## = ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 541.123.6 + 549.76

# ДРЕВО ФАЗ И ИССЛЕДОВАНИЕ СТАБИЛЬНЫХ ТРЕУГОЛЬНИКА NaBr-BaMoO<sub>4</sub>-BaWO<sub>4</sub> И ТЕТРАЭДРА NaBr-BaBr<sub>2</sub>-BaMoO<sub>4</sub>-BaWO<sub>4</sub> СИСТЕМЫ Na<sup>+</sup>,Ba<sup>2+</sup>||Br<sup>-</sup>,MoO<sub>4</sub><sup>2-</sup>,WO<sub>4</sub><sup>2-</sup>

© 2022 г. М. А. Сухаренко<sup>а,</sup> \*, И. К. Гаркушин<sup>а</sup>, В. Т. Осипов<sup>а</sup>, А. В. Радченко<sup>а</sup>

<sup>а</sup>Самарский государственный технический университет, ул. Молодогвардейская, 244, Самара, 443100 Россия

\*e-mail: sukharenko\_maria@mail.ru Поступила в редакцию 31.03.2022 г. После доработки 03.06.2022 г. Принята к публикации 04.06.2022 г.

Проведено теоретическое и экспериментальное исследование стабильных элементов четырехкомпонентной взаимной системы Na<sup>+</sup>, Ba<sup>2+</sup>||Br<sup>-</sup>, MoO<sub>4</sub><sup>2-</sup>, WO<sub>4</sub><sup>2-</sup>. Проведено разбиение на симплексы на основе теории графов и построено древо фаз, которое имеет линейное строение и состоит из стабильного тетраэдра и пентатопа, разделенных секущим треугольником. Для стабильных элементов древа фаз проведен прогноз числа и состава кристаллизующихся фаз с учетом элементов огранения, в которых одновременно присутствуют молибдаты и вольфраматы натрия и бария, обладающие изоструктурными свойствами и образующие после расплавления и кристаллизации единую фазу – непрерывный ряд твердых растворов. Экспериментальное исследование системы выполнено методами ДТА и РФА. Установлено отсутствие в стабильных элементах системы точек нонвариантных равновесий и выявлена устойчивость непрерывных рядов твердых растворов на основе молибдатов и вольфраматов натрия и бария. Определены температуры плавления и составы сплавов, отвечающих точкам, лежащим на моновариантной кривой.

*Ключевые слова:* физико-химический анализ, фазовые диаграммы, вольфрамат бария, молибдат бария, непрерывный ряд твердых растворов

DOI: 10.31857/S0044457X22100415

## введение

Исследование фазовых равновесий в многокомпонентных системах и построение фазовых диаграмм на их основе являются важнейшим этапом разработки новых составов функциональных материалов. Молибдаты и вольфраматы щелочных и щелочноземельных металлов обладают рядом ценных свойств и находят широкое применение в различных областях промышленности, медицине и науке. Например, они используются как высокоэффективные материалы для ВКР-лазеров, в различных электрохимических устройствах, а также в качестве нелинейно-оптических и лазерных сред [1–3]. В медицине наночастицы вольфрамата бария используют в лучевой терапии.

Исследование фазовых равновесных состояний в многокомпонентных системах из солей, оксидов и органических соединений является актуальной задачей современного материаловедения, решением которой занимаются российские и зарубежные ученые [4–14]. Изучение фазовых равновесий в системах с участием галогенидов и кислородсодержащих солей щелочных и щелочноземельных металлов представлено в работах [15–21], однако системы с участием молибдатов и вольфраматов остаются недостаточно изученными.

## ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Четырехкомпонентная взаимная система

Na<sup>+</sup>,Ba<sup>2+</sup>||Br<sup>-</sup>,MoO<sub>4</sub><sup>2-</sup>,WO<sub>4</sub><sup>2-</sup> состоит из шести индивидуальных веществ, термические и термодинамические свойства которых приведены в табл. 1 [22, 23]. Развертка граневых элементов системы представлена на рис. 1.

Разбиение на симплексы четырехкомпонентной взаимной системы Na<sup>+</sup>, Ba<sup>2+</sup>||Br<sup>-</sup>, MoO<sub>4</sub><sup>2-</sup>, WO<sub>4</sub><sup>2-</sup> проведено на основе теории графов путем составления матрицы смежности и решения логического выражения [24]. Матрица смежности исследуемой системы представлена в табл. 2.

На основании данных табл. 2 составлено логическое выражение (**ЛВ**), представляющее собой произведение сумм индексов несмежных вершин:

| Вещество                         | М, г/моль | <i>Т</i> <sub>пл</sub> , °С | <i>Т</i> <sub>ф.п</sub> , °С   | <i>−∆<sub>f</sub>Н</i> °,<br>кДж/моль | $-\Delta_{\!f}G^{ m o},$ кДж/моль | Ссылка |
|----------------------------------|-----------|-----------------------------|--------------------------------|---------------------------------------|-----------------------------------|--------|
| NaBr                             | 102.89    | 747                         | _                              | 361.4                                 | 349.4                             | [21]   |
| Na <sub>2</sub> WO <sub>4</sub>  | 293.83    | 698                         | $\alpha \rightarrow \beta$ 576 | 1470.0                                | 1356.1                            | [21]   |
|                                  |           |                             | $\beta \rightarrow \gamma 589$ |                                       |                                   |        |
| Na <sub>2</sub> MoO <sub>4</sub> | 205.92    | 688                         | $\alpha \rightarrow \beta 451$ | 1469.0                                | 1355.2                            | [21]   |
|                                  |           |                             | $\beta \rightarrow \gamma 585$ |                                       |                                   |        |
|                                  |           |                             | γ→δ 635                        |                                       |                                   |        |
| BaBr <sub>2</sub>                | 297.14    | 857                         | —                              | 757.8                                 | 738.6                             | [22]   |
| BaWO <sub>4</sub>                | 385.16    | 1475                        | _                              | 1698.7                                | 1591.6                            | [22]   |
| BaMoO <sub>4</sub>               | 297.27    | 1458                        | —                              | 1533.3                                | 1426.7                            | [22]   |

