ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 539.194

СПИНЗАВИСЯЩИЕ ВЗАИМОДЕЙСТВИЯ КЛАСТЕРОВ Fe₂O_n C МОЛЕКУЛАМИ H₂ и O₂

© 2022 г. К. В. Боженко^{а,} *, А. Н. Утенышев^а, Л. Г. Гуцев^а, С. М. Алдошин^а, Г. Л. Гуцев^b

^аИнститут проблем химической физики РАН, пр-т академика Н.Н. Семенова, 1, Черноголовка, 142432 Россия ^bФакультет физики, Флоридский университет А&М, Таллахасси, Флорида, 32307 США

> *e-mail: bogenko@icp.ac.ru Поступила в редакцию 08.07.2022 г. После доработки 01.08.2022 г. Принята к публикации 08.08.2022 г.

Расчеты геометрической и электронной структуры кластеров Fe₂O, Fe₂O₃, Fe₂O₅ и продуктов взаимодействия кластеров Fe₂O, Fe₂O₃, Fe₂O₅ с H₂ и O₂ в газовой фазе выполнены методом теории функционала плотности в приближении обобщенного градиента с использованием triple- ζ базиса. Найдены закономерности изменений энергий связи H₂ и O₂ в продуктах реакций Fe₂O_{2 n + 1} + O₂ и Fe₂O_{2n + 1} + H₂ (n = 0–2). Согласно результатам расчетов, исходный полный спиновый магнитный момент в реакции и Fe₂O₃ + H₂ \rightarrow Fe₂O₃H₂ не сохраняется, и антиферромагнитные состояния реагентов трансформируются в ферримагнитное состояние продукта реакции. Наоборот, присоединение H₂ к Fe₂O₅ (триплет) ведет к синглетному основному состоянию Fe₂O₅H₂. Рассчитанные активационные барьеры реакций Fe₂O_{2n + 1} + H₂ и Fe₂O₅H₂. Рассчитанные активационные барьеры реакций Fe₂O_{2n + 1} + H₂ и Fe₂O_{2n + 1} + H₂ и Fe₂O_{2n + 1} + H₂ и Fe₂O₅H₂.

Ключевые слова: кластеры оксидов железа, теория функционала плотности, барьеры реакций **DOI:** 10.31857/S0044457X22601109

ВВЕДЕНИЕ

Суперпарамагнитные наночастицы оксидов железа, используемые в такой области медицины, как тераностика, представляют большой интерес, поскольку они нетоксичны для человека и могут использоваться для адресной доставки противораковых препаратов [1]. Наночастицы соединяются соответствующими линкерами с антителами, которые восприимчивы к специфическим клеткам, после чего их движение в потоке крови может управляться магнитным полем. В настоящее время взаимодействие суперпарамагнитных наночастиц оксидов железа с окружающей средой мало изучено из-за сложности моделирования их магнитных свойств.

Адсорбция молекул на поверхности наночастицы может приводить к заметному изменению ее полного магнитного момента. Особый интерес представляют наночастицы оксидов переходных металлов, которые не имеют магнитного момента в основном состоянии и приобретают его при взаимодействии с определенными молекулами. Интересны наночастицы оксидов переходных металлов, которые изменяют магнитный момент при взаимодействии с определенными молекулами. Они также могут служить в качестве сенсоров для обнаружения данных молекул. Поскольку оксиды переходных металлов играют важную роль в различных биохимических, каталитических и технологических процессах, они являются предметом многочисленных исследований [2–5]. Теоретические исследования в основном проведены для сравнительно небольших кластеров оксидов железа, имеющих стехиометрический [6–9] или нестехиометрический [10–17] состав. В частности, в работе [18] изучена хемосорбция O_2 на малых кластерах оксидов железа, а работа [19] посвящена исследованию реакцион-

ной способности $Fe_2O_{4-6}^+$ по отношению к N_2 . В [20, 21] найдено, что СО может окисляться наночастицами Fe_2O_3 в отсутствие O_2 , а результаты расчетов реакции Fe_2O_3 с СО позволили понять механизмы реакции окисления СО до CO_2 [22].

В настоящей работе исследованы геометрическая и электронная структуры кластеров Fe_2O_3 , Fe_2O_3 и Fe_2O_5 в различных спиновых состояниях и продуктов их взаимодействия с молекулами H_2 и O_2 в газовой фазе. Расчеты проведены методом теории функционала плотности с использованием сравнительно большого базисного набора атомных функций. Определены геометрические структуры и спиновые мультиплетности основных энергетических состояний рассмотренных

O(4)

Fe(2)

0(1)

Рис. 1. Геометрии и локальные полные спиновые моменты основных состояний кластеров $Fe_2O(2S + 1 = 7)$, Fe_2O_3 (2S+1=1) и Fe₂O₅ (2S+1=3).

систем. Определена зависимость энергий взаимодействия молекул H₂ и O₂ от количества атомов кислорода в исходном кластере оксида железа.

