СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 666.3:546.32'41'226'185

КЕРАМИКА В СИСТЕМЕ K₂O-CaO-SO₃-P₂O₅

© 2021 г. Т. В. Сафронова^{а,} *, М. М. Ахмедов^b, Т. Б. Шаталова^a, С. А. Тихонова^a, Г. К. Казакова^a

^а Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия ^b Российский государственный университет им. А.Н. Косыгина (Технологии. Дизайн. Искусство), Садовническая ул., 33, стр. 1, Москва, 117997 Россия

*e-mail: t3470641@vandex.ru

Поступила в редакцию 12.01.2021 г. После доработки 11.02.2021 г. Принята к публикации 15.02.2021 г.

Керамика в системе $K_2O-CaO-SO_3-P_2O_5$ была получена из порошковых смесей, приготовленных из гидросульфата калия KHSO₄ и гидроксиапатита кальция $Ca_{10}(PO_4)_6(OH)_2$ при заданных мольных соотношениях KHSO₄/ $Ca_{10}(PO_4)_6(OH)_2 = 2/1$, 4/1 и 6/1. Порошковые смеси готовили в ацетоне в условиях механической активации с использованием планетарной мельницы. После гомогенизации фазовый состав порошковых смесей включал монетит CaHPO₄, сингенит $K_2Ca(SO_4)_2 \cdot H_2O$ и гидроксиапатит кальция $Ca_{10}(PO_4)_6(OH)_2$. После обжига в интервале температур 700–900°C фазовый состав керамики, изготовленной из порошковых смесей, включал калийзамещенный трикальцийфосфат $Ca_{10}(PO_4)_6(OH)_2 = 4/1$ и 6/1 еще и сульфат калия K_2SO_4 . Керамические материалы, фазовый состав которых включает кальциолангбейнит $K_2Ca_2(SO_4)_3$ и калийзамещенный трикальцийфосфат $Ca_{10}(PO_4)_6(OH)_2 = 4/1$ и 6/1 еще и сульфат калия K_2SO_4 . Керамические материалы, фазовый состав которых включает кальциолангбейнит $K_2Ca_2(SO_4)_3$ и калийзамещенный трикальцийфосфат $Ca_{10}K(PO_4)_7$, могут быть использованы в качестве резорбируемого пористого материала при лечении дефектов костной ткани методами регенеративной медицины или как матрица при создании люминесцентных/термолюминесцентных материалов. Керамические материалы в системе $K_2O-CaO-SO_3-P_2O_5$ были получены впервые, поэтому необходимы дополнительные исследования, определяющие отимальное соотношение фаз для указанных областей применения.

Ключевые слова: гидроксиапатит, гидросульфат калия, монетит, сингенит, кальциолангбейнит, калийзамещенный трикальцийфосфат

DOI: 10.31857/S0044457X21080249

введение

Пористые неорганические матрицы, состоящие из биосовместимых биорезорбируемых фаз, представляют особый интерес для развития методов регенеративной медицины, направленных на лечение дефектов костной ткани [1]. Следует упомянуть следующие биосовместимые и биорезорбируемые фазы керамических материалов: гидроксиапатит кальция Ca₁₀(PO₄)₆(OH)₂, структура которого включает катионные и анионные замещения; трикальцийфосфат Ca₃(PO₄)₂; пирофосфат кальция Ca₂P₂O₇; тромелит Ca₄P₆O₁₉; полифосфат кальция Са(РО₃)₂; натрий- и калий-замещенные трикальцийфосфаты Ca₁₀Na(PO₄)₇ и Ca₁₀K(PO₄)₇; калиевый КСаРО₄ и натриевый NaCaPO₄ ренанипирофосфаты лвойные кальция/калия ты: СаК₂Р₂О₇ и кальция/натрия СаNa₂Р₂О₇; силикат кальция CaSiO₃; аморфные фазы в системах, содержащих оксиды-стеклообразователи P₂O₅ и SiO₂; карбонат кальция СаСО3; сульфат кальция ангидрит CaSO₄.

Выбор системы K₂O-CaO-SO₃-P₂O₅ для создания резорбируемой керамики был обусловлен тем, что данной оксидной системе принадлежат такие резорбируемые и биосовместимые фазы, калийзамещенный трикальцийфосфат как Са₁₀К(РО₄)₇, калиевый ренанит КСаРО₄ и сульфат кальция ангидрит CaSO₄. Все эти фазы относят к биорезорбируемым и биосовместимым, поскольку при их медленном растворении выделяются биосовместимые катионы и анионы. Следует ограничивать содержание калиевого ренанита КСаРО₄ в керамическом материале, предназначенном для имплантирования, поскольку гидролиз данного минерала приводит к повышению рН среды выше нейтрального значения [2]. Была получена и исследована керамика на основе сульфата кальция ангидрита CaSO₄ для костных имплантатов [3-5]. Фаза сульфата кальция ангидрита CaSO₄, обладающего способностью к медленному растворению [6], как правило, вводится с целью управления пределом и скоростью резорбции керамического композиционного материала, предназначенного для лечения (временной компенсации) дефекта костной ткани в процессе ее восстановления [7]. В научной литературе рассмотрено создание керамических композитов сульфат кальция ангидрит/фосфат кальция для использования в качестве костных имплантатов [8, 9].

