_____ ФИЗИКОХИМИЯ ___ РАСТВОРОВ ____

УДК 541.123.3

РАСТВОРИМОСТЬ КОМПОНЕНТОВ В ВОДНОЙ СИСТЕМЕ УКСУСНАЯ КИСЛОТА-МОНОЭТАНОЛАМИН

© 2021 г. Ж. С. Шукуров^{а, *}, Э. С. Хусанов^а, М. Ш. Мухитдинова^а, А. С. Тогашаров^а

^аИнститут общей и неорганической химии АН РУз, ул. Мирзо Улугбека, 77-а, Ташкент, 100170 Узбекистан *e-mail: kumush1984@mail.ru

> Поступила в редакцию 24.12.2020 г. После доработки 22.01.2021 г. Принята к публикации 25.01.2021 г.

Изучено взаимное влияние компонентов в водной системе, состоящей из моноэтаноламина и уксусной кислоты, в широком интервале концентраций при температуре от -72.1 до 0°С. Построена диаграмма растворимости, выделено новое соединение ацетат моноэтаноламмония, которое идентифицировано методами химического, рентгенофазового, термогравиметрического и рентгеноструктурного анализа.

Ключевые слова: дефолианты, моноэтаноламин, ацетат моноэтаноламмония **DOI:** 10.31857/S0044457X21060179

введение

Известно, что этаноламины, аминоспирты и карбоновые кислоты [1], а также их производные обладают физиологической активностью [2, 3]. Благодаря наличию в их составе молекул этиленовой –СН₂–СН₂-группы они проявляют ретардантные свойства [4, 5], увеличивая содержание этилена в зоне опадения листьев [6].

Настоящая работа является продолжением наших систематических исследований по взаимодействию уксусной кислоты с моноэтаноламинами [7, 8]. Этаноламины входят в состав действующих веществ ряда стимуляторов роста и развития [9], являются эффективными синергистами для хлоратсодержащих дефолиантов [10], усиливая их дефолиирующую активность [11–13].

С целью определения температурно-концентрационных параметров синтеза физиологически активных веществ нами изучена растворимость в водной системе, включающей уксусную кислоту и моноэтаноламин, в широком интервале температур и концентраций.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали уксусную кислоту и моноэтаноламин квалификации "ч.", дополнительно очищенный перегонкой в вакууме.

Для исследования растворимости системы применяли визуально-политермический метод [14]. Содержание моноэтаноламина определяли по амидному азоту спектрофотометрическим методом (ГОСТ 20851), элементный анализ на углерод, азот, водород проводили согласно [15].

Для выяснения характера взаимодействия между составляющими компонентами синтезированных соединений нами выполнен ИК-спектроскопический анализ. ИК-спектры поглощения исходных компонентов и исследуемых соединений регистрировали на спектрофотометре Specord IR-75 в области частот 4000–400 см⁻¹. Образцы готовили с помощью прессования таблеток с бромидом калия [16].

Термический анализ новых фаз проводили на дериватографе системы Паулик–Паулик–Эрдей при атмосферном давлении и скорости нагрева 10 град/мин (навеска вещества 100 мг, чувствительность гальванометров ДТА 1/5, ДТГ 1/10, 900°С). Эталоном служил прокаленный оксид алюминия [17].

Рентгенофазовый анализ проводили на дифрактометре ДРОН-3 в отфильтрованном излучении медного анода при напряжении 40 кВ, силе тока 20 мА, скорости движения диска счетчика 2 град/мин. Значения межплоскостных расстояний находили по справочнику согласно углу отражения, а интенсивность дифракционных линий оценивали по стобалльной шкале [18, 19].

Для подтверждения индивидуальности соединений использовали рентгеноструктурный анализ. Эксперименты проводили на дифрактометре Oxford Diffraction (Cu K_{α} -излучение, графитовый монохроматор). Структуры расшифрованы прямым методом с помощью комплекса программ

Рис. 1. Диаграмма растворимости системы уксусная кислота-моноэтаноламин-вода.

SHELXS-97 [20] и уточнены с помощью SHELXL-97 [21].

Для физико-химического обоснования процесса синтеза производных этаноламинов, используемых в качестве этиленпродуцирующих добавок [22-25] к хлоратсодержащим дефолиантам. представляет интерес изучение поведения моноэтаноламина и уксусной кислоты в системе СН₃СООН-NH₂C₂H₄OH₂-H₂O в широком интервале температур и концентраций.