0(1)

МЕТОДИКА РАСЧЕТОВ

Расчеты выполнены методом теории функционала плотности в обобщенном градиентном приближении (DFT-GGA) в программе GAUSS-IAN-09 [23] с использованием базиса 6-311+G* В качестве обменно-корреляционного [24]. функционала выбран функционал BPW91, состоящий из обмена по Беке [25] и корреляции по Пердью-Вангу [26]. Выбор этого функционала и базиса сделан на основе предыдущей оценки их эффективности в расчетах монооксидов 3d-металлов MO [27, 28] и диоксидов MO₂ (M = Sc - Zn) [29], где было найдено хорошее согласие между экспериментальными данными и результатами расчетов другими методами, учитывающими энергию электронной корреляции. Результаты расчетов в приближении BPW91/6-311+G* для

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

ализованного в NBO программе [37].

O(6)

O(2)

хорошо воспроизводят экспериментальные дан-

ные. Следует отметить, что расчеты методом ВРW91 надежно воспроизводят результаты расчетов методом CCSD(T) для кластеров $(TiO_2)_n$ [31],

(CrO₃), [32] и FeO₂ [33]. Рассчитанные методом BPW91 энергии атомизации и энергии связи кла-

стеров (MO₃)_{*n*} (M = Cr, Мо и W; n = 1-4) [34] ока-

зались точнее результатов, полученных с исполь-

зованием других теорий функционала плотности

 Fe_2O , Fe_2O_3 , Fe_2O_5 и соединений, образующихся

после их взаимодействия с H₂ и O₂, заключалась в

следующем. Для каждого кластера генерировали

вероятные геометрические структуры и выполня-

ли полную оптимизацию состояний с этими гео-

метриями для всех возможных значений спино-

вой мультиплетности. Состояние с наименьшей

полной энергией принимали за основное для

данного кластера. Локальные полные спиновые

моменты на атомах рассчитывали с использова-

нием базиса натуральных атомных орбиталей, ре-

Логика поиска основных состояний кластеров

Геометрические структуры и спиновые мультиплетности основных состояний кластеров Fe_2O , Fe_2O_3 и Fe_2O_5 , полученные в предыдущей работе [38], приведены на рис. 1 и 2 соответственно. Отметим, что экспериментальная оценка связи атомов кислорода находится в пределах 103.8-126.8 ккал/моль [39].

Как видно из рис. 1, основное состояние Fe_2O является септетом, однако синглетное антиферромагнитное состояние выше по энергии всего лишь на 0.69 ккал/моль (рис. 2). Расчеты с большим базисом не изменили порядка следования состояний $Fe_2O c 2S + 1 = 1$ и 2S + 1 = 7. Близость

Fe(2)

12.92

1790

[35, 36].

Fe(3)

Рис. 3. Геометрии основных состояний продуктов взаимодействия Fe_2O_n с молекулой H_2 : Fe_2OH_2 (2S + 1 = 7), $Fe_2O_3H_2$ (2S + 1 = 7) и $Fe_2O_5H_2$ (2S + 1 = 1).

по энергии этих состояний может быть связана со сверхобменом между атомами железа посредством мостикового атома кислорода. Основное состояние Fe₂O₃ является антиферромагнитным синглетом, тогда как основным состоянием кластера Fe₂O₅ является триплетное ферримагнитное состояние. Таким образом, добавление атомов кислорода к молекуле Fe₂, основное состояние которой является ферромагнитным септетом ⁷ Δ_u , гасит полный спиновый момент основного состояния S = 3 полностью в Fe₂O₃ и до S = 1 в Fe₂O₅, тогда как добавление единственного атома кислорода к Fe₂ не ведет к изменению этого момента.

В триплетном состоянии кластера Fe₂O₅ локальный полный спиновый момент атома железа Fe(1), который координирован четырьмя атомами кислорода, равен -0.61 магнетона Бора ($\mu_{\rm B}$) и направлен антипараллельно локальному полному спиновому моменту на атоме Fe(4), равному 2.51 $\mu_{\rm B}$ (рис. 1). Это различие в величине спиновых моментов можно объяснить различной координацией атомами кислорода. Действительно, в кластере Fe₂O атомы железа координированы единственным атомом кислорода, и локальные полные спиновые моменты атомов железа одинаковы по величине. В кластере Fe₂O₃ атомы железа Fe(2) и Fe(3) координированы двумя и тремя атомами кислорода, соответственно, и различие в их магнитных моментах составляет 0.3 µ_в. Увеличение координации атомов железа тремя и четырьмя атомами ведет к различию в магнитных моментах в 1.9 µ_в.

Как видно из рис. 2, синглетное антиферромагнитное состояние кластера Fe_2O_3 ниже по полной энергии ферримагнитного триплетного и ферромагнитного септетного состояний этого кластера всего на 2.8 и 4.1 ккал/моль соответственно.

