_ НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ _ И НАНОМАТЕРИАЛЫ

УЛК 546.05

СИНТЕЗ, ФАЗОВЫЙ СОСТАВ И СВОЙСТВА КЕРАМИЧЕСКИХ МАТЕРИАЛОВ $AIMgB_{14}$, ПОЛУЧЕННЫХ МЕТОДОМ ИСКРОВОГО ПЛАЗМЕННОГО СПЕКАНИЯ

© 2021 г. П. Ю. Никитин^a, *, И. А. Жуков a , М. С. Болдин b , С. Н. Перевислов c , В. Н. Чувильдеев b

^аТомский государственный университет, пр-т Ленина, 36, Томск, 634050 Россия

^b Нижегородский государственный университет им. Н.И. Лобачевского, Научно-исследовательский физикотехнический институт, пр-т Гагарина, 23, корп. 3, Нижний Новгород, 603950 Россия

сИнститут химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2,

Санкт-Петербург, 199034 Россия

*e-mail: upavelru@yandex.ru Поступила в редакцию 04.02.2021 г. После доработки 11.03.2021 г.

Принята к публикации 12.03.2021 г.

Методом искрового плазменного спекания порошковой смеси $Al_{12}Mg_{17}$ -В при температурах спекания 1300 и 1400°С получены материалы на основе $AlMgB_{14}$. Проведены исследования фазового состава, структуры и свойств материалов. Согласно результатам рентгеноструктурных исследований, в процессе искрового плазменного спекания формируется фаза $AlMgB_{14}$ и шпинель $MgAl_2O_4$. Содержание фазы $AlMgB_{14}$ в полученных материалах составляет ~95 мас. %. При температуре спекания 1400° С твердость и относительная плотность образца составляют 30.1 ГПа и 90.3% соответственно. Установлено, что основным источником кислорода в порошковой смеси является оксидная пленка B_2O_3 на поверхности порошка бора. Таким образом, при использовании интерметаллического порошка Al_1Mg_1 в качестве исходного прекурсора шпинель $MgAl_2O_4$ формируется в результате реакции интерметаллидов Al_2Mg_1 и оксида B_2O_3 .

Ключевые слова: бориды, твердые материалы, $Al_{12}Mg_{17}$, шпинель

DOI: 10.31857/S0044457X2108016X

ВВЕДЕНИЕ

AlMgB₁₄, известный также как борид алюминия-магния (БАМ), - орторомбическое соединение на основе связанных алюминием и магнием икосаэдров бора В₁₂, обладающее рядом потенциально значимых для промышленного использования свойств. Хотя первые исследования монокристаллов AlMg B_{14} проводились с 1969 г. [1, 2], о физико-механических свойствах поликристаллических материалов AlMgB₁₄ стало известно лишь в 2000 г. Группой ученых лаборатории Ames под руководством В. Cook было обнаружено, что поликристаллические материалы на основе AlMgB₁₄, полученные методом горячего прессования механоактивированных смесей порошков алюминия, магния и бора, имеют значение твердости 32 ГПа (в композитах с 30 мас. % ТіВ, твердость достигает 46 ГПа [3]), низкий коэффициент трения, равный 0.02 [4], и коэффициент теплового расширения (КТР), близкий к КТР стали [5]. Благодаря уникальному сочетанию этих свойств поликристаллические материалы на основе AlMgB₁₄ стали

объектом активных исследований ученых из Америки, Китая, Японии и стран Европы.

Обычно для получения $AlMgB_{14}$ порошки алюминия, магния и бора различной дисперсности смешиваются в атомном соотношении Al:Mg:B=1:1:14, а затем спекаются методами высокотемпературного вакуумного спекания [6, 7], горячего прессования [3, 8–10], искрового плазменного спекания [11, 12]. Для интенсификации процессов синтеза $AlMgB_{14}$ используется предварительная механическая активация порошковой смеси [13]. Для получения композиционного порошка $AlMgB_{14}$ - TiB_2 авторами [14] был также применен метод термохимически сопряженного самораспространяющегося высокотемпературного синтеза (**CBC**). После CBC-синтеза полученный порошок был консолидирован методом искрового плазменного спекания.