В работах [10, 11] термическая устойчивость сульфата кальция CaSO₄ указывается как возможная в интервале температур 1000-1400°С. При получении керамики, содержащей сульфат кальция CaSO₄ и трикальцийфосфат Ca₃(PO₄)₂, температура обжига, после которого фазовый состав не включал бы токсичного для организма оксида кальция CaO, указана как 1050°C [9]. Отмечается, что присутствие других солей или фаз снижает термическую устойчивость сульфата кальция ангидрита CaSO₄ [6]. Таким образом, необходимо применение низкотемпературных спекающих добавок при получении керамических композиционных материалов, в состав которых планируется введение фазы сульфата кальция ангидрита CaSO₄. Керамика на основе сульфата кальция ангидрита была получена с использованием спекающей добавки, представляющей собою измельченное стекло в системе SiO₂-Na₂O-P₂O₅-CaO [12].

Практически во всех статьях, посвященных получению керамики на основе сульфата кальция ангидрита CaSO₄, в качестве исходного был использован порошок полуводного гипса CaSO₄ · $0.5H_2O$ [13, 14], доступный как коммерческий реактив. Из порошка CaSO₄ · $0.5H_2O$, обладающего вяжущими свойствами, с помощью порошковой 3D-печати формовали пористый предкерамический полуфабрикат, который затем обжигали [15].

Известны способы получения керамических материалов, фазовый состав которых формируется благодаря протеканию гетерофазных взаимодействий при термообработке [16]. При получении керамики на основе фосфатов кальция были, например, использованы порошковые смеси гидроксиапатита кальция Ca₁₀(PO₄)₆(OH)₂ и пирофосфата кальция Са₂Р₂О₇, способные вступать в гетерофазное взаимодействие с образованием трикальцийфосфата Са₃(РО₄)₂ при нагревании (700-800°С) до начала уплотнения [17]. В настоящей работе планировали получить керамику в системе K₂O-CaO-SO₃-P₂O₅, используя в качестве исходных компонентов порошки гидроксиапатита кальция Ca₁₀(PO₄)₆(OH)₂ (источника оксидов кальция и фосфора) и гидросульфата калия KHSO₄ (источника оксидов калия и серы), обладающего низкой температурой плавления ($t_{nn} = 210^{\circ}$ C). Присутствие расплава, образующегося при относительно низкой температуре, позволяло предположить и возможность спекания по жидкофазному механизму, и формирование заданного фазового состава керамики в системе K₂O-CaO-SO₃-

 P_2O_5 вследствие гетерофазного взаимодействия компонентов порошковой системы. К сожалению, информация об этой системе в научной литературе представлена ограниченно [18], поэтому при планировании эксперимента мы опирались на известные данные о системах, относящихся к системе K₂O-CaO-SO₃-P₂O₅, таких как CaO-P₂O₅ [19], CaO-K₂O-P₂O₅ [20] и K₂SO₄-CaSO₄ [21, 22].

Целью настоящей работы было получение керамического композиционного материала в системе $K_2O-CaO-SO_3-P_2O_5$ на основе порошковых смесей, включающих гидроксиапатит кальция $Ca_{10}(PO_4)_6(OH)_2$ и гидросульфат калия KHSO₄ в различных мольных соотношениях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Порошковые смеси для получения керамики гидроксиапатита кальция готовили ИЗ $Ca_{10}(PO_4)_6(OH)_2$ (CAS No 1306-06-5, puriss. p.a. ≥90%. Riedel-deHaen. Sigma-Aldrich Laborchemikalien, 04238, lot 70080, Германия) и гидросульфата калия КНSO₄ (ГОСТ 4223-75, Россия). Гидросульфат калия KHSO₄ ($t_{пл} = 210^{\circ}$ C), при нагревании превращающийся в пиросульфат калия $K_2S_2O_7$ ($t_{\pi\pi} = 420^{\circ}C$) [23], рассматривали при планировании эксперимента как компонент, способный выступать в роли добавки, обеспечиваюшей протекание жидкофазного спекания (вклюплавление, чая смачивание, растекание, перегруппировку), а также способный вступать в гетерофазную реакцию, в результате которой формируется заданный фазовый состав.

Количество компонентов в исходной порошковой смеси рассчитывали по следующим реакциям, предполагая возможность их протекания при нагревании:

$$Ca_{10} (PO_{4})_{6} (OH)_{2} + 2KHSO_{4} \rightarrow (1)$$

$$\rightarrow 2CaSO_{4} + 2Ca_{3} (PO_{4})_{2} + 2KCaPO_{4} + 2H_{2}O, (1)$$

$$Ca_{10} (PO_{4})_{6} (OH)_{2} + 4KHSO_{4} \rightarrow 3CaSO_{4} + (2)$$

$$+ Ca_{3} (PO_{4})_{2} + 4KCaPO_{4} + SO_{3} + 3H_{2}O, (2)$$

$$Ca_{10} (PO_{4})_{6} (OH)_{2} + 6KHSO_{4} \rightarrow (3)$$

 \rightarrow 4CaSO₄ + 6KCaPO₄ + 2SO₃ + 4H₂O. (3) Эти реакции были использованы для расчета

Эти реакции оыли использованы для расчета состава исходных смесей исходя из предположения, что взаимодействие гидроксиапатита $Ca_{10}(PO_4)_6(OH)_2$ и гидросульфата калия KHSO₄ (пиросульфата калия K₂S₂O₇) при обжиге приведет к формированию керамического материала, включающего биосовместимые фазы, такие как сульфат кальция CaSO₄, трикальцийфосфат Ca₃(PO₄)₂ и калиевый ренанит KCaPO₄. Допускали, что взаимодействие трикальцийфосфат $Ca_3(PO_4)_2$ и калиевого ренанита $KCaPO_4$ может приводить к образованию калийзамещенного трикальцийфосфата $Ca_{10}K(PO_4)_7$:

$$3Ca_{3}(PO_{4})_{2} + KCaPO_{4} = Ca_{10}K(PO_{4})_{7}.$$
 (4)

Ожидаемый фазовый состав образцов керамики на основе порошковых смесей, состав которых был рассчитан с использованием реакций (1)–(3), а мольные соотношения $KHSO_4/Ca_{10}(PO_4)_6(OH)_2$ заданы как 2/1, 4/1 и 6/1, представлен на рис. 1.

