СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 544.032,546.02

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ Sm₂O₃-Fe₂O₃-Ta₂O₅, СТРУКТУРНЫЕ ПЕРЕХОДЫ И МАГНИТНЫЕ СВОЙСТВА ТВЕРДОГО РАСТВОРА Sm_{2 - x}Fe_{1 + x}TaO₇

© 2022 г. А. В. Егорышева^{*a*, *, О. Г. Эллерт^{*a*}, Е. Ф. Попова^{*a*}, Д. И. Кирдянкин^{*a*}, Е. В. Храмов^{*b*}, Ю. В. Максимов^{*c*}}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ^bНациональный исследовательский центр "Курчатовский институт", пл. Академика Курчатова, 1, Москва, 123182 Россия ^cФедеральный исследовательский центр химической физики им. Н.Н. Семенова РАН, ул. Косыгина, 4, Москва, 119991 Россия *e-mail: anna_egorysheva@rambler.ru Поступила в редакцию 04.04.2022 г. После доработки 19.04.2022 г. Принята к публикации 20.04.2022 г.

Построено изотермическое сечение системы Sm2O3-Fe2O3-Ta2O5 в субсолидусной области при 1200°С. Установлено существование области твердого раствора $\tilde{Sm}_{2-x}Fe_{1+x}TaO_7$ со структурой кубического пирохлора (пр. гр. $Fd\overline{3}m$). Изучение политермического разреза системы вдоль сечения $Sm_{2-x}Fe_{1+x}TaO_7$ показало, что известное ранее соединение Sm_2FeTaO_7 (R) со структурой ромбоэдрически искаженного пирохлора (пр. гр. $R\overline{3}$) является стабильным в области температур <1200°С. При повышении температуры \hat{Sm}_2 FeTaO₇ (R) становится промежуточной фазой, и наблюдается обратимый переход в фазу кубического пирохлора (C). Кинетические затруднения перехода $R\overline{3} \rightarrow Fd\overline{3}m$ определяют кратковременную устойчивость R-фазы при температурах, превышающих температуру фазового перехода на 200°С. Установлено, что кубический пирохлор существует в виде твердого раствора $Sm_{2-x}Fe_{1+x}TaO_7$ в интервале x = 0-0.4 при $t \ge 1200^{\circ}C$ и x = 0.15-0.4 при меньших температурах. Двумя независимыми методами мессбауэровской спектроскопии и XANES установлено, что в ромбоэдрической фазе наряду с Fe^{3+} присутствуют ионы железа Fe^{4+} . Изучены магнитные свойства и показано, что и в R-, и в C-фазе при $T \le 10$ K существуют два магнитных перехода различного типа: антиферромагнитный, наблюдаемый в сильном магнитном поле при 7.2 и 5.5 К соответственно, и переход в состояние спинового стекла при 8.4 и 4.8 К, фиксируемый в поле 100 Э. Установлено, что состояние спинового стекла сосуществует с антиферромагнитными взаимодействиями ближнего порядка вплоть до 2.3 К. Несмотря на то, что фазы R и C формально обладают геометрически фрустрированными магнитными подрешетками, по экспериментальным данным фрустрация проявляется лишь в R-фазе.

Ключевые слова: Sm₂FeTaO₇, полиморфизм, XANES, мессбауэровская спектроскопия, магнитные свойства, спиновые стекла

DOI: 10.31857/S0044457X22100452

ВВЕДЕНИЕ

Разупорядоченные магнитные системы занимают особое место среди магнитных материалов. Тройные пирохлоры A'A''B₂O₇ или A₂B'B''O₇, характеризующиеся высокой степенью структурного разупорядочения, являются типичными представителями геометрически фрустрированных магнетиков [1–9]. Хорошо известно, что в пирохлорах и соединениях, содержащих пирохлороподобную фрустрированную магнитную подрешетку, основные состояния многократно вырождены и весьма чувствительны даже к малым возмущениям [10, 11]. Любые структурные искажения могут существенным образом изменить тип взаимодействия в магнитных подрешетках, привести к появлению конкурирующих обменных взаимодействий и, как следствие, к возникновению важных и необычных свойств. Таким образом, пирохлоры и пирохлороподобные соединения являются прекрасными модельными объектами для изучения магнитного поведения разупорядоченных систем.

Интерес исследователей к пирохлороподобным соединениям RE₂FeTaO₇ связан прежде всего с возможностью их использования в качестве термобарьерных покрытий. Термические и механические свойства RE_2FeTaO_7 (RE = Sm, Y) подробно описаны в [12-14]. В остальном эти соединения можно отнести к недостаточно изученным. Информация о них ограничена несколькими статьями [14-17]. Ранее [14] нами показано, что пирохлороподобные соединения RE₂FeTaO₇ реализуются в широком ряду соединений RE = Pr - Yb, включая Ү. При этом структуры всех соединений ряда относятся к пр. гр. $R\overline{3}$, в том числе фаза Sm_2FeTaO_7 , приписываемая ранее к пр. гр. C2/c[12, 15, 16]. Ромбоэдрическая фаза, в дальнейшем будем обозначать ее как RE_2 FeTaO₇ (R), обладает сложной и сильно искаженной по сравнению с кубическим пирохлором слоистой кристаллической решеткой [14, 17]. Она может быть интересна с точки зрения появления необычных магнитных свойств у этих соединений [17]. Тем не менее, по данным [17], измерения магнитных свойств RE_2 FeTaO₇ (R), где RE = Gd, Eu, Dy и Y, не выявили никаких особенностей. По мнению авторов [17], соединения RE_2 FeTaO₇ (R) можно отнести к парамагнетикам со слабыми антиферромагнитными взаимодействиями ближнего порядка. Низкотемпературные переходы в состояние спинового стекла авторы [17] также не обнаружили. Кроме того, в работе [17] высказано предположение о возможном присутствии в RE_2FeTaO_7 (R) ионов Fe⁴⁺ наряду с Fe³⁺. В отличие от авторов [17], проведенные нами измерения АС- и DC-намагниченности в диапазоне температур 300-2.3 К в магнитных полях до 5 кЭ выявили переходы в состояние спинового стекла для Y₂FeTaO₇ (R) и Sm₂FeTaO₇ (R) при 4 и 9 К соответственно [18].