Составляющие данную систему бинарные системы уксусная кислота-вода и моноэтаноламин-вода изучены авторами. Полученные нами данные согласуются с литературными.

CH₃COOH-Растворимость системе в NH₂C₂H₄OH₂-H₂O изучена нами визуально-политермическим методом в интервале температур от -72.1 до 0°С. На ее политермической диаграмме растворимости разграничены поля кристаллизации льда, уксусной кислоты, двух- и одноводного моноэтаноламина, моноэтаноламина и ацетата моноэтаноламмония (рис. 1).

Установлены четыре тройные точки системы, для которых определены температуры кристаллизации и составы равновесных растворов (табл. 1).

Из диаграммы растворимости системы уксусная кислота-моноэтаноламин-вода видно, что интервал температур -61.4...-24.8°C отвечает кристаллизации совместной соединения NH₂C₂H₄OH · CH₃COOH со льдом, уксусной кислотой. двух- и одноводным моноэтаноламином. моноэтаноламином.

В интервале температур -48.5...-55.9°C из равновесного раствора кристаллизуется двухводный моноэтаноламин совместно со льдом, в интервале температур -46.1...-49.0°С - двухводный моноэтаноламин с одноводным моноэтаноламином. Лед и уксусная кислота совместно кристаллизуются в интервале температур -25.6...-40.2°С.

Синтезированное соединение было выделено из предполагаемой области кристаллизации, идентифицировано и подтверждено современными методами химического и физико-химического анализа.

Ниже представлены результаты химического анализа полученного соединения.

	N _{амид}	С	Н	0
Найдено, мас. %:	11.65;	39.61;	9.07;	39.67.
Для $NH_2C_2H_4OH \cdot C$	H ₃ COO	Η		
вычислено, мас. %:	11.57;	39.64;	9.09;	39.70.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ **№** 6 2021 том 66

РАСТВОРИМОСТЬ КОМПОНЕНТОВ В ВОДНОЙ СИСТЕМЕ

Состав жидкой фазы, %		t °C	There was a base		
NH ₂ C ₂ H ₄ OH	CH ₃ COOH	H ₂ O	$l_{\text{крист}}, C$	І вердая фаза	
_	63.6	36.4	-25.6	Лед + CH ₃ COOH	
8.8	57.0	34.2	-28.4	»	
19.6	50.8	29.6	-40.2	»	
32.4	45.2	22.4	-72.1	Лед + CH ₃ COOH + NH ₂ C ₂ H ₄ OH · CH ₃ COOH	
38.4	61.6	_	-61.4	$CH_3COOH + NH_2C_2H_4OH \cdot CH_3COOH$	
32.8	47.6	19.6	-71.8	»	
34	39.6	26.4	-70.1	$Лед + NH_2C_2H_4OH \cdot CH_3COOH$	
44.8	25.6	29.6	-64.0	»	
59.0	18.4	22.6	-57.2	$Лед + NH_2C_2H_4OH \cdot CH_3COOH + NH_2C_2H_4OH \cdot 2H_2O$	
72.0	15.0	13.0	-50.4	$NH_2C_2H_4OH \cdot CH_3COOH + NH_2C_2H_4OH \cdot 2H_2O + + NH_2C_2H_4OH \cdot H_2O$	
82.8	13.2	6.0	-34.2	$NH_2C_2H_4OH \cdot CH_3COOH + NH_2C_2H_4OH \cdot H_2O + NH_2C_2H_4OH$	
87.22	12.8	_	-24.8	$NH_2C_2H_4OH \cdot CH_3COOH + NH_2C_2H_4OH$	
58.4	16.8	24.8	-55.9	Лед + NH ₂ C ₂ H ₄ OH · 2H ₂ O	
55.8	9.0	35.2	-51.2	»	
55.2	7.8	37.0	-50.9	»	
54.0	4.6	41.4	-50.1	»	
52.0	_	48.0	-48.5	»	
71.0	12.0	17.0	-49.0	$NH_2C_2H_4OH \cdot 2H_2O + NH_2C_2H_4OH \cdot H_2O$	
69.0	6.4	75.4	-47.2	»	
7.8	3.2	89	-46.4	»	
66.4	_	33.6	-46.1	»	
82.0	10.8	7.2	-31.9	$NH_2C_2H_4OH \cdot H_2O + NH_2C_2H_4OH$	
81.2	7.8	11.0	-29.2	»	
80.0	4.0	16.0	-27.2	»	
79.2	2.0	81.2	-26.2	»	

Таблица 1. Двойные и тройные точки системы уксусная кислота-моноэтаноламин-вода

Рентгенофазовый анализ показал, что полученное соединение состава $NH_2C_2H_4OH \cdot CH_3COOH$ характеризуется собственными значениями межплоскостных расстояний, подтверждающими его индивидуальность (рис. 2).