Порошки гидроксиапатита кальция $Ca_{10}(PO_4)_6(OH)_2$ и гидросульфата калия KHSO₄, взятые в заданных соотношениях, мелющие тела из диоксида циркония и ацетон (ГОСТ 2603-79) были помещены в емкости из диоксида циркония. Затем емкости с порошками, мелющими телами и ацетоном закрывали и закрепляли в планетарной мельнице. Обработку порошковых смесей проводили в течение 15 мин в планетарной мельнице при соотношении порошок : мелющие тела = 1 : 5 при скорости вращения 500 об./мин.

После завершения обработки в планетарной мельнице порошковые смеси сушили на воздухе при комнатной температуре в течение 2 ч. После сушки порошковые смеси пропускали через сито с размером ячеек 200 мкм. Из полученных порошковых смесей на ручном прессе Carver Laboratory Press model (США) изготавливали компактные порошковые заготовки в форме дисков диаметром 12 мм и высотой 2-3 мм при удельном давлении прессования 100 МПа без использования временного технологического связующего. Сформованные порошковые заготовки обжигали в печи при температурах в интервале 700-900°C (скорость нагрева 5 град./мин, выдержка при заданной температуре 2 ч, охлаждение вместе с печью).

Линейную усадку и геометрическую плотность образцов керамики определяли, измерив их массу и размеры (с точностью ±0.05 мм) до и после обжига.

Рентгенофазовый анализ (РФА) порошковых смесей после обработки в условиях механической активации и образцов после обжига проводили на дифрактометре Rigaku D/Max-2500 с вращающимся анодом (Япония) с использованием Cu K_{α} -излучения. Для проведения фазового анализа использовали базу данных ICDD PDF2 [24], а также программу Match!3 (https://www.crystalimpact.com/).

Синхронный термический анализ выполняли на термоанализаторе Netzsch STA 409 PC Luxx (Netzsch, Германия) при скорости нагревания 10 град/мин. Масса образца составляла не менее 10 мг. Исследование состава образующейся при разложении образцов газовой фазы проводили при помощи квадрупольного масс-спектрометра QMS 403C Aëolos (Netzsch, Германия), совмещенного с термоанализатором Netzsch STA 409

Рис. 1. Ожидаемый фазовый состав (мол. д.) образцов керамики на основе порошковых смесей, содержащих гидроксиапатит кальция $Ca_{10}(PO_4)_6(OH)_2$ и гидросульфат калия KHSO₄ при мольных соотношениях KHSO₄/Ca₁₀(PO₄)₆(OH)₂ = 2/1, 4/1 и 6/1.

РС Luxx. Масс-спектры записывали для массовых чисел 18 (H_2O) и 64 (SO_2).

Микроструктуру образцов исследовали методом растровой электронной микроскопии на электронном микроскопе LEO SUPRA 50VP (Carl Zeiss, Германия; автоэмиссионный источник); съемку осуществляли при ускоряющем напряжении 3–20 кВ во вторичных электронах (детектор SE2). На поверхность образцов напыляли слой хрома (до 10 нм).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

По данным РФА (рис. 2), в процессе гомогенизации в среде ацетона при использовании планетарной мельницы в порошковых смесях, в которых мольное соотношение $KHSO_4/Ca_{10}(PO_4)_6(OH)_2$ составляло 2/1, 4/1 и 6/1, несмотря на использование ацетона в качестве среды дезагрегации и гомогенизации, произошло взаимодействие компонентов и изменение фазового состава. После обработки в планетарной мельнице порошковые смеси включали следующие компоненты: сингенит $K_2Ca(SO_4)_2 \cdot H_2O$, монетит CaHPO₄ и гидроксиапатит кальция Ca₁₀(PO₄)₆(OH)₂.

Формирование такого фазового состава происходило в результате взаимодействия компонентов исходной порошковой смеси, которое может быть отражено реакцией:

$$Ca_{10} (PO_4)_6 (OH)_2 + 8KHSO_4 + 2H_2O \rightarrow \rightarrow 4K_2Ca(SO_4)_2 \cdot H_2O + 6CaHPO.$$
(5)

Сопоставление реакций (1)–(3) и (5) свидетельствует о том, что мольное соотношение

Рис. 2. Данные РФА порошковых смесей, приготовленных в условиях механической активации в ацетоне при мольных соотношениях KH-SO₄/Ca₁₀(PO₄)₆(OH)₂ = 0/1, 2/1, 4/1 и 6/1. * – Ca₁₀(PO₄)₆(OH)₂, PDF-Card 9-432; m – CaHPO₄, PDF-Card 9-80; k – K₂Ca(SO₄)₂ · H₂O, PDF-Card 74-2423.

КНSO₄/Ca₁₀(PO₄)₆(OH)₂, заданное для порошковых смесей как 2/1, 4/1 и 6/1, отличается от мольного соотношения KHSO₄/Ca₁₀(PO₄)₆(OH)₂ (8/1) для реакции (5). Гидросульфат калия KHSO₄ в подготовленных смесях относительно реакции (5) взят в недостатке. Вода, необходимая для образования сингенита $K_2Ca(SO_4)_2 \cdot H_2O$, частично поступала из исходных солей как в результате протекания реакции, так и будучи адсорбированной поверхностью частиц исходных порошков. Некоторое количество воды могло также поступать из ацетона, использованного в настоящем эксперименте и доступного на рынке в качестве коммерческого реагента. На рис. 3 представлены соотношения фаз, возможные при протекании реакции (5) в исследуемых смесях.

