевская конф. по коорд. химии. Нижний Новгород, 2017. С. 280.

- Зырянова И.А. Новые лиганды и металлокомплексы на базе функционально замещенных азолов. Автореф. ... дис. канд. хим. наук. Иркутск, 2003. 23 с.
- Шыйтыева Н., Малабаева А.М., Бердалиева Ж.И. // Химические науки. НАУ. 2016. Т. 21. № 5. С. 150.
- 17. Пищевицкий Б.И., Белеванцев В.И., Земсков С.В. // Изв. Сибирск. отд. АН СССР. 1976. № 4. С. 24.
- 18. *Чуйко Т.В., Тулюпа Ф.М., Аришкевич А.М. //* Журн. неорган. химии. 1977. Т. 22. № 6. С. 1602.
- 19. Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 391. [Mironov I.V., Kharlamov V. Yu. // Russ. J. Inorg. Chem. 2020. V. 65. P. 420. https://doi.org/10.1134/S0036023620030092] https://doi.org/10.31857/S0044457X20030095
- 20. *Миронов И.В., Цвелодуб Л.Д.* // Журн. неорган. химии. 2001. Т. 46. № 1. С. 154.
- Миронов И.В., Цвелодуб Л.Д. // Журн. неорган. химин. 2000. Т. 45. № 4. С. 425. [Mironov I.V., *Tsvelodub L.D.* // Russ. J. Inorg. Chem. 2000. V. 45. № 3. Р. 361.]
- Сафармамадов С.М., Мубораккадамов Д.А., Мабаткадамова К.С. // Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 5. С. 37.
- Сафармамадов С.М., Мубораккадамов Д.А., Мабаткадамова К.С. // Материалы республиканской научн.-теор. конф. профессорско-преподавательского состава и сотрудников ТНУ. Душанбе, 2018. С. 649.
- 24. *Pitteri B., Bortoluzzi M. //* Trans. Met. Chem. 2006. V. 31. P. 102.
- Мубораккадамов Д.А. Комплексообразование золота(III) с триазолами. Автореф. ... дис. канд. хим. наук. Душанбе, 2019. 26 с.
- 26. *Mehkov A.N., Gamov G.A.* // Talanta. 2019. V. 198. P. 200.
- 27. *Perrin H.H.* Dissociation Constants of Organic Bases in Aqueous Solution: Supplement. London: International Union of Pure and Applied Chemistry, 1972.
- 28. Васильев В.П. // Аналитическая химия. М.: Высшая школа, 1989. Ч. І. 319 с.
- 29. Сафармамадов С.М., Мубораккадамов Д.А., Мабаткадамова К.С. // Изв. АН. РТ. 2015. № 160. С. 65.