Известно, что благодаря гибкости структуры многие пирохлороподобные соединения могут реализовываться в виде широких областей твердых растворов. Часто в таких областях можно наблюдать морфотропные переходы между близкими пирохлороподобными структурами. В этой связи следует обратить внимание на результаты работы [19], в которой сообщалось о возможности синтеза при высоких температурах RE₂FeTaO₇ со структурой кубического пирохлора (пр. гр. Fd3m). Обозначим его как RE₂FeTaO₇ (C). Дальнейшего развития эта работа не получила. Фазовые равновесия в системе RE_2O_3 - Fe_2O_5 - Ta_2O_5 не изучались. Тем не менее данные об областях существования и возможных полиморфных и морфотропных переходах этих пирохлороподобных соединений позволят установить взаимосвязь их структурных трансформаций с особенностями магнитного поведения и развить знания о разупорядоченных системах.

В настоящей работе впервые рассмотрены вопросы о фазовых равновесиях в системе Sm_2O_3-

 $Fe_2O_3-Ta_2O_5$, полиморфизме Sm_2FeTaO_7 , возможности существования твердых растворов на его основе, о морфотропных переходах при изменении соотношения катионов, влиянии структурных переходов $Fd\overline{3}m \rightarrow R\overline{3}$ на магнитное поведение этих сильно разупорядоченных систем, а также о возможности существования в них железа в редкой степени окисления 4+.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все образцы из системы Sm₂O₃-Fe₂O₃-Ta₂O₅ синтезировали методом соосаждения с последующим отжигом. Детальное описание методики приведено в [14, 20]. В качестве исходных реагентов применяли гексагидрат нитрата самария(III) $[Sm(NO_3)_3 \cdot 6H_2O, Sigma-Aldrich, 99.99\%],$ Hohaгидрат нитрата железа(III) [Fe(NO₃)₃ \cdot 9H₂O, Sigma-Aldrich, 99.95%], пентахлорид тантала [TaCl₅, Sigma-Aldrich, 99.99%]. Использовали также высокочистые водный раствор аммиака (25% NH₄OH, Sigma Tec) и этиловый спирт (99.9% C_2H_5OH , Merck). Предварительно все твердые реагенты тестировали на соответствие заявленному составу. Навески всех твердых компонентов брали в стехиометрическом соотношении. Смесь нитратов самария и железа растворяли в этаноле, после чего к ним добавляли предварительно приготовленный спиртовой раствор TaCl₅. Полученный раствор медленно прикапывали в раствор аммиака и перемешивали на магнитной мешалке в течение 3 ч. Аммиак брали из расчета 2-кратного превышения количества, необходимого для полного осаждения растворенных в спирте компонентов. Полученный осадок после отмывки дистиллированной водой и сушки при 50°С отжигали в Pt-тиглях при температурах 950–1350°C.

Фазовый состав образцов уточняли методом РФА, опираясь на базу данных JCPDS, с помощью дифрактометра Bruker D8 Advance, оснащенного детектором Lynxeye (СиК_α-излучение, Ni-фильтр). Уточнение параметров элементарной ячейки метолом Ле Беля выполняли на основе данных рентгеновского синхротронного излучения ($\lambda = 0.8$ Å) в диапазоне углов 20 от 2° до 56° с использованием детектора Rayonix SX 165. В качестве стандарта использовали порошок LaB₆ (NIST SRM 660a). Уточнение выполняли с помощью программного обеспечения Jana2006. Измерения проводили на станции РСА синхротронного центра НИЦ "Курчатовский институт". Спектры XANES на К-крае Fe регистрировали на станции СТМ того же центра.

Мессбауэровские спектры ⁵⁷Fe регистрировали на электродинамическом спектрометре Wesel (Германия). В качестве источника излучения использовали ⁵⁷Co (Rh) с активностью 1.1 ГБк. Изомерный сдвиг определяли относительно спектра металлического железа. Магнитные свойства изучали с помощью автоматизированной системы определения физических характеристик Quantum Design PPMS-9 в температурном интервале 2.3— 300 К в магнитных полях 100 и 5000 Э.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Фазовые равновесия в системе $Sm_2O_3 - Fe_2O_3 - Ta_2O_5$ ранее не изучали. Известно о двух тройных оксидах, реализующихся в этой системе: пирохлороподобном соединении Sm_2FeTaO_7 и недавно полученном и структурно охарактеризованном $SmFe_{0.5}Ta_{1.5}O_6$ со структурой эшинита [21]. Остальная имеющаяся в настоящее время информация относится к граничным системам $Sm_2O_3 - Fe_2O_3$ [22–33], $Sm_2O_3 - Ta_2O_5$ [34–41] и $Fe_2O_3 - Ta_2O_5$ [42,43].

В системе Sm-Fe-O образуются сложные оксиды SmFeO_{3-δ} и Sm₃Fe₅O₁₂ [22, 26], синтез которых проводили методом твердофазной реакции [22, 24, 25], цитратным методом [23, 27, 28], разложением цианидных комплексов [30, 31], самораспространяющимся высокотемпературным синтезом при микроволновом воздействии [32] и зольгель методом [33]. Термодинамические свойства этих соединений показаны в работах [1, 2, 11] и построено *P*-*x*-сечение диаграммы системы Sm-Fe-O при 1250 К [23]. Известно, что SmFeO_{3 – 8} плавится конгруэнтно при температуре ~1740°С [44, 45] и имеет орторомбически искаженную структуру перовскита (пр. гр. Pbnm) с параметрами элементарной ячейки a = 5.398 Å, b = 5.597 Å, c = 7.707 Å [28]. Бинарный оксид Sm₃Fe₅O₁₂ обладает кубической структурой граната (пр. гр. Ia3d) с параметром элементарной ячейки a = 12.530 Å [29].