Основная проблема получения БАМ связана с формированием примесных фаз, в особенности шпинели $MgAl_2O_4$, значительно снижающей свойства $AlMgB_{14}$ [15]. В процессе спекания

AlMgB₁₄ шпинель формируется по реакции кислорода с алюминием и магнием. Основным источником кислорода являются оксидные пленки на поверхности частиц бора (В2О3) и алюминия (Al_2O_3) . Учеными из Словении предложено использовать в качестве исходных прекурсоров порошки боридов AlB₁₂ и MgB₂ вместо порошков алюминия, магния и бора [7]. Ими обнаружено, что для образования AlMgB₁₄ необходимо наличие свободного бора в смеси, поэтому получение БАМ из порошков AlB_{12} и MgB_2 оказалось безрезультатным. Синтез материалов на основе $AlMgB_{14}$ из смесей AlB_2 , MgB_2 и бора проведен в [6]. В результате получены материалы с содержанием фазы AlMgB₁₄ ~85 мас. %. Во избежание контакта исходных порошков с кислородом синтез исходной порошковой смеси и ее спекание осуществляли в условиях высокого вакуума. В работе также предложено проводить предварительный высокотемпературный отжиг порошка бора в вакууме. Это позволило сократить содержание шпинели до 3.3 мас. %, а содержание фазы AlMgB₁₄ в полученном материале составило 92.6 мас. %. В этой связи особый интерес представляет использование интерметаллических порошков алюминия и магния в качестве исходного прекурсора для получения материалов на основе AlMgB₁₄. Это может повысить эффективность получения AlMgB₁₄, поскольку магний не испаряется из соединения, как при использовании отдельных порошков. Для компенсации испарения магния из порошковой смеси Al-Mg-B в процессе спекания $AlMgB_{14}$ авторы [16] предложили использовать смесь с избытком магния, в которой атомное соотношение Al : Mg : B = 1 : 6 : 14. В полученных материалах было обнаружено высокое содержание фазы AlMgB₁₄, однако предложенный авторами метод требует использования порошков с минимальным содержанием примесей и спекания в условиях высокого вакуума, что значительно увеличивает трудоемкость и стоимость изготовления. Более того, использование порошка интерметаллического сплава для синтеза БАМ может снизить содержание шпинельной фазы в спеченных образцах. Это связано с тем, что оксидная пленка интерметаллического соединения не такая плотная, как у алюминия [17]. В нашей предыдущей работе [18] предложен механизм формирования AlMgB₁₄ в процессе горячего прессования порошковой смеси интерметаллического сплава Al₁₂Mg₁₇ и бора. Установлено, что для достижения плотности материала, близкой к теоретической, и увеличения содержания фазы AlMgB₁₄ необходимо оптимизировать процесс спекания порошковой смеси. При этом по сравнению с технологиями высокотемпературного вакуумного спекания и горячего прессования метод искрового плазменного спекания является

более эффективным как за счет сокращения длительности спекания, так и за счет возможности точного контроля и управления параметрами процесса: температурой спекания, временем изотермической выдержки, скоростью нагрева и давлением [19, 20].

Цель настоящей работы — исследование фазового состава, структуры и физико-механических свойств материалов $AlMgB_{14}$, полученных методом искрового плазменного спекания порошковой смеси $Al_{12}Mg_{17}$ -B.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных веществ использовали порошок интерметаллического сплава $Al_{12}Mg_{17}$ и порошок аморфного черного бора. Интерметаллический порошок получали сплавлением слитков алюминия и магния чистотой 99.9% в графитовом тигле в среде аргона. Для этого на первом этапе расплавляли 1 кг алюминия при температуре 720°C, затем в расплав алюминия добавляли магний в массовом соотношении Al: Mg = 1:1. Для достижения гомогенности расплава смешивание осуществляли с помощью устройства, описанного в [21]. Полученный расплав выливали в стальной кокиль при температуре 670°C с одновременным вибрационным воздействием на кристаллизатор [22]. На втором этапе полученный сплав механически измельчали в щековой дробилке, а затем подвергали обработке в планетарной мельнице в среде аргона. В качестве мелющих тел использовали стальные шары диаметром 8.7 мм. Массовое соотношение шаров к порошковой смеси составляло 2 : 1, частота вращения барабанов — 12 Гц. Механическую обработку проводили в течение 5 ч.