На рис. 4 представлены микрофотографии порошковых смесей после гомогенизации в ацетоне в планетарной мельнице при мольных соотношениях KHSO₄/Ca₁₀(PO₄)₆(OH)₂, заданных как 2/1, 4/1, 6/1. На микрофотографиях можно видеть частицы с формой, близкой к изометрической, размером не более 100 нм, а также частицы в форме небольших игольчатых кристаллов длиной 100-500 нм. Кристаллы сингенита $K_2Ca(SO_4)_2 \cdot H_2O$ могут иметь подобную игольчатую форму [25]. Форма образовавшихся кристаллов монетита СаНРО₄ близка к форме частиц исходного гидроксиапатита, на поверхности которого происходит его образование в условиях механической активации при взаимодействии солей кислой $(Ca(H_2PO_4)_2 \cdot H_2O)$ и основной природы

Рис. 3. Расчетный фазовый состав (мол. д.) порошковых смесей после протекания реакции (5) между $KHSO_4$ и $Ca_{10}(PO_4)_6(OH)_2$. Мольные соотношения исходных компонентов в порошковых смесях указаны на рисунке.

 $(Ca_{10}(PO_4)_6(OH)_2)$ при механической активации в ацетоне [26].

На рис. 5 представлены данные термического анализа для исходных порошков и порошковых смесей, подготовленных в условиях механической активации в ацетоне. Общая потеря массы при нагревании до 1000°С составила: для гидроксиапатита кальция – 4%; для гидросульфата калия – 32%; для порошковых смесей с мольными соотношениями компонентов $\text{KHSO}_4/\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2 = 2/1 - 6\%; 4/1 - 12\%;$ 6/1 – 13%. Изменение массы порошка гидроксиапатита кальция Ca₁₀(PO₄)₆(OH)₂ обусловлено удалением адсорбированной воды в интервале 45-180°С с пиком на кривой ионного тока для m/Z = 18 при 100°С (рис. 6). Кривая, отражающая изменение массы гидросульфата калия КНSO₄, имеет несколько ступеней. До 500°С изменение массы обусловлено удалением как адсорбированной, так и химически связанной воды. А выше 500°С изменение массы может быть обусловлено выделением оксидов серы (в эксперименте ионный ток фиксировали для m/Z = 64, что соответствует выделению SO₂). В интервале температур 170-500°С присутствует широкий пик сложной формы, который отражает превращение гидросульфата $KHSO_4$ в пиросульфат калия $K_2S_2O_7$ (реакция (6)) [27, 28]:

$$KHSO_4 \rightarrow K_2S_2O_7 + H_2O.$$
 (6)

При нагревании выше 500°С, по данным [27], возможно протекание реакции (7):

$$S_2 O_7^{2+} \to SO_3 + SO_4^{2-}$$
. (7)

Рис. 4. Микрофотографии порошковых смесей, приготовленных в условиях механической активации в ацетоне при мольных соотношениях $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 = 2/1$ (a), 4/1 (б), 6/1 (в).

Выделение SO₂, который рассматривается как дублер SO₃, для гидросульфата калия KHSO₄ за-

Рис. 5. Данные термического анализа исходных порошков и порошковых смесей, приготовленных в условиях механической активации в ацетоне при мольных соотношениях $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 = 2/1, 4/1, 6/1.$

фиксировано на кривой ионного тока для m/Z = 64 (SO₂) выше 400°C (рис. 7).

Зависимости массы порошковых смесей от температуры отличаются от кривых для исходных компонентов. Изменение массы порошковых смесей с различным мольным соотношением исходных компонентов в значительной степени обусловлено потерей адсорбированной воды, а также разложением образовавшихся при обработке в планетарной мельнице минералов, а именно сингенита $K_2Ca(SO_4)_2 \cdot H_2O$ (~250°C, реакция (8)) [29] и монетита CaHPO₄ (~400°C, реакция (9)) [26]. Согласно [29], синтетический сингенит подвергается дегидратации и разложению (реакция (10)) при нагревании выше 240°C:

$$K_2Ca(SO_4)_2 \cdot H_2O \rightarrow K_2Ca(SO_4)_2 + H_2O,$$
 (8)

$$2CaHPO_4 \rightarrow Ca_2P_2O_7 + H_2O, \qquad (9)$$

$$2K_2Ca(SO_4)_2 \rightarrow K_2Ca_2(SO_4)_3 + K_2SO_4.$$
(10)

Таким образом, можно предположить, что в порошковых смесях после 400° С присутствуют следующие компоненты: не вступивший в реакцию при механической активации гидроксиапатит кальция Ca₁₀(PO₄)₆(OH)₂; пирофосфат кальция Ca₂P₂O₇, образовавшийся в результате термической конверсии монетита CaHPO₄; кальциолангбейнит K₂Ca₂(SO₄)₃ и сульфат калия K₂SO₄, образовавшиеся из сингенита K₂Ca(SO₄)₂ · H₂O. При повышении температуры данные компоненты взаимодействуют друг с другом и формируют фазовый состав керамических материалов.

Изменение массы в интервалах 620-750°С для порошковой смеси с мольным соотношением

Рис. 6. Зависимость ионного тока для m/Z = 18 (соответствует H₂O) для исходных порошков и порошковых смесей, приготовленных в условиях механической активации в ацетоне при мольных соотношениях KHSO₄/Ca₁₀(PO₄)₆(OH)₂ = 2/1, 4/1, 6/1.