В системе Sm₂O₃-Ta₂O₅ реализуется пять соединений: Sm₃TaO₇, SmTaO₄, SmTa₃O₉, Sm₃Ta₁₇O₄₇ и SmTa₇O₁₉ [24-28, 41]. Фазовая диаграмма системы Sm₂O₃-Ta₂O₅ в области 50-100 мол. % Sm₂O₃ для температурного диапазона выше 1350°С приведена в [39]. Установлено, что Sm₃TaO₇ имеет две полиморфные модификации [37, 39]. Низкотемпературная фаза кристаллизуется в флюоритоподобном структурном типе веберита (пр. гр. $C222_1$). Выше 1950°С структура Sm₃TaO₇ описывается пр. гр. *Рпта*. При температуре 2050°С соединение плавится конгруэнтно [39, 40]. Ортотанталат самария SmTaO₄ имеет две стабильные модификации: фергюсонитоподобную моноклинную (пр. гр. I2/а) и высокотемпературную тригональную (пр. гр. $I4_1/a$) со структурой шеелита [35, 36]. Соединение SmTa₃O₉ имеет орторомбическую структуру (пр. гр. Сттт). В работе [36] показано, что Sm₃TaO₇, SmTaO₄ и SmTa₃O₉ относятся к тугоплавким соединениям и могут быть синтезированы методом твердофазного синтеза при температуре 1600°С. Температуры плавления SmTaO₄ и SmTa₃O₉ соответствуют 1930 и 1810°С [40]. Соединению Sm₃Ta₁₇O₄₇ посвящена всего одна работа [38]. Кристаллы Sm₃Ta₁₇O₄₇ были получены из расплава. О стабильности этого соединения данных нет. Расчет структуры Sm₃Ta₁₇O₄₇ показал, что она относится к пр. гр. *P2/m*. SmTa₇O₁₉ кристаллизуется в гексагональной сингонии (пр. гр. *P*6₃/*mcm*) с параметрами элементарной ячейки a = 6.2166(6) Å, c = 19.914(3) Å [41].

Фазовые равновесия в субсолидусной области системы Fe-Ta-O при 1200°C и давлении 1 атм изучены в работе [42]. Показано существование в системе двойных оксидов Fe₄Ta₂O₉, Fe₃Ta₂O_{8.1}, FeTaO₄ и FeTa₂O₆, вероятность образования которых в процессе синтеза определяется парциальным давлением кислорода. В двойной системе Fe₂O₃-Ta₂O₅ кристаллизуется единственное соединение FeTaO₄, имеющее структуру рутила. При высоком давлении наблюдался фазовый переход FeTaO₄ из структуры рутила в вольфрамит [43].

Методом перекрещивающихся разрезов по данным РФА построено изотермическое сечение системы Sm₂O₃-Fe₂O₃-Ta₂O₅ в субсолидусной области при 1200°С (рис. 1). Установлено, что при 1200°С в системе существует область твердого раствора $\text{Sm}_{2-x}\text{Fe}_{1+x}\text{TaO}_7$, где x = 0-0.4 (P), со структурой кубического пирохлора (пр. гр. $Fd\overline{3}m$). Крайней точкой ряда при x = 0 является известное ранее соединение Sm₂FeTaO₇. Подтверждено существование соединения $SmFe_{0.5}Ta_{1.5}O_{6.5}$ (А) со структурой эшинита (орторомбическая сингония, пр. гр. Рпта). В то же время двойной оксид состава Sm₃Ta₁₇O₄₇, кристаллы которого были ранее вырашены метолом спонтанной кристаллизации из расплава [38], синтезировать методом соосаждения с последующим отжигом не удалось. Отжиг образцов (900-1350°С, 14 дней), состав которых соответствовал Sm₃Ta₁₇O₄₇, привел к образованию равновесной смеси двух фаз: SmTa₃O₉ и SmTa₇O₁₉. Это указывает на метастабильность фазы Sm₃Ta₁₇O₄₇, полученной ранее из расплава [38]. Таким образом, изотермическое сечение системы может быть представлено в виде 12 треугольников сосуществующих фаз: $Sm_2O_3-SmFeO_3-Sm_3TaO_7$, $SmFeO_3-Sm_3TaO_7-P$, $SmFeO_3 - P - Sm_3Fe_5O_{12}$, $P-Sm_3Fe_5O_{12}-Fe_2O_3$, Fe₂O₃-P-A, Fe₂O₃-FeTaO₄-A, P-A-SmTaO₄, $P-SmTaO_4-Sm_3TaO_7$, $A-SmTaO_4-SmTa_3O_9$, A-FeTaO₄-SmTa₃O₉, FeTaO₄-SmTa₃O₉-SmTa₇O₁₉, $FeTaO_4 - Ta_2O_5 - SmTa_7O_{19}$.

Исследование фазовых равновесий вдоль политермического сечения $\text{Sm}_{2-x}\text{Fe}_{1+x}\text{TaO}_7$ (рис. 2) подтвердило, что при 1200°С стабильной фазой при x = 0 является именно кубическая модифика-

Рис. 1. Изотермическое сечение системы Sm₂O₃-Fe₂O₃-Ta₂O₅ при 1200°C.

ция Sm_2FeTaO_7 (C), а не ромбоздрическая, как можно было ожидать исходя из предыдущих исследований [18]. Модификация Sm₂FeTaO₇ (R) со структурой искаженного пирохлора (R-фаза) является стабильной до 1200°С. При температурах синтеза, превышающих 1200°С, Sm₂FeTaO₇ (R) является промежуточной фазой. Увеличение продолжительности изотермического отжига приводит к обратимому переходу в фазу кубического пирохлора. Этот переход является кинетически затрудненным. Как видно из рис. 3, для завершения фазового перехода ($R\overline{3} \rightarrow Fd\overline{3}m$) при 1200°С требуется отжиг длительностью более 2 мес. Кинетические затруднения перехода определяют кратковременную устойчивость R-фазы при температурах, до 200°С превышающих температуру фазового перехода, и объясняют отсутствие эффектов на температурной зависимости теплоемкости [18].