Таблица 1. Термические и термодинамические свойства индивидуальных веществ

Таблица 2. Матрица смежности системы  $Na^+, Ba^{2+} \| Br^-, MoO_4^{2-}, WO_4^{2-} \| Br^-, MoO_4^{2-} \| Br^-, MoO_4^{2-}$ 

| Вещество                         | Индекс         | X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | X <sub>4</sub> | X <sub>5</sub> | X <sub>6</sub> |
|----------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| NaBr                             | X <sub>1</sub> | 1              | 1              | 1              | 1              | 1              | 1              |
| Na <sub>2</sub> MoO <sub>4</sub> | $X_2$          |                | 1              | 1              | 0              | 1              | 1              |
| Na <sub>2</sub> WO <sub>4</sub>  | X <sub>3</sub> |                |                | 1              | 0              | 1              | 1              |
| BaBr <sub>2</sub>                | $X_4$          |                |                |                | 1              | 1              | 1              |
| BaMoO <sub>4</sub>               | X <sub>5</sub> |                |                |                |                | 1              | 1              |
| BaWO <sub>4</sub>                | X <sub>6</sub> |                |                |                |                |                | 1              |

$$\Pi \mathbf{B} = (\mathbf{X}_2 + \mathbf{X}_4)(\mathbf{X}_3 + \mathbf{X}_4). \tag{1}$$

Решая полученное логическое выражение с учетом закона поглощения, получим набор однородных несвязанных графов:

$$\Pi B = X_2 X_3 + X_4.$$
 (2)

Путем выписывания недостающих вершин для несвязанных графов получена совокупность симплексов:

I) 
$$X_1X_4X_5X_6 (NaBr)_2 - BaBr_2 - BaMoO_4 - BaWO_4$$
;  
II)  $X_1X_2X_3X_5X_6 (NaBr)_2 - Na_2MoO_4 - Na_2WO_4 - BaMoO_4 - BaWO_4$ .

Общие элементы смежных симплексов образуют стабильный секущий элемент (стабильный треугольник):

$$X_1X_5X_6$$
 (NaBr)<sub>2</sub>-BaMoO<sub>4</sub>-BaWO<sub>4</sub>

Исходя из проведенного разбиения построено древо фаз системы (рис. 2), имеющее линейное строение и состоящее из стабильного тетраэдра (NaBr)<sub>2</sub>-BaBr<sub>2</sub>-BaMoO<sub>4</sub>-BaWO<sub>4</sub> и стабильного пентатопа (NaBr)<sub>2</sub>-Na<sub>2</sub>MoO<sub>4</sub>-Na<sub>2</sub>WO<sub>4</sub>-BaMoO<sub>4</sub>-BaWO<sub>4</sub>, разделенных секущим треугольником (NaBr)<sub>2</sub>-BaMoO<sub>4</sub>-BaWO<sub>4</sub>.

На основании полученного древа фаз выполнен прогноз числа и состава кристаллизующихся фаз в каждом симплексе системы. Кристаллические решетки молибдатов и вольфраматов натрия

...

и бария обладают изоструктурным строением и близостью ионных радиусов как  $MoO_4^{2-}$  (0.254 нм),  $WO_4^{2-}$  (0.257нм), так и  $Mo^{+6}$  (0.055 нм),  $W^{+6}$  (0.056 нм) [25]. Поэтому в двойных системах огранения  $Na_2MoO_4$  и  $Na_2WO_4$ ,  $BaMoO_4$  и  $BaWO_4$  образуют единую фазу — непрерывный ряд твердых растворов  $Na_2Mo_xW_{1-x}O_4$  и  $BaMo_xW_{1-x}O_4$  соответственно. Благодаря этому в стабильных и секущих элементах древа фаз возможны четыре варианта прогноза:

непрерывные ряды твердых растворов бинарных систем Na<sub>2</sub>MoO<sub>4</sub>-Na<sub>2</sub>WO<sub>4</sub> и BaMoO<sub>4</sub>-BaWO<sub>4</sub> являются стабильными в образуемых ими тройных и четверных системах. В данном случае в стабильном треугольнике будут кристаллизовать-



**Рис. 1.** Развертка граневых элементов четырехкомпонентной взаимной системы  $Na^+, Ba^{2+} \|Br^-, MoO_4^{2-}, WO_4^{2-}$ .



**Рис. 2.** Древо фаз четырехкомпонентной взаимной системы  $Na^+, Ba^{2+} \| Br^-, MoO_4^{2-}, WO_4^{2-}$ .

ся две твердые фазы: NaBr и непрерывный ряд твердых растворов (**HPTP**)  $BaMo_xW_{1-x}O_4$ , в стабильном тетраэдре и пентатопе — по три твердые фазы: NaBr, BaBr<sub>2</sub>, HPTP  $BaMo_xW_{1-x}O_4$  и NaBr, HPTP Na<sub>2(1 - y)</sub> $Ba_yMo_xW_{1-x}O_4$ , HPTP BaMo<sub>x</sub> $W_{1-x}O_4$  cootbetctbehho;

— непрерывные ряды твердых растворов бинарной системы  $Na_2MoO_4{-}Na_2WO_4$  остаются

стабильными в образуемых ими тройных и четверных системах, а HPTP бинарной системы BaMoO<sub>4</sub>—BaWO<sub>4</sub> — нет. В этом случае в стабильном треугольнике будут кристаллизоваться три твердые фазы: NaBr, OTP (ограниченный ряд твердых растворов) на основе BaMoO<sub>4</sub> и OTP на основе BaWO<sub>4</sub>; в стабильном тетраэдре — четыре твердые фазы: NaBr, BaBr<sub>2</sub>, OTP на основе Ba MoO<sub>4</sub> и OTP на основе BaWO<sub>4</sub>; в стабильном пентатопе — четыре твердые фазы: NaBr, HPTP на основе молибдата и вольфрамата натрия, OTP на основе BaMoO<sub>4</sub> и OTP на основе BaWO<sub>4</sub>;