КНSO₄/Ca₁₀(PO₄)₆(OH)₂ = 2/1, 630–740°С для порошковой смеси с мольным соотношением КHSO₄/Ca₁₀(PO₄)₆(OH)₂ = 4/1 и 635–730°С для порошковой смеси с мольным соотношением КHSO₄/Ca₁₀(PO₄)₆(OH)₂ = 6/1 обусловлено выделением воды (рис. 6), которая, по всей видимости, формируется в результате протекания реакции (11). Ступень на кривой изменения массы для порошковой смеси с мольным соотношением КHSO₄/Ca₁₀(PO₄)₆(OH)₂ = 6/1 практически незаметна (рис. 5), а интервал выделения воды наименьший (рис. 6), поскольку в этом порошке после обработки в условиях механической активации количество не вступившего в реакцию гидроксиапатита кальция минимальное (рис. 3):

$$\begin{array}{c} \operatorname{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{6}\left(\mathrm{OH}\right)_{2} + \operatorname{Ca}_{2}\mathrm{P}_{2}\mathrm{O}_{7} \rightarrow\\ \rightarrow 4\mathrm{Ca}_{2}(\mathrm{PO}_{4})_{2} + \mathrm{H}_{2}\mathrm{O}.\end{array}$$
(11)

Заметная потеря массы порошковых смесей с мольными соотношениями $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 =$ = 4/1 и 6/1 наблюдается выше 830°С (рис. 5). Уменьшение массы порошковых смесей с мольными соотношениями $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 =$ = 4/1 и 6/1 на 5 и 6% соответственно обусловлено выделением оксидов серы (зафиксировано для SO_2 , m/Z = 64, рис. 7). Для порошковой смеси $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 = 2/1$ температура начала выделения оксила серы составляет 865°С. для порошковой смеси KHSO₄/Ca₁₀(PO₄)₆(OH)₂ = 4/1 - 850° C, а для смеси KHSO₄/Ca₁₀(PO₄)₆(OH)₂ = = 6/1 – 830°С (рис. 7). Выделение SO₂, по всей видимости, связано с возможным испарением и разложением сульфата калия из расплава, поскольку значения данных температур близки к

Рис. 7. Зависимость ионного тока для m/Z = 64 (соответствует SO₂) для исходных порошков и порошковых смесей, приготовленных в условиях механической активации в ацетоне при мольных соотношениях KHSO₄/Ca₁₀(PO₄)₆(OH)₂ = 2/1, 4/1, 6/1.

температуре эвтектики (867°С) в системе $CaSO_4 - K_2SO_4$ [21].

Фазовый состав керамики (рис. 8) на основе порошковой смеси $KHSO_4/Ca_{10}(PO_4)_6(OH)_2$ с мольным соотношением 2/1 после обжига в интервале температур 700–900°С был представлен калийзамещенным трикальцийфосфатом $Ca_{10}K(PO_4)_7$, на основе порошковых смесей с мольным соотношением $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 = 4/1$ и 6/1 – калийзамещенным трикальцийфосфатом $Ca_{10}K(PO_4)_7$, кальциолангбейнитом (двойным сульфатом калия и кальция) $K_2Ca_2(SO_4)_3$ и сульфатом калия K_2SO_4 .

Образование фазы кальциолангбейнита $K_2Ca_2(SO_4)_3$ и сульфата калия K_2SO_4 из $K_2Ca(SO_4)_2$ при нагревании может быть отражено реакцией (10), фаз калийзамещенного трикальцийфосфата $Ca_{10}K(PO_4)_7$ и кальциолангбейнита $K_2Ca_2(SO_4)_3$ – реакциями (12) и (13) или реакцией (14):

$$7\operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2} + \operatorname{K}_{2}\operatorname{SO}_{4} \rightarrow$$

$$\rightarrow 2\operatorname{Ca}_{10}\operatorname{K}(\operatorname{PO}_{4})_{7} + \operatorname{CaSO}_{4},$$
(12)

$$K_2Ca(SO_4)_2 + CaSO_4 \rightarrow K_2Ca_2(SO_4)_3, \quad (13)$$

$$7\operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2} + 3\operatorname{K}_{2}\operatorname{Ca}(\operatorname{SO}_{4})_{2} \rightarrow$$

$$\rightarrow 2\operatorname{Ca}_{10}\operatorname{K}(\operatorname{PO}_{4})_{7} + 2\operatorname{K}_{2}\operatorname{Ca}_{2}(\operatorname{SO}_{4})_{3}.$$
(14)

На рис. 9 представлено количественное соотношение фаз (мас. %) в керамике из порошковых смесей, подготовленных в условиях механической активации в ацетоне при мольных соотношениях $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 = 2/1, 4/1, 6/1$ после обжига при 900°С. Количественное соот-

Рис. 8. Данные РФА керамики из порошковых смесей, приготовленных в условиях механической активации в ацетоне при мольных соотношениях $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 = 2/1, 4/1, 6/1,$ после обжига при 900°С: # – $Ca_{10}K(PO_4)_7$ (карточка PDF 45-138); о – $K_2Ca_2(SO_4)_3$ (карточка PDF 20-867); v – K_2SO_4 , (карточка PDF 5-613).