Образование твердого раствора с ромбоэдрической структурой не наблюдается. При увеличении доли железа до x = 0.15 при низких температурах в равновесии находится смесь двух фаз: R и C. Кубический пирохлор существует в виде твердого раствора Sm_{2-x}Fe_{1+x}TaO₇ в интервале x = 0-0.4 при $t \ge 1200^{\circ}$ C и x = 0.15-0.4 при меньших температурах. Границы существования твердого раствора Sm_{2-x}Fe_{1+x}TaO₇ (C) со структурой пирохлора при 1200°C подтверждены с помощью зависимости параметра решетки образцов от концентрации железа x (рис. 4).

В пирохлорах $A_2B_2O_7$ (пр. гр. Fd3m) магнитные ионы A и B образуют две подрешетки из соединенных вершинами тетраэдров OA_4 и OB_4 соответственно, являющихся трехмерными аналогами решетки кагоме [10, 11]. Sm₂FeTaO₇ (R) обладает более сложной и сильно искаженной слоистой кристаллической решеткой [14, 17]. Она

Рис. 2. Схема политермического разреза вдоль сечения $\text{Sm}_{2-x}\text{Fe}_{1+x}\text{TaO}_7(a)$; дифрактограммы высокотемпературной (пр. гр. $Fd\overline{3}m$) и низкотемпературной (пр. гр. $R\overline{3}$) фаз $\text{Sm}_2\text{FeTaO}_7(6)$.

Рис. 3. Дифрактограммы Sm₂FeTaO₇ (R) после отжига при 1200°С в течение различного времени.

сформирована чередующимися слоями, образованными Sm–O- и Fe/Ta–O-полиэдрами. В структуре существуют две неэквивалентные позиции ионов Sm³⁺: 3b и 9d. Ионы железа и тантала, статистически распределенные по позициям 3a и 9e, находятся в окружении восьми и шести атомов кислорода. Ионы в позиции 9e образуют двумерную решетку типа кагоме, пустоты которой заполняются треугольной решеткой, составленной из ионов в позиции 3a, образуя меньшую

Рис. 4. Зависимость параметра кристаллической решетки $\text{Sm}_{2-x}\text{Fe}_{1+x}\text{TaO}_7$ от *x*.

треугольную решетку. Редкоземельные ионы формируют аналогичную решетку, которая сдвинута относительно железо-танталовой на 00½.

Paнee [17] при изучении RE_2 FeTaO₇ (R), RE = = Gd, Eu, Dy и Y, высказано предположение, что часть позиций За занята ионами Fe⁴⁺. Поэтому с помощью мессбауэровской спектроскопии были уточнены степени окисления ионов железа в ромбоэдрически искаженном и кубическом пирохлоре на примере образцов Sm₂FeTaO₇ (R) и $Sm_{1,7}Fe_{1,3}TaO_7$ (C) соответственно. Спектр Sm₁₇Fe₁₃TaO₇ (С) хорошо описывается квадрупольным дублетом (рис. 5), что соответствует присутствию Fe³⁺ в октаэдрической позиции Вподрешетки. Также в спектре Sm₁₇Fe₁₃TaO₇ (C) наблюдается секстет, который из-за отсутствия магнитных примесных фаз следует отнести к магнитной сверхструктуре, обусловленной вхождением Fe³⁺ в позицию самария. Подобное явление наблюдалось ранее в пирохлорах на основе железосодержащих ниобатов РЗЭ [46]. В спектре Sm_2FeTaO_7 (R) можно выделить две компоненты, соответствующие двум различным позициям (9е и За), занимаемым катионами железа. Параметры дублетов – изомерный сдвиг б и квадрупольное расщепление Δ – для катионов железа в кубическом пирохлоре и в позиции 9е ромбоэдрически искаженной модификации практически равны (табл. 1). Их значения типичны для октаэдрически координированных ионов Fe³⁺ в высокоспиновом состоянии. Существенно меньшее значение δ для позиции За (0.22 мм/с) является промежуточным между значениями для Fe^{4+} ($\delta = 0.04$ мм/с) и Fe³⁺ [47]. Это означает, что средняя степень окисления железа в позиции За превышает 3+ и, таким образом, указывает на возможное смешаннозарядовое состояние Fe³⁺ и Fe⁴⁺. Дополнитель-

Рис. 5. Мессбауэровские спектры ромбоэдрического Sm_2FeTaO_7 (пр. гр. $R\overline{3}$)_и кубического пирохлора $Sm_{1.7}Fe_{1.3}TaO_7$ (пр. гр. $Fd\overline{3}m$) при T = 300 К.

ный электронный вклад в градиент электрического поля в области ядра объясняет высокие значения квадрупольного расщепления Δ для позиции 3*a*. Полученные данные для Sm₂FeTaO₇ (R) полностью соответствуют результатам исследования мессбауэровских спектров соединений Ln₂FeTaO₇, где Ln = Y, Dy, Gd, Eu [17].

 Fe^{4+} — редко встречающийся ион, поэтому для подтверждения этого результата были зарегистрированы спектры XANES на K-крае Fe для образца Sm₂FeTaO₇ (R). В качестве образцов сравнения были выбраны FeO и Fe₂O₃ (рис. 6).

ХАNES-спектры на К-крае для оксидов 3*d*-переходных металлов хорошо изучены [48, 49]. Небольшой пик перед краем обусловлен квадрупольным переходом $1s \rightarrow 3d$. Основной пик относится к переходу $1s \rightarrow 4p$. Положение этих переходов, особенно низкоэнергетического, чувствительно к степени окисления иона железа [50]. Из рис. 6а видно, что при переходе от FeO к Fe₂O₃ и Sm₂FeTaO₇ (**R**) в спектре наблюдается выраженный сдвиг максимума полосы перехода $1s \rightarrow 3d$ в

Образец	Форма Fe	δ	Δ	Г	H _{in} ,	A
Образец			±0.03 мм/с	±0.5 Тл	± 0.05	
Sm ₂ FeTaO ₇ , пр. гр. <i>R</i> 3	Fe ³⁺ -парамагнитная	0.37	0.96	0.41	—	0.60
	Fe ^{3+δ} -парамагнитная	0.22	2.30	0.40	_	0.40
Sm _{1.7} Fe _{1.3} TaO ₇ , пр. гр. <i>Fd</i> 3 <i>m</i>	Fe ³⁺ -парамагнитная Fe ³⁺ -магнитная	0.38 0.38	0.85 0.19	0.38 0.35	_ 51.6	0.67 0.33

Таблица 1. Параметры ионов железа, полученные для Sm_2FeTaO_7 (R) и $Sm_{1.7}Fe_{1.3}TaO_7$ (C) из мессбауэровских спектров при комнатной температуре

Примечание. δ – изомерный сдвиг относительно α -Fe; Δ – квадрупольное расщепление; Γ – ширина линии; H_{in} – внутреннее магнитное поле на ядре ⁵⁷Fe; A – относительное содержание.