– непрерывные ряды твердых растворов бинарной системы  $BaMoO_4$ – $BaWO_4$  остаются стабильными в образуемых ими тройных и четверных системах, а HPTP бинарной системы  $Na_2MoO_4$ – $Na_2WO_4$  – нет. В данном случае в стабильном треугольнике будут две кристаллизующиеся фазы: NaBr и HPTP  $BaMo_xW_{1-x}O_4$ ; в стабильном тетраэдре – три кристаллизующиеся фазы: NaBr,  $BaBr_2$  и  $BaMo_xW_{1-x}O_4$ ; в стабильном пентатопе – четыре кристаллизующиеся фазы: NaBr, OTP на основе  $Na_2MoO_4$ , OTP на основе  $Na_2WO_4$ , HPTP  $BaMo_xW_{1-x}O_4$ ;

– непрерывные ряды твердых растворов бинарных систем  $Na_2MOO_4$ – $Na_2WO_4$  и  $BaMoO_4$ – BaWO<sub>4</sub> не являются стабильными в образуемых ими тройных и четверных системах. В таком случае в стабильном треугольнике будут наблюдаться три кристаллизующиеся фазы: NaBr, OTP на основе BaMoO<sub>4</sub> и OTP на основе BaWO<sub>4</sub>; в стабильном тетраэдре – четыре кристаллизующиеся фазы: NaBr, BaBr<sub>2</sub>, OTP на основе BaMoO<sub>4</sub> и OTP на основе BaWO<sub>4</sub>; в стабильном пентатопе – пять твердых фаз: NaBr, OTP на основе Na<sub>2</sub>MoO<sub>4</sub>, OTP на основе Na<sub>2</sub>WO<sub>4</sub>, OTP на основе BaMoO<sub>4</sub> и OTP на основе BaWO<sub>4</sub>.

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Приведем имеющиеся в литературе данные по элементам огранения четырехкомпонентной взаимной системы. Концентрации всех веществ выражены в молярных концентрациях эквивалентов.

#### Двухкомпонентные системы с общим катионом

Двухкомпонентная система (NaBr)<sub>2</sub>—Na<sub>2</sub>MoO<sub>4</sub> — эвтектика  $e_1$  при температуре 526°С и составе 82.4% (NaBr)<sub>2</sub> + 17.6% Na<sub>2</sub>MoO<sub>4</sub>. Твердые фазы — Na<sub>2</sub>MoO<sub>4</sub> и NaBr [26].

Двухкомпонентная система  $(NaBr)_2 - Na_2WO_4 -$ двойная эвтектика  $e_2$  образуется при 569°С и составе 75.0%  $Na_2WO_4 + 25.0\%$   $(NaBr)_2$ . Твердые фазы – NaBr,  $Na_2WO_4$  [21].

Двухкомпонентная система Na<sub>2</sub>MoO<sub>4</sub>—Na<sub>2</sub>WO<sub>4</sub> — непрерывный ряд твердых растворов с минимумом *m* при 676°С и 40.0% Na<sub>2</sub>MoO<sub>4</sub> + 60.0% Na<sub>2</sub>WO<sub>4</sub>. Твердые фазы — Na<sub>2</sub>Mo<sub>x</sub>W<sub>1-x</sub>O<sub>4</sub> [27].

Двухкомпонентная система  $BaBr_2-BaMoO_4$  – эвтектика  $e_3$  с температурой плавления 758°С и составом 70.0%  $BaBr_2 + 30.0\%$   $BaMoO_4$ . Твердые фазы –  $BaBr_2$ ,  $BaMoO_4$  [27].

Двухкомпонентная система  $BaBr_2 - BaWO_4 - эв-$ тектика  $e_4$  с температурой плавления  $813^{\circ}$ С и составом 86.5%  $BaBr_2 + 13.5\%$   $BaWO_4$ . Твердые фазы –  $BaBr_2$ ,  $BaWO_4$  [21].

Двухкомпонентная система  $BaMoO_4$ — $BaWO_4$ — непрерывный ряд твердых растворов без экстремумов. Твердая фаза— $BaMo_xW_{1-x}O_4$  [25].

#### Двухкомпонентные системы с общим анионом

Двухкомпонентная система  $(NaBr)_2$ -BaBr<sub>2</sub> – эвтектика e<sub>5</sub> с температурой плавления 600°С и составом 57.1% BaBr<sub>2</sub> + 42.9% (NaBr)<sub>2</sub>. Твердые фазы – NaBr, BaBr<sub>2</sub> [27].

Двухкомпонентная система  $Na_2MoO_4$ —Ba $MoO_4$  эвтектика  $e_6$  при температуре 678°С и составе 90.3%  $Na_2MoO_4$  + 9.7% Ba $MoO_4$ , ограниченный ряд твердых растворов на основе молибдата натрия с максимумом тах при температуре 694°С. Твердые фазы — ОТР на основе  $\gamma$ - $Na_2MoO_4$  и Ba- $MoO_4$  [27].

Двухкомпонентная система  $Na_2WO_4$ —BaWO<sub>4</sub> — эвтектика  $e_7$  при 680°С и составе 96.0%  $Na_2WO_4$  + 4% BaWO<sub>4</sub>. Твердые фазы — BaWO<sub>4</sub> и OTP на основе  $\gamma$ -Na<sub>2</sub>WO<sub>4</sub> [21].

#### Трехкомпонентные системы

**Трехкомпонентная система**  $(NaBr)_2 - Na_2MoO_4 - Na_2WO_4$ . НРТР на основе молибдата и вольфрамата натрия являются устойчивыми. В системе кристаллизуются две фазы: NaBr и Na<sub>2</sub>Mo<sub>x</sub>W<sub>1-x</sub>O<sub>4</sub> [28].