ношение фаз было определено с помощью программы Match!3, https://www.crystalimpact.com/. Этот рисунок наглядно показывает, что фазовый состав полученных керамических материалов представлен преимущественно двумя фазами - калийзамещенным трикальцийфосфатом Ca₁₀K(PO₄)₇ и кальциолангбейнитом К₂Са₂(SO₄)₃. Биосовместимость и резорбируемость калийзамещенного трикальцийфосфата Ca₁₀K(PO₄)7 известна из литературы [30]. Кальциолангбейнит K₂Ca₂(SO₄)₃ применяли ранее как матрицу лля создания люминесцентных/термолюминесцентных материалов при допировании европием Еи или медью Си [31, 32]. Образование кальциолангбейнита $K_2Ca_2(SO_4)_3$ возможно при производстве цементного клинкера [22]. Стекла в системе К₂О-СаО-SO₃-P₂O₅ рассматривали как возможный компонент минеральных удобрений [18]. Кальциолангбейнит K₂Ca₂(SO₄)₃ входит в состав цемента MTA-Angelus® (https://www.angelusdental.com/), предназначенного для лечения зубов [33], что, как можно предположить, указывает на биосовместимость этого минерала. Тем не менее необходимо провести дополнительные исследования биосовместимости in vitro и in vivo керамических материалов, содержащих в значительном количестве фазу кальциолангбейнита $K_2Ca_2(SO_4)_3$.

На рис. 10 представлена зависимость от температуры диаметра образцов порошковых смесей, приготовленных в условиях механической активации в ацетоне при мольных соотношениях

Рис. 9. Фазовый состав керамики (мас. %) из порошковых смесей, приготовленных в условиях механической активации в ацетоне при мольных соотношениях KHSO₄/Ca₁₀(PO₄)₆(OH)₂ = 2/1, 4/1, 6/1, после обжига при 900°С. Использованы данные о количественном соотношении фаз, полученные с использованием программы Match!3 (https://www.crystalimpact.com/).

КНSO₄/Ca₁₀(PO₄)₆(OH)₂ = 2/1, 4/1, 6/1. Для образца порошковой смеси с мольным соотношением $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 = 2/1$ усадка составила 27%, для образца с КНSO₄/Ca₁₀(PO₄)₆(OH)₂ = = 4/1 усадка после обжига при 900°С составила 23%, для образца с мольным соотношением $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 = 6/1$ усадка составила 21%. Данные о фазовом составе полученных образцов указывают (из-за присутствия K₂SO₄ или эвтектики (867°С) в системе CaSO₄-K₂SO₄ [21]) на возможность спекания по жилкофазному механизму. При этом выделение оксидов серы при обжиге выше температуры эвтектики (867°С) в системе CaSO₄-K₂SO₄ для порошковых смесей с мольным соотношением $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 =$ = 4/1 и 6/1 несколько препятствует уплотнению (рис. 7). Достигнутая плотность 2.4, 2.1 и 2.0 г/см³ (рис. 11) для образцов керамики из порошков, приготовленных при мольном соотношении KHSO₄/Ca₁₀(PO₄)₆(OH)₂ = 2/1, 4/1 и 6/1 соответственно, после обжига при 900°С значительно меньше, чем расчетная плотность для кальциолангбейнита K₂Ca₂(SO₄)₃ (2.74 г/см³ [34]) или для калийзамещенного трикальцийфосфата Са₁₀К(РО₄)₇ (3.11 г/см³ [35]). Внешний вид образца керамики из порошка, приготовленного при мольном соотношении $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 =$ = 6/1 (рис. 10), имеет шероховатую поверхность, которая вполне могла сформироваться при выделении газообразного продукта.

Рис. 10. Зависимость от температуры обжига диаметра образцов керамики из порошковых смесей, приготовленных в условиях механической активации в ацетоне при мольных соотношениях $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 = 2/1, 4/1, 6/1.$

На рис. 12 представлены микрофотографии сколов образцов керамики из порошковых смесей, подготовленных в условиях механической активации в ацетоне при мольных соотношениях KHSO₄/Ca₁₀(PO₄)₆(OH)₂ = 2/1 (a, 6), 4/1 (b, r), 6/1(д, е), после обжига при 900°С. Микроструктура образцов керамики в системе K₂O-CaO-SO₃-P₂O₅ существенным образом зависит от состава использованных порошковых смесей. При относительно малом увеличении видно, что образцы керамики из порошковой смеси, приготовленной в условиях механической активации в ацетоне при мольном соотношении $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 =$ = 2/1, обладают пористостью с размером пор 3-10 мкм (рис. 12а). Образцы керамики из порошковой смеси, подготовленной в условиях механической активации в ацетоне при мольном соотношении $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 = 4/1$, обладают пористостью с размером пор 20-60 мкм (рис. 12в). А образцы керамики из порошковых смесей, подготовленных в условиях механической активации в ацетоне при мольном соотношении KHSO₄/Ca₁₀(PO₄)₆(OH)₂ = 6/1 вообще выглядят не спеченными (рис. 12д, 12е).

Размеры зерен в керамике на основе порошковой смеси с мольным соотношением KHSO₄/Ca₁₀(PO₄)₆(OH)₂ = 2/1 составляют 0.2– 0.5 мкм, на основе порошковой смеси с мольным соотношением KHSO₄/Ca₁₀(PO₄)₆(OH)₂ = 4/1 – 0.5–1 мкм, а с мольным соотношением 6/1 – от 0.5–2 до 10 мкм.