Полученный порошок интерметаллического сплава $Al_{12}Mg_{17}$ (средний размер частиц 20 мкм) смешивали с аморфным черным бором (средний размер частиц 2.1 мкм) в атомном соотношении $Al_{12}Mg_{17}$: B=2:14. Полученную смесь механически активировали в планетарной мельнице в среде аргона с частотой вращения барабанов 14 Гц. В качестве мелющих тел использовали стальные шары диаметром 4.5 мм. Массовое соотношение мелющих тел к порошковой смеси составляло 3:1, продолжительность механической активации 3 ч.

Спекание керамических образцов из полученной порошковой смеси $\mathrm{Al}_{12}\mathrm{Mg}_{17}$ -В проводили методом искрового плазменного спекания (установка DR. SINTER model SPS-625 Spark Plasma Sintering System) в графитовой пресс-форме диаметром 12.8 мм. Для отделения порошковой навески от стенок графитовой пресс-формы использовали графитовую бумагу. Для обеспечения однородности температурного поля внутри пресс-формы при спекании и уменьшения риска возникновения

$t_{\text{cnek}}, ^{\circ}\text{C}$	Микротвердость HV , $\Gamma\Pi a$									
	№ измерения									
	1	2	3	4	5	6	7	8	9	10
1300	27.1	26.8	25.2	22.5	21.8	21.8	20.0	19.9	18.6	18.0
1400	32.4	32.3	31.8	30.9	30.7	29.6	29.0	28.9	28.5	27.0

Таблица 1. Результаты измерения твердости спеченных образцов

остаточных термических напряжений в спекаемом образце при остывании графитовую матрицу покрывали графитовым войлоком толщиной 4 мм. Порошковую смесь спекали при давлении 70 МПа, скорости нагрева 50 град/мин и температурах 1300 и 1400°С. После завершения спекания подачу тока прекращали, образцы охлаждали в режиме выключенной установки. Для удаления с поверхности образца остатков графитовой бумаги использовали отжиг в муфельной печи при температуре 700°С в течение 2—4 ч. Для проведения дальнейших исследований поверхность образца полировали при помощи станка Buehler Ecomet 250 алмазными пастами с финишной обработкой на пасте 5/3.

Для оценки параметров микроструктуры полученных образцов и их элементного состава использовали метод сканирующей электронной микроскопии и энергодисперсионного анализа на растровом электронном микроскопе JEOL JSM-6490 с рентгеновским микроанализатором Oxford Instruments INCA-350. Зеренную структуру оценивали по фрактографии излома. Рентгенофазовый анализ образцов проводили с помощью рентгеновского дифрактометра Shimadzu XRD-7000 при следующих параметрах сканирования: диапазон углов 20°-90°; шаг сканирования 0.04°; длительность экспозиции в каждой точке 3 с. Качественный фазовый анализ выполняли в программе Diffrac.EVA по полученным в ходе экспериментов дифрактограммам с использованием базы данных PDF 4. Количественный фазовый анализ проводили по методу Ритвельда с моделированием полученных дифрактограмм в программе Тораѕ. Количество кислорода в исходных порошках определяли с помощью прибора Leco ONH. Плотность спеченных образцов измеряли методом гидростатического взвешивания в дистиллированной воде. Твердость по Виккерсу (HV) определяли по измерению длин диагоналей отпечатка алмазной пирамидки (индентора) на полированной поверхности образца при нагрузке 1 кг (9.8 Н). Время нагружения составляло 10 с.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Микроструктура поверхности разрушения спеченных образцов приведена на рис. 1. Искро-

вое плазменное спекание порошковой смеси $Al_{12}Mg_{17}$ -В приводит к формированию плотной зеренной структуры. Согласно результатам элементного анализа (рис. 2), основными элементами в полученных образцах являются алюминий, магний, бор и кислород. Средний размер зерен в спеченной керамике составляет 3 мкм.