21.6

78.4

Кривая нагревания соединения $NH_2C_2H_4OH \cdot CH_3COOH$ характеризуется тремя эндотермическими эффектами с максимумами при 78, 230 и 290°C и одним экзоэффектом при 560°C (рис. 3).

Эндотермический эффект при 78°С соответствует плавлению соединения, а эндоэффект при 230°С – началу его разложения, потеря массы при этом составляет 33.94%. Экзотермический эффект при 560°С отвечает дальнейшему разложению соединения, потеря массы составляет 73.79%. Последующие эффекты связаны с продолжением разложения и горением продуктов термолиза.

»

В ИК-спектре моноэтаноламина наблюдаются полосы при 3360 см⁻¹, соответствующие валентным колебаниям ОН-групп, связанных водородными связями, 3290 и 3190 см⁻¹, отвечающие асимметричным (v_{as}) и симметричным (v_s) колебаниям NH- и NH₂-групп, 1590 см⁻¹, связанные с деформационными (β) колебаниями NH₂-группы, полосы при 1360 см⁻¹, характеризующие плоские колебания β (OH) и C–O, 1085 см⁻¹ – ν (CN), 1040 см⁻¹ – ν (C–O), 1170 см⁻¹ – β (OH), 870 см⁻¹, соответствующие неплоским колебаниям β (NH₂).

-25.2

Рис. 2. Рентгенограмма $NH_2C_2H_4OH \cdot CH_3COOH$.

Рис. 3. Дериватограмма соединения $NH_2C_2H_4OH \cdot CH_3COOH$.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 6 2021

Рис. 4. ИК-спектры: а – уксусная кислота, б – моноэтаноламин, в – ацетат моноэтаноламмония.

R ИК-спектре полученного соединения NH₂C₂H₄OH · CH₃COOH отсутствуют полосы поглощения, характерные для группы NH₂ (рис. 4, табл. S1). При 3240 и 3110 см⁻¹ появляются новые полосы, которые относятся к валентным асимметричным и симметричным колебаниям иона NH₃⁺, и полосы при 1580 и 1500 см⁻¹, отвечающие деформационным колебаниям NH₃⁺. Валентные колебания группы NH₃⁺ проявляются в виде широкой полосы поглощения в области ~3120 см⁻¹, которая обычно перекрывается с полосой валентных колебаний СН-групп. В ИК-спектре $NH_2C_2H_4OH \cdot CH_3COOH$ остаются без изменения полосы, соответствующие валентным и деформационным колебаниям CH₂-групп, появляется ряд новых полос, которые отсутствуют в спектрах исходных соединений.

Следовательно, при взаимодействии моноэтаноламина с уксусной кислотой происходит протонизация азота с образованием ацетата моноэтаноламмония. Это подтверждается появлением полос поглощения при 1600 и 1430 см⁻¹, принадлежащих валентным асимметричным и симметричным колебаниям СОО[–]-группы. Таким образом, все это свидетельствует о том, что одна из групп (СООН) молекулы уксусной кислоты находится в ионизированном состоянии. Происходит сдвиг в низкочастотную область полос колебаний ОН⁻-группы моноэтаноламина, указывающий на образование водородных связей между молекулой амина и кислотой.

Индивидуальность ацетата моноэтаноламмония подтверждена также методом рентгеноструктурного анализа. Для исследования был отобран кристалл размером 0.64 × 0.55 × 0.52 мм. Поскольку ацетат моноэтаноламмония является гигроскопичным веществом, для предотвращения поглощения влаги извне его покрывали пленкой эпоксидной смолы. Определение параметров элементарной ячейки и сбор экспериментальных данных проводили на дифрактометре Bruker SMART APEX CCD, оснащенном криосистемой (Оксфорд), при 293 К (2069 отражений, Cu K_{α} -излучение, графитовый монохроматор). Основные кристаллографические данные ацетата моноэтаноламмония приведены в табл. 2.

Кристаллическая структура построена из катиона моноэтаноламмония с протонированной NH₂-группой и аниона уксусной кислоты. На рис. 5 показана проекция кристаллической

Рис. 5. Кристаллическая структура ацетата моноэтаноламмония.