высокоэнергетическую область, что соответствует увеличению степени окисления железа в этих оксидах. Положение основного пика К-края в спектре Sm_2FeTaO_7 (R) совпадает с Fe_2O_3 (рис. 6б), что означает присутствие Fe³⁺. Однако кроме полосы, соответствующей Fe³⁺, в спектре $Sm_{2}FeTaO_{7}$ (R) наблюдается еще одна, сдвинутая в сторону больших энергий. Это указывает на присутствие в этом соединении ионов железа с более высокой степенью окисления (Fe⁴⁺). Действительно, положение этой полосы совпадает с полосой в спектре SrFeO₃, степень окисления железа в котором равна 4+ [51]. Полный спектр Sm₂FeTaO₇ (R) идентичен спектрам твердых растворов La_{1 – x}Sr_xFeO₃ (x = 1/3 - 2/3) [52, 53], особенностью которых является присутствие железа в смешанном состоянии Fe³⁺ и Fe⁴⁺. Электронейтральность структуры ромбоэдрически искаженной модификации пирохлора может обеспечиваться существованием катионных вакансий или частичным заполнением кислородных вакансий.

Различия в структурах ромбоэдрической и кубической фаз могут сказываться на их магнитных свойствах. Особенности магнитного поведения фаз с различной структурой изучены нами на примере R-Sm₂FeTaO₇ (R), образца того же химического состава Sm₂FeTaO₇ (R + C), в котором, однако, структурный переход не завершился и присутствуют ромбоэдрическая и кубическая модификации, а также кубического пирохлора Sm_{1.7}Fe_{1.3}TaO₇ (C).

На температурных зависимостях намагниченности M(T) в магнитном поле H = 5000 Э для всех образцов видны особенности при T < 10 К (рис. 7а). При этом переход при T = 7.2 К отчетливо виден на кривой для Sm₂FeTaO₇ (R). Для образцов R + C и C положение переходов при 7.6 и 5.5 К соответственно определяется только из дифференциальных кривых (рис. 76). Ранее было показано [18], что плавный пик на кривой M(T)Sm₂FeTaO₇ (R) и заметный отрицательный вклад в намагниченность (рис. 7) указывают на анти-

Рис. 6. Нормализованный XANES спектр Sm₂FeTaO₇ (R) на K-крае Fe: а – область $1s \rightarrow 3d$ -перехода; б – основной пик. Для сравнения приведены спектры Fe₂O₃ и FeO.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 11 2022

Рис. 7. Температурная зависимость намагниченности M(T) в поле 5000 Э для Sm₂FeTaO₇ (R), Sm₂FeTaO₇ (R + C) и Sm_{1.7}Fe_{1.3}TaO₇ (C) при низких температурах (а); дифференциальные кривые для M(T) (б).

ферромагнитный (**АФМ**) переход, который происходит при температуре $T \sim 7.6$ К в результате АФМ-упорядочения в подрешетке Sm. На кривой M(T) для Sm₂FeTaO₇ (R + C) также присутствует АФМ-переход (рис. 76) примерно при той же температуре. В пирохлоре Sm_{1.7}Fe_{1.3}TaO₇ (C) часть позиций Sm замещается ионами Fe³⁺, поэтому АФМ-переход в магнитной подрешетке Sm смещен к более низким температурам ($T \sim 5.5$ K).

Для иона Sm³⁺ характерны высокие значения температурно-независимого парамагнетизма (**THII**) [18]. Поэтому для описания высокотемпературной области обратной магнитной восприимчивости $\chi^{-1}(T)$ мы использовали модифицированный закон Кюри–Вейсса с учетом THП: $\chi = \mu_{eff}^2 / 8(T - \Theta) +$

Рис. 8. Температурная зависимость обратной восприимчивости $\chi^{-1}(T)$, где $\chi = M/H$, для Sm₂FeTaO₇ (R), Sm₂FeTaO₇ (R + C) и Sm_{1.7}Fe_{1.3}TaO₇ (C) (красные линии указывают границы интервала аппроксимации).

+ χ_0 , где Θ – температура Вейсса, $8 = N_A \mu_B^2/3k_B$, μ_{eff} – эффективный магнитный момент, χ_0 – ТНП (рис. 8). Как видно из табл. 2, эффективные моменты μ_{eff} = 3.61 и 4.15 μ_B для Sm₂FeTaO₇ (R + C) и Sm₂FeTaO₇ (R) соответственно, ниже значения теоретического момента μ_{teor} = 6.03 μ_B для состава Sm₂FeTaO₇. Для образца Sm_{1.7}Fe_{1.3}TaO₇ (C) значение μ_{eff} = 2.42 μ_B также ниже теоретического μ_{teor} = 6.84 μ_B .

Температуры Вейсса малы и отрицательны у ромбоэдрической фазы и Sm_2FeTaO_7 (R + C) (табл. 2). Наименьшее значение Θ , близкое к нулю, получено для кубического пирохлора. Данный результат указывает на парамагнитное поведение всех образцов, что подтверждается исследованием полевых зависимостей намагниченности M(H) при 2.3 и 300 K (рис. 9).