Согласно исследованиям фазового состава полученных образцов керамики (рис. 3), в процессе искрового плазменного спекания формируются фазы $AlMgB_{14}$ и $MgAl_2O_4$. Количественный анализ с использованием метода Ритвельда показал, что содержание фазы $AlMgB_{14}$ в полученных образцах составляет ~95 мас. % независимо от температуры спекания. Относительная плотность образца, полученного при температуре спекания 1300° С, составляет 96.3%. Увеличение температуры спекания до 1400° С приводит к повышению относительной плотности образца до 99.3%.

Результаты измерения твердости приведены в табл. 1. Согласно полученным данным, средняя микротвердость образца, спеченного при температуре 1300° C, составляет $22.2~\Gamma\Pi a$. С увеличением температуры спекания до 1400° C средняя микротвердость полученного образца увеличивается до $30.1~\Gamma\Pi a$.

Следует отметить, что спекание при температуре 1400°С позволяет получать керамику с наибольшими значениями микротвердости (30.1 ГПа) и плотности (99.3%). Полученные результаты согласуются с данными работ [3, 6, 7]. При этом на дифрактограмме образца, полученного при температуре 1300°С (рис. 3a), наблюдается более высокий фон при малых углах дифракции, по-видимому, указывающий на содержание аморфных боридных соединений или аморфного бора. В работе [18] установлено, что в процессе горячего прессования AlMgB₁₄ формируется из промежуточной фазы диборида $Al_{0.5}Mg_{0.5}B_2$. При этом на первой стадии происходит прямое борирование интерметаллического соединения до диборидов Al_xMg_{1-x}B₂, тогда как при использовании отдельных порошков сначала происходит образование интерметаллического соединения Al_xMg_y , а затем борирование. В табл. 2 приведены результаты измерения содержания кислорода в исходных порошках интерметаллического сплава $Al_{12}Mg_{17}$ и бора. Установле-

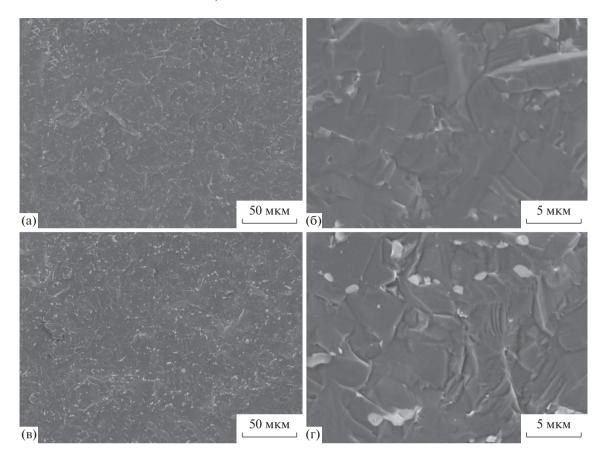
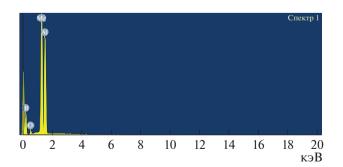
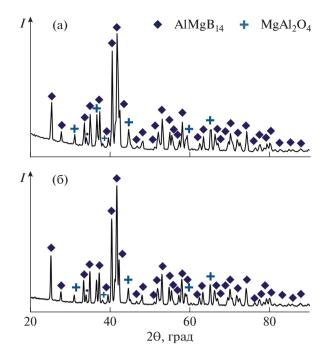



Рис. 1. РЭМ-изображения поверхности излома образцов, спеченных при температурах 1300 (а, б) и 1400°С (в, г).