**Трехкомпонентная система**  $BaBr_2-BaMoO_4-BaWO_4$ . НРТР на основе молибдата и вольфрамата бария не распадаются. В системе кристаллизуются две фазы:  $BaBr_2$  и  $BaMo_xW_{1-x}O_4$  [28].

#### Трехкомпонентные взаимные системы

Трехкомпонентная взаимная система Na<sup>+</sup>,Ba<sup>2+</sup>∥Br<sup>−</sup>,MoO<sub>4</sub><sup>2−</sup> является эвтектической. Стабильная диагональ (NaBr)<sub>2</sub>—BaMoO<sub>4</sub> разбивает квадрат составов на два стабильных треугольника, в каждом из которых образуется тройная эвтектика. Координаты тройных и квазитройной эвтектик приведены в табл. 3 [20].

| Точка | C    | одержание ве                     | щества, экв.      | T °C               | Трарица форц        |                                                                      |
|-------|------|----------------------------------|-------------------|--------------------|---------------------|----------------------------------------------------------------------|
|       | NaBr | Na <sub>2</sub> MoO <sub>4</sub> | BaBr <sub>2</sub> | BaMoO <sub>4</sub> | I <sub>пл</sub> , С | тырдые фазы                                                          |
| $e_8$ | 89   |                                  |                   | 11                 | 721                 | NaBr, BaMoO <sub>4</sub>                                             |
| $E_1$ | 42   | 53                               |                   | 5                  | 525                 | NaBr, $\beta$ -Na <sub>2</sub> MoO <sub>4</sub> , BaMoO <sub>4</sub> |
| $E_2$ | 37   |                                  | 60                | 3                  | 586                 | NaBr, BaBr <sub>2</sub> , BaMoO <sub>4</sub>                         |

**Таблица 3.** Координаты тройных и квазитройной эвтектик в трехкомпонентной взаимной системе Na<sup>+</sup>,Ba<sup>2+</sup>||Br<sup>-</sup>, MoO<sub>4</sub><sup>2-</sup>

Таблица 4. Координаты тройных и квазитройной эвтектик в трехкомпонентной взаимной системе Na<sup>+</sup>, Ba<sup>2+</sup> ||Br<sup>-</sup>, WO<sub>4</sub><sup>2-</sup>

| Точка          | C    | одержание ве                    | щества, экв.      | T °C              | Трарина фази        |                                                                      |
|----------------|------|---------------------------------|-------------------|-------------------|---------------------|----------------------------------------------------------------------|
|                | NaBr | Na <sub>2</sub> WO <sub>4</sub> | BaBr <sub>2</sub> | BaWO <sub>4</sub> | л <sub>пл</sub> , С | твердые фазы                                                         |
| e <sub>9</sub> | 90   |                                 |                   | 10                | 713                 | NaBr, BaWO <sub>4</sub>                                              |
| $E_3$          | 25   | 74.5                            |                   | 0.5               | 566                 | NaBr, BaBr <sub>2</sub> , BaMoO <sub>4</sub>                         |
| $E_4$          | 42   | 53                              |                   | 5                 | 597                 | NaBr, $\beta$ -Na <sub>2</sub> MoO <sub>4</sub> , BaMoO <sub>4</sub> |

Трехкомпонентная взаимная система

 $Na^+, Ba^{2+} || Br^-, WO_4^{2-}$  также является эвтектической. Квадрат составов разбивается стабильной секущей  $(NaBr)_2$ -BaWO<sub>4</sub> на два стабильных треугольника. Температуры плавления и составы тройных и квазитройной эвтектик приведены в табл. 4 [21].

Трехкомпонентнаявзаимнаясистема $Na^+, Ba^{2+} \| MoO_4^{2^-}, WO_4^{2^-}$ – образуются непрерывныеные ряды твердых растворов без экстремумов.Твердые фазы–  $Na_{2(1 - y)}Ba_yMo_xW_{1 - x}O_4$  и $BaMo_xW_{1-x}O_4$  [25].

Исследование фазовых равновесий в трехкомпонентной взаимной системе Na<sup>+</sup>, Ba<sup>2+</sup> || Br<sup>-</sup>,  $MoO_4^{2-}, WO_4^{2-}$  и элементах ее огранения проводили с помощью дифференциального термического анализа (ДТА) на установке с верхним подводом термопар [29]. Установка включает печь шахтного типа, в которую опускаются платиновые микротигли (изделия № 108-3 по ГОСТ 13498-68) с исследуемым составом и индифферентным веществом – свежепрокаленным Al<sub>2</sub>O<sub>3</sub> (ч. д. а.). Холодные спаи термостатировали при 0°С с помощью сосуда Дьюара с тающим льдом. Сигнал от термопар поступал на АЦП и преобразовывался в цифровой сигнал с выводом на компьютер. Фиксировали температурную и дифференциальную кривые [29]. Градуировку термопар осуществляли по известным температурам плавления полиморфных модификаций безводных неорганических солей [22, 23]. Исследования проводили до 750°С.

Скорость нагрева (охлаждения) образцов составляла 10–15 К/мин. Точность измерения температур составляла  $\pm 2.5^{\circ}$ С при точности взвешивания составов на аналитических весах  $\pm 0.0001$  г. Составы всех смесей, приведенных в настоящей работе, выражены в молярных концентрациях эквивалентов, температуры — в градусах Цельсия. Масса исходных смесей составляла 0.3 г.

Рентгенофазовый анализ (РФА) осуществляли с помощью метода Дебая—Шеррера (метод порошка) [30] на дифрактометре Arl X'tra. Прибор сконструирован по принципу вертикальной геометрии Брэгга—Брентано. Съемку дифрактограмм проводили в Си $K_{\alpha}$ -излучении с никелевым  $\beta$ -фильтром. Режим съемки образца: напряжение на трубке 35 кВ, ток рентгеновской трубки 10 мА, скорость съемки 1 град/мин, угловые отметки че-

рез  $\theta = 1^{\circ}$ . Образцы для РФА отжигали в платиновых тиглях при температуре на 10–20°С ниже температур конечного затвердевания расплавов в течение 2 ч, затем закаляли во льду, перетирали в агатовой ступке и запрессовывали в кюветы. Идентификацию фаз осуществляли по межплоскостным расстояниям *d* (нм) и относительным интенсивностям *I*/*I*<sub>0</sub> (%) рефлексов с использованием картотеки ICDD и программы PCPDFWIN. Съемка рентгенограмм проведена в лаборатории РФА кафедры физики СамГТУ.