структуры ацетата моноэтаноламмония на плоскость. Кислород O(3) карбоксильной группы образует водородные связи с атомами O(1) и N первой молекулы моноэтаноламина длиной 2.700 и 2.796 Å соответственно. Атом O(2) образует водородные связи с атомами N первой и второй молекулы моноэтаноламина. Это единственный атом кислорода группы COO⁻, который посредством водородной связи одновременно связан с первой и второй молекулами моноэтаноламина.

Таким образом, у атомов O(2) и O(3) имеется по два, у атома O(1) — один, а у атома N — по три контакта, образованных водородными связями (при этом учитываются только межмолекулярные водородные связи). Кристаллическая структура характеризуется сложной сетью водородных связей (табл. 3).

Длины контактов водородной связи О–Н....О, N–H....О имеют следующие значения: O(1)– H(8)...O(3) 2.700 Å, N–H(1)...O(2) 2.783 Å, N– H(2)...O(2) 2.835 Å, N–H(3)...O(3) 2.796 Å.

Ацетат моноэтаноламмония — белое кристаллическое вещество. Эмпирическая формула NH₂C₂H₄OH · CH₃COOH, M = 121.14. Температура плавления равна 78°C. Растворимость его в воде при температуре —40, —30, —20, —10, 10, 20, 30, 40, 50, 60, 70,0°C составляет соответственно 62.8, 73.0, 78.6, 80.2, 85.0, 87.1, 89.2, 91.8, 93.9, 96.0, 98.2%.

ЗАКЛЮЧЕНИЕ

Таким образом, в изученной системе установлено образование нового соединения состава $NH_2C_2H_4OH \cdot CH_3COOH$, которое идентифицировано методами химического и физико-химического анализа. В системе наблюдается взаимное высаливающее действие компонентов с ростом температуры. Полученные данные представляют интерес и являются физико-химической основой для дальнейшей разработки технологии получения физиологически активного вещества для сельскохозяйственных культур.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Таблица S1. Частота колебаний и отнесение полос поглощения $NH_2C_2H_4OH$, CH_3COOH , $NH_2C_2H_4OH \cdot CH_3COOH$ в ИК-спектрах.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

813

Таблица 2. Кристаллографические данные, параметры эксперимента и уточнения структуры соединения ацетата моноэтаноламмония

Параметр	Значение		
Брутто-формула	CH ₂ COO ⁻ NH ⁺ ₂ C ₂ H ₄ OH		
М	121.14		
Сингония	Моноклинная		
Пр. гр.	<i>P</i> 21/ <i>n</i> (№ 14)		
$\alpha, \beta, \gamma, \Gamma pad$	90, 104.84(3), 90		
Параметры элементарных	7.7040(15), 9.1409(18),		
ячеек <i>a</i> , <i>b</i> , <i>c</i> , Å	9.846(2)		
Z	4		
<i>V</i> , Å ³	670.2 (2)		
$ρ_{\rm BbIY}$, $Γ/cM^3$	1.201		
Сбор эксперимента	льных данных		
Излучение (λ, Å)	CuK_{α} (1.54178)		
Т, К	293		
Область сканирования 20	6.5, 62.0		
(min, max), град			
Диапазон индексов данных	$-4 \le h \le 8, -9 \le k \le 10,$		
	$-11 \le l \le 10$		
Дифрактометр	Bruker SMART APEX		
	CCD		
I_{hkl} изм./независ./ R_{int}	2069/1024/0.041		
Наблюдаемые	758		
отражения [<i>I</i> > 2.0 σ(<i>I</i>)]			
Уточнен	ие		
$N_{\rm ref}, N_{\rm par}$	1024, 86		
$R, wR_2, GOOF$	0.0830, 0.2881, 2.11		
Остаточные экстремумы,	-0.41, 0.28		
$e/Å^3$			

Таблица 3. Параметры водородных связей в структуре ацетата моноэтаноламмония

Связь	D–H, Å	HA, Å	DA, Å
O(1)-H(8)O(3)	0.8200	1.8800	2.700 (4)
N-H(1)O(2)	0.88 (2)	1.91(2)	2.783 (4)
N-H(2)O(2)	0.86 (3)	2.02(3)	2.835 (4)
N-H(3)O(3)	1.09 (4)	1.72(4)	2.796 (4)

СПИСОК ЛИТЕРАТУРЫ

1. *Rajaeian S.O., Ehsanpour A.A.* // Russ. J. Plant. Physiol. 2015. V. 62. P. 246.