но, что основным источником кислорода является порошок бора (1.1 мас. %). Таким образом, несмотря на равное содержание фазы $AlMgB_{14}$ в полученных образцах керамики, обнаруженные аморфные структуры в образце, спеченном при 1300° C, могут являться источником формирования шпинели $MgAl_2O_4$. В процессе искрового плазменного спекания шпинель $MgAl_2O_4$ формируется в результате реакции между интерметалли-


Рис. 2. Данные качественного рентгеноспектрального микроанализа образца, спеченного при температуре 1300° C.

ческим сплавом Al_xMg_y и оксидной пленкой B_2O_3 на поверхности свободного бора.

Таким образом, использование интерметаллического сплава Al₁₂Mg₁₇ в качестве исходного прекурсора имеет ряд преимуществ. Во-первых, плотность образца, полученного методом искрового плазменного спекания смеси $Al_{12}Mg_{17}$ -В при температуре 1400°C, близка к теоретической. Вовторых, согласно результатам элементного анализа (табл. 2), $Al_{12}Mg_{17}$ меньше подвержен окислению, чем отдельные порошки алюминия и магния. В-третьих, $Al_{12}Mg_{17}$ не является источником кислорода, следовательно, не может служить источником формирования шпинели (при использовании отдельных порошков алюминия и магния шпинель формируется в результате реакции между оксидами алюминия и магния $(Al_2O_3 +$ $+ MgO \rightarrow MgAl_2O_4)$).

ЗАКЛЮЧЕНИЕ

В результате проведенного исследования получены материалы на основе $AlMgB_{14}$ методом искрового плазменного спекания порошковой смеси $Al_{12}Mg_{17}$ -В. Обнаружено, что увеличение

Рис. 3. Дифрактограммы образцов, полученных при температурах 1300 (а) и 1400°C (б).

порошковой температуры спекания смеси $Al_{12}Mg_{17}$ -B от 1300 до 1400°C приводит к повышению относительной плотности (99.3%) и твердости (30.1 ГПа) образца. При этом уменьшается содержание свободного бора. Показана эффективность использования интерметаллического порошка $Al_{12}Mg_{17}$ в качестве исходного прекурсора вместо отдельных порошков алюминия и магния. Порошок интерметаллического сплава меньше подвержен окислению, чем отдельные порошки алюминия и магния. Установлено, что основным источником кислорода является порошок бора. В процессе искрового плазменного спекания шпинель MgAl₂O₄ формируется в результате реакции между оксидной пленкой В₂О₃ и интерметаллидами Al_xMg_y.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено за счет гранта Российского научного фонда (проект № 19-79-10042).