В работе использовали следующие реактивы: NaBr марки "х. ч." (содержание основного вещества 99.9 мас. %), BaBr<sub>2</sub> "х. ч." (содержание основного вещества 99.9 мас. %), Na<sub>2</sub>WO<sub>4</sub> "ч." (содержание основного вещества 99.0 мас. %), BaWO<sub>4</sub> "ч." (содержание основного вещества 99.0 мас. %), Na<sub>2</sub>MoO<sub>4</sub> "ч. д. а." (содержание основного вещества 99.5 мас. %), BaMoO<sub>4</sub> "ч." (содержание ос-



**Рис. 3.** Проекция фазового комплекса секущего треугольника NaBr–BaMoO<sub>4</sub>–BaWO<sub>4</sub> на треугольник составов.

новного вещества 99.0 мас. %). Температуры плавления исходных солей, кроме тугоплавких BaMoO<sub>4</sub> и BaWO<sub>4</sub>, определенные методом ДТА (при точности измерения  $\pm 2.5^{\circ}$ C) равны: NaBr – 747°C, BaBr<sub>2</sub> – 857°C, Na<sub>2</sub>WO<sub>4</sub> – 698°C, Na<sub>2</sub>MoO<sub>4</sub> – 688°C, т.е. влияние имеющихся примесей на температуры плавления исходных солей незначительно. Таким образом, были приняты литературные данные для всех солей [22, 23]. Исходные реактивы были предварительно высушены и после охлаждения в сухом боксе помещены в бюксы, а бюксы – в эксикатор с осушителем (силикагель).

Секущий треугольник (NaBr)<sub>2</sub>-BaMoO<sub>4</sub>-BaWO<sub>4</sub> экспериментально изучен методом ДТА. Проекция фазового комплекса на треугольник составов секущего треугольника (NaBr)<sub>2</sub>-BaMoO<sub>4</sub>-BaWO<sub>4</sub> представлена на рис. 3. Треугольник образован двумя квазибинарными системами эвтектического типа ((NaBr)<sub>2</sub>-BaMoO<sub>4</sub> и (NaBr)<sub>2</sub>-BaWO<sub>4</sub>) и двойной системой с непрерывным рядом твердых растворов (ВаМоО<sub>4</sub>-ВаWO<sub>4</sub>). Исследованием политермических разрезов AB (A [92% NaBr + 8% BaMoO<sub>4</sub>], B [92% NaBr + 8% BaWO<sub>4</sub>]) и NaBr  $\rightarrow$  $\rightarrow \overline{f} \rightarrow f$ , представленных на рис. 4 и 5 соответственно, выявлены температура плавления и состав сплава, соответствующего точке f (718°C, 90% (NaBr)<sub>2</sub> + 5% BaMoO<sub>4</sub> + 5% BaWO<sub>4</sub>), лежащей на моновариантной кривой  $e_8 e_9$ .

Для подтверждения состава твердых фаз был проведен рентгенофазовый анализ образца состава, соответствующего точке f (90% (NaBr)<sub>2</sub> + 5% BaMoO<sub>4</sub> + 5% BaWO<sub>4</sub>). Смесь из 0.8188 г NaBr, 0.0851 г BaMoO<sub>4</sub>, 0.0961 г BaWO<sub>4</sub> гомогенизировали в ацетоне, помещали в печь шахтного типа,



Рис. 4. *Т*-*х*-диаграмма политермического разрез АВ.



**Рис.** 5. T—*х*-диаграмма политермического разреза NaBr  $\rightarrow f \rightarrow f$ .



**Рис. 6.** Дифрактограмма сплава состава, соответствующего точке  $f(90\% \text{ NaBr} + 5\% \text{ BaMoO}_4 + 5\% \text{ BaWO}_4)$  (1 - NaBr,  $2 - \text{Ba}_{1-z}\text{Mo}_x\text{W}_{1-x}\text{O}_4$ ).

расплавляли, снижали температуру до 700°С и выдерживали в течение 2 ч. Дифрактограмма закаленного во льду образца показана на рис. 6, данные дифрактограммы приведены в табл. 5. В образце установлены следующие твердые фазы: NaBr, BaMo<sub>x</sub>W<sub>1 – x</sub>O<sub>4</sub>.

Стабильный тетраэдр (NaBr)<sub>2</sub>–BaBr<sub>2</sub>–BaMoO<sub>4</sub>– BaWO<sub>4</sub> исследован методом ДТА. Развертка граневых элементов стабильного тетраэдра представлена на рис. 7. Для экспериментального исследования стабильного тетраэдра в объеме кристаллизации бромида бария было выбрано двумерное политермическое сечение *abc* (*a* [22% (NaBr)<sub>2</sub> + 78% BaBr<sub>2</sub>]; *b* [22% BaMoO<sub>4</sub> + 78% BaBr<sub>2</sub>], *c* [22% BaWO<sub>4</sub> + 78% BaBr<sub>2</sub>), рис. 8. В данном сечении был изучен одномерный политермический разрез CD (C [96% *a* + 4% *b*]; D [96% *a* + + 4% *c*]), рис. 9. Исследованием серии политермических разрезов  $a \to \overline{\overline{d}} \to \overline{d}$  и BaBr<sub>2</sub>  $\to \overline{d} \to d$ (рис. 10, 11) выявлены температура плавления и состав сплава, соответствующий точке *d* (588°C, 35% (NaBr)<sub>2</sub> + 0.7% BaMoO<sub>4</sub> + 0.7% BaWO<sub>4</sub> + + 63.5% BaBr<sub>2</sub>), лежащей на моновариантной кривой  $E_2E_3$ .

## РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В исследуемой четырехкомпонентной взаимной системе  $Na^+, Ba^{2+} \| Br^-, MoO_4^{2-}, WO_4^{2-}$  тройные эвтектики образуются в двух смежных тройных взаимных системах:  $Na^+, Ba^{2+} \| Br^-, MoO_4^{2-}$  и  $Na^+, Ba^{2+} \| Br^-, WO_4^{2-}$ , а в двух тройных системах

Таблица 5. Данные рентгенограммы сплава состава, соответствующего точке f (90% NaBr + 5% BaMoO<sub>4</sub> + 5% BaWO<sub>4</sub>)

| Образец               |       | NaBr (1) |                       |                       | $BaMoO_4(2)$          |                       | $BaWO_4(2)$           |                       |
|-----------------------|-------|----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $d \times 10^{-1}$ нм | I, %  | фаза     | $d \times 10^{-1}$ нм |
| 3.62                  | 51.15 | (1)      | 3.441560              | 57                    |                       |                       |                       |                       |
| 3.36                  | 18.99 | (2)      |                       |                       | 3.357000              | 100                   | 3.367000              | 100                   |
| 2.96                  | 100   | (1)      | 2.980470              | 100                   |                       |                       |                       |                       |
| 2.79                  | 13.52 | (2)      |                       |                       | 2.789000              | 25                    | 2.805000              | 30                    |
| 2.87                  | 36.48 | (1)      | 2.980470              | 100                   |                       |                       |                       |                       |
| 2.10                  | 23.68 | (2)      |                       |                       | 2.104000              | 30                    | 2.104000              | 35                    |
| 1.72                  | 24.74 | (1)      | 1.797290              | 20                    |                       |                       |                       |                       |
| 1.71                  | 15.37 | (1)      | 1.720780              | 19                    |                       |                       |                       |                       |
| 1.49                  | 23.15 | (1)      | 1.490240              | 8                     |                       |                       |                       |                       |
| 1.36                  | 16.52 | (1)      | 1.367540              | 7                     |                       |                       |                       |                       |
| 1.33                  | 28.45 | (1)      | 1.332910              | 20                    |                       |                       |                       |                       |
| 1.22                  | 20.41 | (1)      | 1.216770              | 13                    |                       |                       |                       |                       |



**Рис.** 7. Развертка граневых элементов стабильного тетраэдра NaBr–BaBr<sub>2</sub>–BaMoO<sub>4</sub>–BaWO<sub>4</sub>.

Na<sup>+</sup>||Br<sup>-</sup>,MoO<sub>4</sub><sup>2-</sup>,WO<sub>4</sub><sup>2-</sup> и Ba<sup>2+</sup>||Br<sup>-</sup>,MoO<sub>4</sub><sup>2-</sup>,WO<sub>4</sub><sup>2-</sup> и в одной тройной взаимной системе Na<sup>+</sup>,Ba<sup>2+</sup>||MoO<sub>4</sub><sup>2-</sup>,WO<sub>4</sub><sup>2-</sup> образуются непрерывные ряды твердых растворов на основе молибдатов и вольфраматов натрия и бария. Это является условием отсутствия точек нонвариантных равновесий в четырехкомпонентной взаимной системе.

Разбиение на симплексы четырехкомпонентной взаимной системы Na<sup>+</sup>, Ba<sup>2+</sup>||Br<sup>-</sup>, MoO<sub>4</sub><sup>2-</sup>, WO<sub>4</sub><sup>2-</sup> конверсионным методом позволило построить древо фаз системы. Оно имеет линейное строение и состоит из стабильного тетраэдра и пентатопа, разделенных секущим треугольником. В стабильных и секущих элементах древа фаз присутствуют молибдаты и вольфраматы натрия и бария, которые имеют изоморфное строение и после расплавления образуют единую твердую фазу. Поэтому в стабильных элементах могут быть четыре варианта прогноза кристаллизующихся фаз.

Экспериментальные исследования, проведенные методами ДТА и РФА, подтвердили вариант прогноза кристаллизующихся фаз, который предполагает устойчивость твердых растворов на основе молибдата и вольфрамата бария. В секущем треугольнике (NaBr)<sub>2</sub>–BaMoO<sub>4</sub>–BaWO<sub>4</sub> фазовые равновесия исследованы методом ДТА. На T–x-диаграмме политермического разреза AB видно отсутствие эффектов, соответствующих третичной кристаллизации, что свидетельствует об отсутствии тройных точек нонвариантных равновесий и устойчивости HPTP BaMo<sub>x</sub>W<sub>1 – x</sub>O<sub>4</sub>. Линия первичной кристаллизации представлена



Рис. 8. Политермическое сечение abc.

в виде плавной кривой и соответствует кристаллизации из расплава бромида натрия. Линия вторичной кристаллизации представлена в виде "линзы" и соответствует совместной кристаллизации бромида натрия и твердых растворов на основе молибдата и вольфрамата бария. Фазовая диаграмма представлена следующими полями:



Рис. 9. *Т*-*х*-диаграмма политермического разреза CD.