Рис. 11. Зависимость от температуры обжига плотности образцов керамики из порошковых смесей, приготовленных в условиях механической активации в ацетоне при мольных соотношениях $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 = 2/1, 4/1, 6/1.$

ЗАКЛЮЧЕНИЕ

Для получения керамики в системе К₂О-CaO-SO₃-P₂O₅ были использованы обработанные в ацетоне в условиях механической активации в планетарной мельнице порошковые смеси, приготовленные из гидроксиапатита кальция Ca₁₀(PO₄)₆(OH)₂ (источника оксидов кальция и фосфора) и гидросульфата калия КНSO₄ (источника оксидов калия и серы) при различных мольных соотношениях КНSO₄/Ca₁₀(PO₄)₆(OH)₂, заданных как 2/1, 4/1 и 6/1. При проведении настояшего исследования впервые была установлена возможность протекания химической реакции в условиях механической активации в ацетоне между гидроксиапатитом кальция Ca₁₀(PO₄)₆(OH)₂ и гидросульфатом калия КНSO₄ с образованием сингенита $K_2Ca(SO_4)_2 \cdot H_2O$ и монетита CaHPO₄. Данные термического и рентгенофазового анализа позволяют утверждать, что формирование фазового состава керамических материалов в системе К₂О-CaO-SO₃-P₂O₅ из подготовленных порошковых смесей происходит при нагревании в результате взаимодействия гидроксиапатита кальция $Ca_{10}(PO_4)_6(OH)_2$, пирофосфата кальция $Ca_2P_2O_7$, кальциолангбейнита K2Ca2(SO4)3 и сульфата калия K₂SO₄. Получены образцы керамики, фазовый состав которых представлен в основном калийзамещенным трикальцийфосфатом Ca₁₀K(PO₄)₇ и кальциолангбейнитом К₂Са₂(SO₄)₃. Образующийся в результате термического разложения сингенита $K_2Ca(SO_4)_2 \cdot H_2O$ сульфат калия K_2SO_4 ($t_{пл} = 1069^{\circ}C$, $t_{\rm 2BT} = 867^{\circ}$ С в системе K₂SO₄-Ca₂SO₄) может быть рассмотрен как спекающая добавка, позволяющая

Рис. 12. Микрофотографии сколов образцов керамики из порошковых смесей, приготовленных в условиях механической активации в ацетоне при мольных соотношениях $KHSO_4/Ca_{10}(PO_4)_6(OH)_2 = 2/1$ (a, б), 4/1 (в, г), 6/1 (д, е), после обжига при 900°С.

получать керамику при относительно невысокой (900°С) температуре обжига. Керамические материалы, фазовый состав которых включает кальциолангбейнит K₂Ca₂(SO₄)₃ и калийзамещенный три-

кальцийфосфат Ca₁₀K(PO₄)₇, могут быть использованы в качестве резорбируемой пористой матрицы при лечении дефектов костной ткани методами регенеративной медицины или как ос-

нова люминесцентных/термолюминесцентных материалов. Керамические материалы в системе $K_2O-CaO-SO_3-P_2O_5$ были получены впервые, поэтому необходимы дополнительные исследования, определяющие оптимальное соотношение фаз для указанных областей применения.

БЛАГОДАРНОСТЬ

Работа выполнена с использованием оборудования, приобретенного за счет средств Программы развития Московского университета.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке РФФИ (грант № 20-03-00550).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы подтверждают отсутствие конфликта интересов.

ИНФОРМАЦИЯ О ВКЛАДЕ АВТОРОВ

Т.В. Сафронова сформулировала цель, подготовила план эксперимента, написала текст статьи; М.М. Ахмедов предложил идею, синтезировал образцы, провел расшифровку данных РФА; Т.Б. Шаталова выполнила термический анализ и его интерпретацию, С.А. Тихонова и Г.К. Казакова провели электронномикроскопические исследования синтезированных порошков и образцов керамических материалов. Все авторы участвовали в обсуждении результатов.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Статья публикуется по итогам Шестого междисциплинарного научного форума с международным участием "Новые материалы и перспективные технологии", Москва, 23–26 ноября 2020 г., https://n-materials.ru.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Pina S., Ribeiro V.P., Marques C.F. et al.* // Materials. 2019. V. 12. № 11. P. 1824. https://doi.org/10.3390/ma12111824
- Orlov N.K., Putlayev V.I., Evdokimov P.V. et al. // Inorg. Mater. 2018. V. 54. № 5. Р. 500. [Орлов Н.К., Путляев В.И., Евдокимов П.В. и др. // Неорган. материалы. 2018. Т. 54. № 5. С. 523.] https://doi.org/10.1134/S0020168518050096
- 3. *Chang M.P., Hsu H.C., Tuan W.H. et al.* // J. Med. Biol. Eng. 2017. V. 37. № 6. P. 879. https://doi.org/10.1007/s40846-017-0253-1
- Zhou J., Gao C., Feng P. et al. // J. Porous Mater. 2015.
 V. 22. № 5. P. 1171. https://doi.org/10.1007/s10934-015-9993-x