Таблица 2. Результаты исследований содержания кислорода

Порошок	Содержание кислорода, мас. %				
Бор	1.1				
$Al_{12}Mg_{17}$	0.07				

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Статья публикуется по итогам Шестого Междисциплинарного научного форума с международным участием "Новые материалы и перспективные технологии", Москва, 23—26 ноября 2020 г., https://n-materials.ru.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Matkovich V., Economy J.* // Acta Crystallogr., Sect. B. 1970. V. 26. № 5. P. 616. https://doi.org/10.1107/S0567740870002868
- 2. *Higashi I., Ito T.* // J. Less Common. Metals. 1983. V. 92. № 2. P. 239. https://doi.org/10.1016/0022-5088(83)90490-3
- 3. Cook B.A., Harringa J.L., Lewis T.L. et al. // Scripta Mater. 2000. V. 42. № 6. P. 597. https://doi.org/10.1016/S1359-6462(99)00400-5
- 4. *Cook B.A., Harringa J.L., Anderegg J. et al.* // Surf. Coat. Technol. 2010. V. 205. № 7. P. 2296. https://doi.org/10.1016/j.surfcoat.2010.09.007
- 5. Russell A.M., Cook B.A., Harringa J.L. et al. // Scripta Mater. 2002. V. 46. № 9. P. 629. https://doi.org/10.1016/S1359-6462(02)00034-9
- Xie Z., DeLucca V., Haber R.A. et al. // Adv. Appl. Ceram. 2017. V. 116. № 6. P. 341. https://doi.org/10.1080/17436753.2017.1317116
- 7. *Kevorkijan V., Škapin S.D., Jelen M. et al.* // J. Eur. Ceram. Soc. 2007. V. 27. № 2–3. P. 493. https://doi.org/10.1016/j.jeurceramsoc.2006.04.114
- 8. *Liu W., Wu Y.T., Mao S.H. et al.* // J. Mater. Eng. Perform. 2013. V. 22. № 4. P. 983. https://doi.org/10.1007/s11665-012-0370-5
- Zhuang L., Lei Y., Chen S. et al. // Appl. Surf. Sci. 2015.
 V. 328. P. 125. https://doi.org/10.1016/j.apsusc.2014.11.127
- Liu W., Miao Y., Meng Q. et al. // J. Mater. Sci. Technol. 2013. V. 29. № 1. P. 77. https://doi.org/10.1016/j.jmst.2012.12.008
- 11. *Nikitin P.Y., Zhukov I.A., Vorozhtsov A.B.* // J. Mater. Res. Technol. 2021. V. 11. P. 687. https://doi.org/10.1016/j.jmrt.2021.01.044
- 12. *Roberts D.J., Zhao J., Munir Z.A.* // Int. J. Refract. Met. Hard Mater. 2009. V. 27. № 3. P. 556. https://doi.org/10.1016/j.ijrmhm.2008.07.009
- 13. *Жуков И.А., Зиатдинов М.Х., Дубкова Я.А. и др. //* Известия высших учебных заведений. Физика. 2018. Т. 61. № 8. С. 87. [*Zhukov I.A., Ziatdinov M.K., Dubkova Y.A. et al. //* Russ. Phys. J. 2018. V. 61. № 8. P. 1466.] https://doi.org/10.1007/s11182-018-1557-5
- 14. *Nikitin P.Y., Zhukov I.A., Matveev A.E. et al.* // Ceram. Int. 2020. V. 46. № 14. P. 22733. https://doi.org/10.1016/j.ceramint.2020.06.039

- 15. Lewis T.L., Cook B.A., Harringa J.L. et al. // Mater. Sci. Eng., A. 2003. V. 351. № 1–2. P. 117. https://doi.org/10.1016/S0921-5093(02)00835-3
- Li C.S., Yang F., Yan G. et al. // J. Alloys Compd. 2014.
 V. 587. P. 790. https://doi.org/10.1016/j.jallcom.2013.11.013
- 17. Комаров В.Ф., Комарова М.В., Ворожцов А.Б. и др. // Известия высших учебных заведений. Физика. 2012. Т. 55. № 10. С. 13. [Komarov V., Komarova M.V., Vorozhtsov A.B. et al. // Russ. Phys. J. 2013. V. 55. № 10.] https://doi.org/10.1007/s11182-013-9931-9
- Zhukov I.A., Nikitin P.Y., Vorozhtsov A.B. et al. // Mater. Today Comm. 2020. V. 22. P. 100848. https://doi.org/10.1016/j.mtcomm.2019.100848

- 19. *Чувильдеев В.Н., Болдин М.С., Дятлова Я.Г. и др. //* Журн. неорган. химии. 2015. Т. 60. № 8. С. 1088. [*Chuvil'deev V.N., Boldin M.S., Dyatlova Ya.G. et al. //* Russ. J. Inorg. Chem. 2015. V. 60. № 8. P. 987.] https://doi.org/10.1134/S0036023615080057
- 20. Шичалин О.О., Фролов К.Р., Буравлев И.Ю. и др. // Журн. неорган. химии. 2020. Т. 65. № 8. С. 1119. [Shichalin O.O., Frolov K.R., Buravlev I. Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 8. Р. 1245. https://doi.org/10.1134/S0036023620080148]
- 21. Vorozhtsov S., Minkov L., Dammer V. et al. // JOM. 2017. V. 69. № 12. P. 2653. https://doi.org/10.1007/s11837-017-2594-1
- 22. Promakhov V.V., Khmeleva M.G., Zhukov I.A. et al. // Metals. 2019. V. 9. № 1. P. 87. https://doi.org/10.3390/met9010087