**Рис. 10.** *Т*-*x*-диаграмма политермического разреза  $a \rightarrow \overline{d} \rightarrow \overline{d}$ .

выше линии ликвидуса – поле жидкости; между ликвидусом и "линзой" - поле совместного сосуществования жидкости и кристаллов бромида натрия; внутри линзы - поле совместного сосуществования жидкости и кристаллов бромида натрия и НРТР ВаМо<sub>x</sub>W<sub>1 – x</sub>O<sub>4</sub>; ниже солидуса ("линзы") - поле совместного сосуществования двух твердых фаз: NaBr и BaMo<sub>x</sub> $W_{1-x}O_4$ . Экспериментально определены координаты (температура плавления и состав) точки f, лежащей на моновариантной кривой  $e_8 e_9$ , установлено отсутствие экстремумов на T-x-диаграмме. Любому составу, соответствующему точке на моновариантной кривой  $e_8 e_9$ , соответствует фазовое равновесие ж  $\rightleftharpoons$  NaBr + BaMo<sub>x</sub>W<sub>1 − x</sub>O<sub>4</sub>. Проекция фазового комплекса квазитройной системы (NaBr)2-ВаМоО<sub>4</sub>-ВаWO<sub>4</sub> на треугольник составов представлена двумя полями: бромида натрия и НРТР  $BaMo_{x}W_{1-x}O_{4}$ . Наибольшее поле кристаллизации принадлежит фазе твердых растворов, так как их температуры плавления значительно выше температуры плавления бромида натрия. РФА также подтверждает наличие в треугольнике двух твердых фаз, одной из которых является НРТР  $BaMo_{r}W_{1-r}O_{4}$ . По данным [25], распад твердых растворов происходит при температуре 140 К для смеси с содержанием 0.5 мол. % ВаМоО<sub>4</sub> + 0.5 мол. % BaWO<sub>4</sub>. На дифрактограмме видно наличие рефлексов, соответствующих фазе бромида натрия и единой фазе НРТР, рефлексы находятся между значениями, соответствующими молибдату и вольфрамату бария (табл. 5).

Экспериментальное изучение стабильного тетраэдра (NaBr)<sub>2</sub>-BaBr<sub>2</sub>-BaMoO<sub>4</sub>-BaWO<sub>4</sub> мето-



**Рис. 11.** *Т*-*х*-диаграмма политермического разреза  $\operatorname{BaBr}_2 \to \overline{d} \to d.$ 

дом ДТА показало, что совместная кристаллизация четырех твердых фаз отсутствует, это свидетельствует об устойчивости НРТР на основе молибдата и вольфрамата бария и отсутствии четверных эвтектических точек. Т-х-диаграмма политермического разреза CD (рис. 11) представлена пятью полями: выше линии ликвидуса – однофазное поле жидкого состояния (ж), между линиями первичной и вторичной кристаллизации – двухфазное поле ж + BaBr<sub>2</sub>, между линиями вторичной и третичной кристаллизации - трехфазное поле ж + NaBr + BaBr<sub>2</sub>, внутри "линзы" - четырехфазное поле  $\mathbf{w}$  + NaBr + BaBr<sub>2</sub> + BaMo<sub>x</sub>W<sub>1-x</sub>O<sub>4</sub>, ниже линии солидуса - поле совместного существования трех твердых фаз: NaBr + BaBr<sub>2</sub> + + BaMo<sub>x</sub>W<sub>1 – x</sub>O<sub>4</sub>. Экспериментально выявлены температура плавления и состав точки d, лежащей на моновариантной кривой  $E_2E_4$ . Установлено, что на моновариантной кривой  $E_2 E_4$  отсутствуют экстремумы. Любому составу, соответствующему точке, лежащей на моновариантной кривой  $E_2E_3$ , + BaBr<sub>2</sub> + BaMo<sub>x</sub>W<sub>1-x</sub>O<sub>4</sub>. Эскиз объемов кристаллизации стабильного тетраэдра (NaBr)<sub>2</sub>-BaBr<sub>2</sub>- $BaMoO_4$ –BaWO<sub>4</sub> показан на рис. 12.

Экспериментальное исследование стабильного пентатопа не проводили. Исходя из данных, полученных при исследовании секущего треугольника (NaBr)<sub>2</sub>–BaMoO<sub>4</sub>–BaWO<sub>4</sub> и стабильного тетраэдра (NaBr)<sub>2</sub>–BaBr<sub>2</sub>–BaMoO<sub>4</sub>–BaWO<sub>4</sub>,



Рис. 12. Эскиз объемов кристаллизации стабильного тетраэдра NaBr–BaBr2–BaMoO4–BaWO4.

можно предположить, что точки нонвариантных равновесий в пентатопе отсутствуют.

## ЗАКЛЮЧЕНИЕ

В четырехкомпонентной взаимной системе из бромидов, молибдатов и вольфраматов натрия и бария проведено разбиение на симплексы на основе теории графов и построено древо фаз системы. Оно имеет линейное строение и состоит из стабильных тетраэдра и пентатопа, разделенных секущим треугольником. Для стабильных элементов древа фаз проведен прогноз числа и состава кристаллизующихся фаз. Для каждого элемента существует четыре варианта прогноза. В ходе экспериментального исследования секущего треугольника и стабильного тетраэдра методом ДТА установлено, что твердые растворы на основе молибдатов и вольфраматов бария являются устойчивыми и точки нонвариантных равновесий отсутствуют.

В ходе экспериментального исследования секущего треугольника (NaBr)<sub>2</sub>–BaMoO<sub>4</sub>–BaWO<sub>4</sub> выявлены температура плавления и состав сплава, соответствующего точке *f*, лежащей на моновариантной кривой, соединяющей двойные эвтектики на противоположных сторонах треугольника составов. Экспериментальное исследование образца состава точки *f* методом РФА подтвердило наличие в нем двух твердых фаз: бромида натрия и HPTP  $BaMo_xW_{1-x}O_4$ .

В результате экспериментального исследования стабильного тетраэдра  $(NaBr)_2-BaBr_2-BaMoO_4-BaWO_4$  выявлены температура плавления и состав сплава, отвечающий точке *d*, лежащей на моновариантной кривой, соединяющей тройные эвтектики на противоположных гранях стабильного тетраэдра. В тетраэдре имеются три твердые фазы: бромид натрия, бромид бария и HPTP BaMo<sub>x</sub>W<sub>1-x</sub>O<sub>4</sub>.