Описанное выше магнитное поведение в высокотемпературной области в целом характерно для сложных оксидов с геометрически фрустрированной магнитной решеткой пирохлоров. В то же время в изученном ранее искаженном пирохлоре Sm_2FeTaO_7 (R) магнитные ионы Fe^{3+} располагаются в позициях 9е и образуют фрустрированную решетку типа кагоме, которая является двумерным аналогом трехмерной решетки пирохлора [17, 18]. В такой магнитной подсистеме, как и в других пирохлорах, осуществляются АФМобменные взаимодействия ближнего порядка между ионами Fe³⁺, что может приводить к некоторому понижению экспериментальных значений магнитных моментов по сравнению с чисто спиновыми значениями. При низких температурах в пирохлорах или соединениях, содержащих пирохлороподобные магнитные подрешетки, может происходить переход в состояние спинового

Таблица 2. Теоретический (μ_{teor}) и расчетный (μ_{eff}) магнитные моменты, температура Вейсса (Θ), величина температурно-независимого парамагнетизма (χ_0), коэрцитивная сила (H_c), температура АФМ-перехода (T_N), температура перехода в состояние спинового стекла (T_g) и фактор фрустрации $f = |\Theta|/T_g$ для Sm₂FeTaO₇ (R), Sm₂FeTaO₇ (R + + C) и Sm_{1.7}Fe_{1.3}TaO₇ (C)

Образец	μ_{teor}, μ_B	μ_{eff}, μ_B	Θ, Κ	χ ₀ , см ³ /моль	<i>H</i> _c (2.3 K), Э	<i>T</i> _N , K	T _g , K	f
Sm ₂ FeTaO ₇ (R)	6.03	4.21(2)	-22.8(8)	0.00490(6)	1742(2)	7.2	8.4	2.7
$Sm_2FeTaO_7 (R + C)$	6.03	3.61(1)	-18.6(7)	0.00514(4)	1015(2)	7.6	8.0 5.0	2.3 3.7
$Sm_{1.7}Fe_{1.3}TaO_7$ (C)	6.84	2.42(2)	3.6(9)	0.007000(4)	283(2)	5.5	4.8	0.75

стекла. Такой переход обычно можно зарегистрировать в слабых магнитных полях по результатам M(T)-измерений в режиме ZFC–FC, а также в AC-измерениях.

На рис. 10 приведены кривые M(T), измеренные в режиме ZFC-FC, в магнитном поле H == 100 Э. Характерное для перехода в состояние спинового стекла (СС) поведение намагниченности (расхождение кривых ZFC-FC) обнаружено для всех трех изученных соединений. Показана также зависимость положения максимумов действительной (χ') части восприимчивости от частоты приложенного поля, что подтвердило переход магнитной решетки в состояние СС (рис. 11). Отличие температур перехода в СС (T_{g}) для образцов Sm₂FeTaO₇ (R) и Sm₁₇Fe₁₃TaO₇ (C) при 8.4 и 4.8 К (табл. 2) объясняется структурными особенностями их магнитных подрешеток. В образце, содержащем и ромбоэдрическую, и кубическую фазы, наблюдаются две особенности (при 8.0 и 5.0 К), соответствующие переходу в СС каждой из фаз.

Таким образом, во всех исследуемых в работе образцах наблюдаются два магнитных перехода: АФМ в подрешетке Sm и переход в CC. Поэтому сравнительно большие значения коэрцитивной силы указывают на то, что, возможно, АФМ-порядок в подрешетке Sm при T = 2.3 K не полностью разрушен и локальное АФМ-упорядочение все еще существует наряду с состоянием спинового стекла, обусловленного фрустрацией магнитных подрешеток в пирохлоре или квазидвумерной решетке кагоме.

Все три образца содержат или квази-2D-кагоме, или 3D-магнитные подрешетки пирохлора, т.е. *а priori* геометрически фрустрированные магнитные подрешетки [54]. Для определения реальной степени фрустрации использовали величины фактора фрустрации (*f*). Эмпирически фрустрация измеряется величиной фактора фрустрации $f = |\Theta|/T_c$, где T_c является температурой перехода к любому кооперативному упорядочению. Для нефрустрированных антиферромагнитных систем температура Вейсса приблизительно равна температуре упорядочения $|\Theta| \approx T_N$. Если $T_N \ll |\Theta|$ или *f*>1, то исследуемый магнетик фрустрирован [54]. Обнаруженные АФМ- и СС-магнитные пе-

Рис. 9. Полевые зависимости намагниченности M(H) при T = 2.3 K (а). На вставке -M(H) в малых полях. M(H) при 300 K (б).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 11 2022

Рис. 10. Кривые ZFC-FC при $H = 100 \ \exists$ и низких температурах.

реходы в исследуемых соединениях происходят при очень низких температурах (T < 10 K) и отличаются менее чем на 1 К. Значения температур переходов и фактора фрустрации $f = |\Theta|/T_c$ приведены в табл. 2.

ЗАКЛЮЧЕНИЕ

В результате проведенного исследования впервые показано существование полиморфных превращений Sm₂FeTaO₇, а также влияние структурных переходов $Fd\overline{3}m \rightarrow R\overline{3}$ на магнитное повеление этих сильноразупорядоченных систем. В обеих фазах при температурах $T \le 10$ K фиксируются два типа магнитных переходов (АФМ и СС), происходящих в разных магнитных подрешетках Sm и Fe соответственно. Различное поведение этих переходов в больших и малых магнитных полях дало возможность разделить их несмотря на близкие значения температуры. Сравнение свойств образцов разного фазового и химического состава (Sm₂FeTaO₇ (R), Sm₂FeTaO₇ (R + C) и $Sm_{17}Fe_{13}TaO_7$ (C)) позволило установить, что положение АФМ-перехода с наибольшей вероятностью определяется содержанием Sm. В то же время для СС-перехода определяющим фактором является строение подрешетки железа. Искажение решетки пирохлора в ромбоэдрическом Sm₂FeTaO₇ (R) приводит к возникновению неэквивалентных позиций За и 9е, по которым произвольно распределены ионы железа и тантала. В результате ионы Fe³⁺ в позициях 9е формируют магнитно-фрустрированную квази-2D- решетку кагоме. Позиции За частично занимают ионы железа Fe⁴⁺. Действительно, температуры магнитных переходов в CC для Sm_2FeTaO_7 (R + C) соответствуют обнаруженным в однофазных образцах

Рис. 11. Действительная часть магнитной восприимчивости Sm_2FeTaO_7 (R) (a), Sm_2FeTaO_7 (R + C) (б) и $Sm_1_7Fe_1_3TaO_7$ (C) (в).