https://doi.org/10.1134/S1021443715020156

- 2. Цыпленкова А.Ю., Кольцова О.В., Лобанов Н.Н. и др. // Бутл. сообщ. 2013. Т. 36. № 11. С. 146. https://roi: jbc-01/13-36-11-146]
- 3. Скворцов В.Г., Кольцова О.В., Пыльчикова Ю.Ю. и др. // Вестн. Чуваш. гос. педаг. ун-та им. И.Я. Яковлева. 2009. № 2. С. 101.
- Веселова С.В., Бурханова Г.Ф., Нужная Т.В. и др.// Физиол. раст. 2016. Т. 63. С. 649. [Veselova S.V., Burkhanova G.F., Nuzhnaya T.V. et al. // Russ. J. Plant. Physiol. 2016. V. 63. P. 609. https://doi.org/10.1134/S1021443716050150]

- 5. Веселова С.В., Бурханова Г.Ф., Нужная Т.В. и др. // Биомика. 2018. Т. 10. № 4. С. 387. https://doi.org/10.31301/2221-6197.bmcs.2018-50
- Raghavendra T., Rama Reddy Y. // Indian J. Agrico. Res. 2020. V. 54. P. 404. https://doi.org//10.18805/IJARe.A-5288
- Balabaev N.K., Rodnikova M.N., Solonina I.A. et al. // Russ. J. Phys. Chem. 2017. V. 91. P. 195. https://doi.org/10.1134/S0036024417010058
- Ibragimov A.B., Ashurov Z.M., Ibragimov A.B. et al. // Russ. J. Coord. Chem. 2017. V. 43. P. 380. https://doi.org/10.1134/S1070328417060021
- Broekgaarden C., Caarls L., Vos I.A. et al. // Plant Physiol. 2015. V. 169. P. 2371. https://doi.org/10.1104/pp15.01020
- 10. Shukurov Z.S., Ishankhodzhaev S.S., Askarova M.K. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 3. Р. 463. https://doi.org/10.1134/S0036023611010207 [Шукуров Ж.С., Ишанходжаев С.С., Аскарова М.К. и др. // Журн. неорган. химии. 2011. Т. 56. № 3. С. 502.]
- 11. Умаров А.А., Кутянин Л.И. Новые дефолианты: поиск, свойства, применения. М.: Химия, 2000. 143 с.
- Sidikov A.A., Toghasharov A.S., Shukurov J.S. et al. // Int. J. Adv. Res. Sci. Eng. Tech. 2020. V. 7. № 5. P. 13619.
- 13. Хамдамова Ш.Ш., Тухтаев С., Дадамухамедова Н. // Universum: техн. науки. 2018. Т. 55. № 10. С. 42. https://7universum.com/ru/tech/archive/item/6412
- 14. *Трунин А.С. Петрова Д.Г.* Визуально-политермический метод. Куйбышев, 1977.
- 15. Полуэктов Н.С. Методы анализа по фотометрии пламени. М.: Химия, 1967.
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991.
- Берг Л.Г., Бурмистрова Н.П., Озерова М.И. и др. Практическое руководство по термографии. Казань, 1976.
- 18. Ковба Л.М., Трунов В.К. Рентгенофазовый анализ. М., 1969.
- Недома И. Расшифровка рентгенограмм порошков. М.: Металлургия, 1975.
- 20. Sheldrick G.M. // Acta Crystallogr. 1990. V. 46. P. 467.
- 21. *Sheldrick G.M.* SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany. 1997.
- 22. Shukurov Z.S., Askarova M.K., Tukhtaev S. // Russ. J. Inorg. Chem. 2018. V. 63. № 2. Р. 275. [Шукуров Ж.С., Аскарова М.К., Тухтаев С. // Журн. неорган. химии. 2018. Т. 63. № 2. С. 261.] https://doi.org/10.1134/S0036023618020201
- 23. Toghasharov A.S., Askarova M.K. Tukhtaev S. // East Europ. Sci. J. Wschodnioeur. Czasop. Nauk. 2016. V. 3. № 8. P. 56.
- 24. *Khamdamova Sh.Sh.* // Proc. Universe. Appl. Chem. Biotech. 2017. V. 7. № 2. P. 9. https://doi.org/10.21285/2227-2925-2017-7-2-9-15
- 25. Хамдамова Ш.Ш. Разработка технологии получения комплексно действующего хлораткальцийсодержащего дефолианта с использованием промышленных отходов. Автореф. ... канд. хим. наук. Ташкент, 2018.