Поскольку в двух стабильных элементах четырехкомпонентной взаимной системы  $Na^+, Ba^{2+} ||Br^-, MoO_4^{2-}, WO_4^{2-}$  твердые растворы на основе молибдатов и вольфраматов натрия являются устойчивыми, следует предположить, что и в стабильном пентатопе (NaBr)<sub>2</sub>—Na<sub>2</sub>MoO<sub>4</sub>—Na<sub>2</sub>WO<sub>4</sub>—BaMoO<sub>4</sub>—BaWO<sub>4</sub> твердые растворы не распадаются. В пентатопе будут кристаллизоваться три твердые фазы: бромид натрия и HPTP Na<sub>2</sub>Mo<sub>4</sub>W<sub>1-x</sub>O<sub>4</sub> и Ba<sub>1-z</sub>Mo<sub>5</sub>W<sub>1-x</sub>O<sub>4</sub>.

#### ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Минобрнауки РФ в рамках проектной части государственного задания № 0778-2020-0005.

## КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

#### СПИСОК ЛИТЕРАТУРЫ

- Ashraf R., Shehzadi Z., Mahmood T. et al. // Phys. B: Cond. Matter. 2021. V. 621. P. 413309. https://doi.org/10.1016/j.physb.2021.413309
- Kinyaevskiy I.O., Koribut A.V., Grudtsyn Y.A.V. et al. // Laser Phys. Lett. 2020. V. 17. № 10. P. 105402. https://doi.org/10.1088/1612-202X/abb0eb
- Kowalkińska M., Zielińska-Jurek A., Głuchowski P. et al. // Russ. J. Phys. Chem. C. 2021. V. 125. № 46. P. 25497. https://doi.org/10.1021/acs.jpcc.1c06481
- 4. Sang S.H., Guo X.F., Zhang T.T. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 3. P. 374. https://doi.org/10.1134/S0036023621030141
- Mamedov F.M., Babanly D.M., Amiraslanov I.R. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 11. P. 1747. https://doi.org/10.1134/S0036023620110121
- Aliev I.I., Mamedova N.A., Sadygov F.M. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 10. P. 1585. https://doi.org/10.1134/S0036023620100010
- Asadov M.M., Akhmedova N.A., Mamedova S.R. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. P. 1061. https://doi.org/10.1134/S0036023620070013
- Soliev L. // Russ. J. Inorg. Chem. 2020. V. 65. № 2. P. 212. https://doi.org/10.1134/S0036023620020187

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 12 2022

- Danilov V.P., Frolova E.A., Kondakov D.F. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 9. P. 1165. https://doi.org/10.1134/S0036023619090067
- 10. *Mazunin S.A., Noskov M.N., Elsukov A.V.* // Russ. J. Inorg. Chem. 2019. V. 64. № 2. P. 257. https://doi.org/10.1134/S003602361902013X
- Rasulov A.I., Akhmedova P.A., Gamataeva B.Yu. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 1. P.135. https://doi.org/10.1134/S0036023619010169
- Kochkarov Z.A., Zhizhuev R.A., Kharaev A.M. // Russ. J. Inorg. Chem. 2019. V. 64. № 3. P. 393. https://doi.org/10.1134/S0036023619030112
- Kochkarov Z.A., Sokurova Z.A., Kochkarov Z.Z. // Russ. J. Inorg. Chem. 2018. V. 63. № 7. P. 944. https://doi.org/10.1134/S0036023618070094
- Cherkasov D.G., Danilina V.V., Il'in K.K. // Russ. J. Inorg. Chem. 2021. V.66. № 6. P. 883. https://doi.org/10.1134/S0036023621060073
- 15. Garkushin I.K., Ragrina M.S., Sukharenko M.A. // Russ. J. Inorg. Chem. 2018. V. 63. № 1. P. 98. https://doi.org/10.1134/S0036023618010084
- Likhacheva S.S., Egorova E.M., Garkushin I.K. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. P. 1047. https://doi.org/10.1134/S0036023620070141
- 17. Garkushin I.K., Burchakov A.V., Sukharenko M.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. P. 1398. https://doi.org/10.1134/S003602362009003X
- Garkushin I.K., Burchakov A.V., Emelyanova U.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. P. 1040. https://doi.org/10.1134/S0036023620070086
- Sukharenko M.A., Garkushin I.K., Zubkova A.V. // Inorg. Mater. 2021. V. 57. № 8. P. 811. https://doi.org/10.1134/S0020168521080148

- 20. Данилушкина Е.Г., Гаркушин И.К., Тарасова Н.С // Неорган. материалы. 2021. Т. 57. № 12. С. 1337. https://doi.org/10.31857/S0002337X21120046
- Sukharenko M.A., Garkushin I.K., Osipov V.T. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 10. P. 1527. https://doi.org/10.1134/S0036023621100181
- 22. Термические константы веществ. Вып. Х. Таблицы принятых значений: Li, Na / Под ред. Глушко В.П. М., 1981. 297 с.
- Термические константы веществ. Вып. IX. Таблицы принятых значений: Ве, Mg, Ca, Sr, Ba / Под ред. Глушко В.П. М., 1979. 574 с.
- 24. Оре О. Теория графов. М.: Наука, 1980. 336 с.
- 25. *Гетьман Е.И.* Изоморфные замещения в вольфраматных и молибдатных системах. Новосибирск: Изд-во CO AH CCCP, 1985. 147 с.
- Диаграммы плавкости солевых систем. Ч. III / Под ред. Посыпайко В.И., Алексеевой Е.А. М.: Металлургия, 1977. 204 с.
- Воскресенская Н.К., Евсеева Н.Н., Беруль С.И., Верещитина И.П., Справочник по плавкости систем из безводных неорганических солей / Т. 1. Двойные системы. М.-Л.: Изд-во АН СССР, 1961. 848 с.
- Диаграммы плавкости солевых систем. Тройные системы / Под ред. Посыпайко В.И., Алексеевой Е.А. М.: Химия, 1977. 328 с.
- 29. *Мощенский Ю.В.* Дифференциальный сканирующий колориметр ДСК-500 // Приборы и техника эксперимента. 2003. № 6. С. 143.
- Ковба Л.М. Рентгенография в неорганической химии. М.: Изд-во Моск. ун-та, 1991. 256 с.