ромбоэдрического Sm_2FeTaO_7 (R) и кубического пирохлора $Sm_{1.7}Fe_{1.3}TaO_7$ (C). Это также свидетельствует об объемном характере однофазных областей в Sm_2FeTaO_7 (R + C) и отсутствии магнитного взаимодействия между ними в данном образце.

В заключение следует отметить еще один результат приведенного исследования. Ранее показано [12–14], что по термическим и механическим свойствам Sm_2FeTaO_7 (R) не уступает известному термобарьерному материалу ZrO_2 , стабилизированному оксидом иттрия. Отсутствие фазовых переходов является одним из главных требований к материалам для термобарьерных покрытий. Обнаруженная нестабильность Sm_2FeTaO_7 (R) выше 1200°C существенно ограничивает область его возможного применения. В то же время из полученных результатов видно, что интерес для дальнейших исследований представляет кубическая модификация $Sm_{2-x}Fe_{1+x}TaO_7$ (C), особенно составы из области x = 0.15 - 0.4, для которых отсутствуют полиморфные превращения до 1350°C.

БЛАГОДАРНОСТЬ

Авторы благодарят Р.Д. Светогорова (НИЦ "Курчатовский институт") за помощь в проведении структурных исследований.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследования выполнены при финансовой поддержке РНФ (грант № 22-23-00365) с использованием оборудования ЦКП ФМИ ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет известных конкурирующих финансовых интересов или личных отношений, которые могли бы повлиять на работу, описанную в этой статье.

СПИСОК ЛИТЕРАТУРЫ

- Valant M., Babu G.S., Vrcon M. et al. // J. Am. Ceram. Soc. 2012. V. 95. P. 644. https://doi.org/10.1111/j.1551-2916.2011.04801.x
- Egorysheva A.V., Ellert O.G., Maksimov Yu.V. et al. // J. Alloys Compd. 2013. V. 579. P. 311. https://doi.org/10.1016/j.jallcom.2013.06.096
- Lufaso M.W., Vanderah T.A., Pazos I.M. et al. // J. Solid State Chem. 2006. V. 179. P. 3900. https://doi.org/10.1016/j.jssc.2006.08.036
- Babu G.S., Bedanta S., Valant M. // Solid State Commun. 2013. V. 158. P. 51. https://doi.org/10.1016/j.ssc.2012.11.025
- Whitaker J., Marco J.F., Berry F.J. et al. // J. Solid State Chem. 2013. V. 198. P. 316. https://doi.org/10.1016/j.jssc.2012.10.021
- Babu G.S., Valant M., Page K. et al. // Chem. Mater. 2011. V. 23. P. 2619. https://doi.org/10.1021/cm200281z
- Egorysheva A.V., Ellert O.G., Kirdyankin D.I. et al. // J. Magn. Magn. Mater. 2020. V. 513. P. 167226. https://doi.org/10.1016/j.jmmm.2020.167226
- Pavlov R.S., Castello J.B.C., Marza V.B. et al. // J. Am. Ceram. Soc. 2002. V. 85. P. 1197. https://doi.org/10.1111/j.1151-2916.2002.tb00245.x
- Whitaker M.J., Greaves C. // J. Solid State Chem. 2014. V. 215. P. 171. https://doi.org/10.1016/j.jssc.2014.03.039
- Ramirez A.P., Espinosa G.P., Cooper A.S. // Phys. Rev. Lett. 1990. V. 64. P. 2070. https://doi.org/10.1103/PhysRevLett.64.2070

- Moessner R., Chalker J.T. // Phys. Rev. Lett. 1998.
 V. 80. № 13. P. 2929. https://doi.org/10.1103/PhysRevLett.80.2929
- Yang J., Han Y.I., Shahid M. et al. // Scripta Mater. 2018. V. 149. P. 49. https://doi.org/10.1016/j.scriptamat.2018.02.005
- Zheng Q., Chen L., Song P. et al. // J. Alloys Compd. 2021. V. 855. P. 157408.
- https://doi.org/10.1016/j.jallcom.2020.157408
 14. *Egorysheva A.V., Popova E.F., Tyurin A.V. et al.* // Russ. J. Inorg. Chem. 2019. V. 64. № 11. P. 1342. https://doi.org/10.1134/S0036023619110056
- Torres-Martíneza L.M., Ruíz-Gómez M.A., Moctezuma E. // Ceram. Inter. 2017. V. 43. P. 3981. https://doi.org/10.1016/j.ceramint.2016.11.098
- Torres-Martíneza L.M., Ruiz-Gómez M.A., Figueroa-Torres M.Z. et al. // Mater. Chem. Phys. 2012. V. 133. P. 839.