- 5. *Chang H.Y., Chen Y.C., Hsu P.Y. et al.* // Adv. Powder. Technol. 2020. V. 31. № 10. P. 4180. https://doi.org/10.1016/j.apt.2020.08.023
- Freyer D., Voigt W. // Monatsh. Chem. 2003. V. 134. № 5. P. 693. https://doi.org/10.1007/s00706-003-0590-3
- Zhou J., Yuan F., Peng S. et al. // Appl. Sci. 2016. V. 6. № 12. P. 411. https://doi.org/10.3390/app6120411
- Yang D., Yang Z., Li X. et al. // Ceram. Int. 2005. V. 31. № 7. P. 1021. https://doi.org/10.1016/j.ceramint.2004.10.016
- 9. Yang Z., Yang D.A., Zhao H. // Key Eng. Mater. 2007. V. 336. P. 1635. https://doi.org/10.4028/www.scientific.net/kem.336-338.1635
- Ostroff A.G., Sanderson R.T. // J. Inorg. Nucl. Chem. 1959. V. 9. № 1. P. 45. https://doi.org/10.1016/0022-1902(59)80009-9
- 11. *Collier N.C.* // Ceramics-Silikaty. 2016. V. 60. № 4. P. 338. https://doi.org/10.13168/cs.2016.0050
- 12. *Chang M.P., Tsung Y.C., Hsu H.C. et al.* // Ceram. Int. 2015. V. 41. № 1. P. 1155. https://doi.org/10.1016/j.ceramint.2014.09.043
- 13. *Kuo S.T., Wu H.W., Tuan W.H. et al.* // J. Mater. Sci: Mater. Med. 2012. V. 23. № 10. P. 2437. https://doi.org/10.1007/s10856-012-4704-5
- 14. *Hsu P.Y., Chang M.P., Tuan W.H. et al.* // Ceram. Int. 2018. V. 44. № 8. P. 8934. https://doi.org/10.1016/i.ceramint.2018.02.088
- 15. *Dikici B.A., Dikici S., Karaman O. et al.* // Biocybern. Biomed. Eng. 2017. V. 37. № 4. P. 733. https://doi.org/10.1016/j.bbe.2017.08.007
- Iqbal Y., Lee W.E. // J. Am. Ceram. Soc. 1999. V. 82. № 12. P. 3584. https://doi.org/10.1111/j.1151-2916.1999.tb02282.x
- 17. Safronova T., Putlayev V., Shekhirev M. // Powder Metall. Met. Ceram. 2013. V. 52. № 5-6. P. 357.
- https://doi.org/10.1007/s11106-013-9534-6
 18. *Ghosh K., DasMohapatra G.K., Soodbiswas N. //* Phys. Chem. Glasses. 2003. V. 44. № 4. P. 313. https://www.ingentaconnect.com/content/sgt/pcg/2003/00000044/00000004/art00010
- 19. *Ding G.H., Xie W., Jung I.H. et al.* // Acta Phys.-Chim. Sin. 2015. V. 31. № 10. C. 1853. https://doi.org/10.3866/PKU.WHXB201508121
- Sandström M.H., Boström D. // J. Chem. Thermodyn. 2008. V. 40. № 1. P. 40. https://doi.org/10.1016/j.jct.2007.06.006
- 21. *Rowe J.J., Morey G.W., Hansen I.D.* // J. Inorg. Nucl. Chem. 1965. V. 27. № 1. P. 53. https://doi.org/10.1016/0022-1902(65)80189-0
- 22. Arceo H.B., Glasser F.P. // Cem. Concr. Res. 1990. V. 20. № 6. P. 862. https://doi.org/10.1016/0008-8846(90)90047-2
- 23. Eriksen K.M., Fehrmann R., Hatem G. et al. // J. Phys. Chem. 1996. V. 100. № 25. P. 10771. https://doi.org/10.1021/jp9537441
- 24. ICDD (2010). PDF-4+ 2010 (Database), edited by Dr. Soorya Kabekkodu, International Centre for Diffrac-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 8 2021

tion Data. Newtown Square. PA. USA. http://www.icdd.com/products/pdf2.htm

- Matović V., Erić S., Kremenović A. et al. // J. Cult. Herit. 2012. V. 13. № 2. P. 175. https://doi.org/10.1016/j.culher.2011.09.003
- 26. Safronova T.V., Sadilov I.S., Chaikun K.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 9. Р. 1088. [Сафронова Т.В., Садилов И.С., Чайкун К.В. и др. // Журн. неорган. химии. 2019. Т. 64. № 9. С. 916.] https://doi.org/10.1134/S0036023619090171
- 27. Fehrmann R., Hansen N.H., Bjerrum N.J. // Inorg. Chem. 1983. V. 22. № 26. P. 4009. https://doi.org/10.1021/ic00168a038
- Diosa J.E., Vargas R.A., Mina E. et al. // Phys. Status Solidi B. 2000. V. 220. № 1. P. 641. https://doi.org/10.1002/1521-3951(200007)220:1<641::AID-PSSB641>3.0.CO;2-X
- 29. *Kloprogge J.T., Ding Z., Martens W.N. et al.* // Thermochim. Acta. 2004. V. 417. № 1. P. 143. https://doi.org/10.1016/j.tca.2003.12.001

- 30. *Radetzki F, Wohlrab D., Zeh A. et al.* // Biomed. Mater. Eng. 2011. V. 21. № 5-6. P. 307. https://doi.org/10.3233/BME-2012-0678
- 31. *Pandey A., Sonkawade R.G., Sahare P.D.* // J. Phys. D: Appl. Phys. 2002. V. 35. № 21. P. 2744. https://doi.org/10.1088/0022-3727/35/21/309
- 32. Sahare P.D., Bakare J.S., Dhole S.D. et al. // Radiat. Meas. 2012. V. 47. № 11-12. P. 1083. https://doi.org/10.1016/j.radmeas.2012.10.003
- 33. Garcia A., de Lima Machado M.E., Britto M.L.B. et al. // J. Health. Sci. Inst. 2011. V. 29. № 2. P. 89. https://www.unip.br/presencial/comunicacao/publicacoes/ics/edicoes/2011/02_abr-jun/V29_n2_2011_p89-91.pdf
- 34. *Pekov I.V., Zelenski M.E., Zubkova N.V. et al.* // Mineral. Mag. 2012. V. 76. № 3. P. 673. https://doi.org/10.1180/minmag.2012.076.3.16
- 35. Oralkov S.Yu., Lazoryak B.I., Aziev R.G. // Russ. J. Inorg. Chem. 1988. V. 33. № 1. С. 73. [Оралков С.Ю., Лазоряк Б.И., Азиев Р.Г. // Журн. неорган. химии. 1988. Т. 33. № 1. С. 73.]