https://doi.org/10.1016/j.matchemphys.2012.01.104

- Matsuda K.C., Ivashita F.F., Paesano Jr.A. et al. // Phys. Rev. B. 2010. V. 81. P. 014417. https://doi.org/10.1103/PhysRevB.81.014417
- Egorysheva A.V., Ellert O.G., Popova E.F. et al. // J. Chem. Therm. 2021. V. 161. P. 106565. https://doi.org/10.1016/j.jct.2021.106565
- 19. *Berndt G*. Tese de Doutorado. Universidade Estadual de Maringá. Programa de PósGraduação em Física, 2012.
- Egorysheva A.V., Popova E.F., Tyurin A.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1649. https://doi.org/10.1134/S003602362111005X
- 21. Егорышева А.В., Эллерт О.Г., Попова Е.Ф. и др. // Журн. неорган. химии. 2022. Т. 67. № 10. Р. 1367. https://doi.org/10.31857/S0044457X22100373
- Kitayama K., Katsura T. // Chem. Soc. Jpn. 1976. V. 49. P. 998. https://doi.org/10.1246/bcsj.49.998
- 23. *Parida S.C., Jacob K.T., Venugopal V.* // J. Phase Equil. 2003. V. 24. P. 431. https://doi.org/10.1361/105497103770330082
- 24. *Katsura T., Kitayama K., Sugihara T. et al.* // Bull. Chem. Soc. Jpn. 1975. V. 48. P. 1809. https://doi.org/10.1246/bcsj.48.1809
- 25. *Katsura T., Sekine T., Kitayama K. et al.* // J. Solid State Chem. 1978. V. 23. P. 43. https://doi.org/10.1016/0022-4596(78)90052-X
- 26. *Kimizuka N., Yamamoto A., Ohashi H. et al.* // J. Solid State Chem. 1983. V. 49. P. 65. https://doi.org/10.1016/0022-4596(83)90217-7
- Prasad B.V., Rao G.N., Chen J.W. et al. // Mater. Res. Bull. 2011. V. 46. P. 1670. https://doi.org/10.1016/j.materresbull.2011.06.001
- Berenov A., Angeles E., Rossiny J. et al. // Solid State Ionics. 2008. V. 179. P. 1090. https://doi.org/10.1016/j.ssi.2008.01.025
- Mccarthy G.J., Botdorf R., Johnson R.G. // J. Appl. Crystallogr. 1972. V. 5. P. 377. https://doi.org/10.1016/j.ssi.2008.01.025
- Hosoya Y., Itagaki Y., Aono H. et al. // Sens. Actuators B: Chem. 2005. V. 108. P. 198. https://doi.org/10.1016/j.snb.2004.10.059

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 11 2022

- Mori M., Iwamoto Y., Asamoto M. et al. // Catal. Today. 2008. V. 139. P. 125. https://doi.org/10.1016/j.cattod.2008.08.014
- Din J., Lu X., Shu H. et al. // Mater. Sci. Eng. B. 2010.
 V. 171. P. 31. https://doi.org/10.1016/j.mseb.2010.03.050
- Giang H., Duy H., Ngan P. et al. // Sens. Actuators B: Chem. 2011. V. 158. P. 246. https://doi.org/10.1016/j.snb.2011.06.013
- 34. *Hinatsu Y., Doi Y. //* J. Ceram. Soc. Jpn. 2019. V. 127. P. 273. https://doi.org/10.2109/jcersj2.18219
- 35. Mather S.A., Davies P.K. // J. Am. Ceram. Soc. 1995. V. 78. P. 2737. https://doi.org/10.1111/i.1151-2916.1995.tb08049.x
- 36. Zhou Y., Gan G., Ge Z. et al. // Mater. Res. Express. 2020. V. 7. P. 015204. https://doi.org/10.1088/2053-1591/ab669f
- Wakeshima M., Hinatsu Y. // J. Solid State Chem. 2010. V. 183. P. 2681. https://doi.org/10.1016/j.jssc.2010.09.005
- Yamnova N.A., Pushcharovskii D.Y., Leonyuk L.I. et al. // Sov. Phys. Crystallogr. 1988. V. 33. P. 358.
- Yokogawa Y, Yoshimura M. // J. Am. Ceram. Soc. 1997.
 V. 80. P. 1965. https://doi.org/10.1111/j.1151-2916.1997.tb03079.x
- 40. Портной К.И., Тимофеева М.И., Салибеков С.Е. // Изв. АН СССР. Неорган. материалы. 1970. Т. 6. С. 289.
- 41. Putilin S.N., Krylov E.A., Men'shenina N.F. et al. // Russ. J. Inorg. Chem. 1985. V. 30. P. 367.
- 42. *Turnock A.C.* // J. Am. Ceram. Soc. 1965. V. 48. P. 258. https://doi.org/10.1111/j.1151-2916.1965.tb14732.x

- 43. *Tamura S.* // Solid State Commun. 1973. V. 12. P. 597. https://doi.org/10.1016/0038-1098(73)90293-7
- 44. *Nielsen J.W., Blank S.L.* // J. Cryst. Growth. 1972. V. 13/14. P. 702. https://doi.org/10.1016/0022-0248(72)90545-3
- 45. Nagashio K., Yamaguchi O., Hibiya T. et al. // J. Am. Ceram. Soc. 2006. V. 89. P. 1504. https://doi.org/10.1111/j.1551-2916.2006.00923.x
- 46. *Matsuda C.K., Barco R., Sharma P. et al.* // Hyperfine Interact. 2007. V. 175. P. 55. https://doi.org/10.1007/s10751-008-9588-x
- 47. Berry F.J., Ren X., Heap R. et al. // Solid State Comm. 2005. V. 134. P. 621. https://doi.org/10.1016/j.ssc.2005.03.005
- 48. Westre T.E., Kennepohl P., DeWitt J.G. et al. // J. Am. Chem. Soc. 1997. V. 119. P. 6297. https://doi.org/10.1021/ja964352a
- 49. *de Groot F.* // Chem. Rev. 2001. V. 101. P. 1779. https://doi.org/10.1021/cr9900681
- 50. Wilke M., Farges F., Petit P.-E. et al. // Am. Mineral. 2001. V. 86. P. 714. https://doi.org/10.2138/am-2001-5-612
- Akhtar M.J., Ali Khan R.T. // Mater. Character. 2011. V. 62. P. 1016. https://doi.org/10.1016/j.matchar.2011.07.014
- Deb A., Ralph J.M., Cairns E.J. et al. // Phys. Rev. B. 2006. V. 73. P. 115114. https://doi.org/10.1103/PhysRevB.73.115114
- Blasco J., Aznar B., García J. et al. // Phys. Rev. B. 2008. V. 77. P. 054107. https://doi.org/10.1103/PhysRevB.77.054107
- 54. Ramirez A.P. // Annu. Rev. Mater. Sci. 1994. V. 24 P. 453. https://doi.org/10.1146/annurev.ms.24.080194.002321