Геометрические структуры, отвечающие основным состояниям продуктов взаимодействия

кластеров Fe_2O , Fe_2O_3 и Fe_2O_5 с двухатомными молекулами H₂ и Fe₂O₅ с O₂ в газовой фазе, приведены на рис. 3 и 4. Отметим, что геометрия основного состояния кластера Fe₂O₇ содержит фрагмент О₂, что отличает продукт взаимодействия Fe₂O₅ с O₂ от остальных рассмотренных продуктов взаимодействия Fe_2O и Fe_2O_3 с молекулой O_2 , а также всех продуктов взаимодействия Fe₂O, Fe₂O₃ и Fe₂O₅ с молекулой H₂. Симметричная геометрическая структура полученного основного состояния Fe₂O₇ отличается от геометрии этого кластера, полученной в [40]. Синглетное состояние с геометрией из [40], оптимизированное с использованием метода BPW91/6-311+G*, оказалось больше по полной энергии на 23.7 ккал/моль, чем состояние со структурой, представленной на рис. 4.

Полные энергии основных состояний Fe_2OH_2 , $Fe_2O_3H_2$ и $Fe_2O_5H_2$ приведены на рис. 5 как функции спиновой мультиплетности.

С целью нахождения путей реакций ведущих к диссоциации молекул водорода и кислорода на кластерах оксида железа использовали процедуру градиентного поиска переходных состояний, реализованную в Gaussian-09 с последующим при-

Рис. 4. Геометрия основного состояния кластера $Fe_2O_7(2S+1=1)$ являющегося продукта взаимодействия $Fe_2O_5(2S+1=3)$ с молекулой O_2 .

Таблица 1. Энергии связи (ккал/моль) молекул H₂ и O₂ с оксидами железа в основных состояниях продуктов реакций Fe₂O_{2n + 1} + O₂ и Fe₂O_{2n + 1} + H₂ (n = 0-2)

Параметр	$\operatorname{Fe}_2\operatorname{O}_{2n+1}\operatorname{O}_2$			$Fe_2O_{2n+1}H_2$		
2 <i>S</i> + 1	1	1	1	7	1	1
Энергия	111.4	68.2	11.0	11.9	35.7	38.6

менением процедуры IRC, которая позволяет определить исходное и конечное состояния, переход между которыми осуществляется через данное переходное состояния.

Рис. 5. Полные энергии (ккал/моль) продуктов взаимодействия Fe_2O_n с молекулой H_2 как функции спиновой мультиплетности. Полные энергии даны по отношению к полным энергиям основных состояний соответствующих кластеров.

Для реакции $Fe_2O_3 + H_2 \rightarrow Fe_2O_3H_2$ наблюдается переход от антиферромагнитного синглетного состояния реагента к ферромагнитному состоянию продукта. Полный спиновый магнитный момент продукта этой реакции равен 6 μ_B , тогда как сумма полных спиновых магнитных моментов основных состояний реагентов Fe_2O_3 и H_2 равна нулю. Таким образом, эта реакция ведет к кардинальному изменению полного спинового момента реагентов.

В реакции Fe₂O₅ + H₂ \rightarrow Fe₂O₅H₂, наоборот, присоединение H₂ (2S + 1 = 1) к Fe₂O₅ (2S + 1 = 3) ведет к синглетному основному состоянию продукта реакции. Таким образом, результаты расчетов позволяют утверждать, что наночастицы на основе кластеров Fe₂O₃ и Fe₂O₅ могут быть использованы в качестве сенсоров для обнаружения молекул водорода при условии, что они сохранят свойства изменения полного магнитного момента при взаимодействиях с молекулами водорода.

В табл. 1 приведены энергии связи молекул O_2 и H_2 с кластерами оксидов железа в основных состояниях $Fe_2O_{2n+1}O_2$ и $Fe_2O_{2n+1}H_2$. Как видно, энергия связи $Fe_2O_{2n+1}-O_2$ уменьшается с увеличением размера кластера, тогда как в ряду $Fe_2O_{2n+1}-H_2$ наблюдается обратная тенденция. Если в первом случае энергия связи уменьшается от 111.4 до 11 ккал/моль, то во втором случае энергия связи возрастает от 11.9 до 38.6 ккал/моль.

Для оценки энергий активации реакций молекул H_2 и O_2 с оксидами железа рассчитали высоту барьеров для нескольких реакций. На рис. 6 приведена типичная кривая потенциальной энергии

Рис. 6. Потенциальная кривая реакции Fe₂O₅ + H₂ → Fe₂O₅H₂ полученная с использованием процедуры IRC и соответствующая переходу из начального триплетного состояния в синглетное конечное состояние реакционной системы.

на пути реакций.

вационных барьеров для реакций $Fe_2O_{2n+1} + H_2$ и $Fe_2O_{2n+1} + O_2$ сравнительно малы, что свидетельствуют об отсутствии значительных препятствий

БЛАГОДАРНОСТЬ

Авторы выражают благодарность Суперкомпьютерному центру Воронежского государственного университета за возможность выполнения расчетов на суперкомпьютере по теме данной работы.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в соответствии с государственным заданием АААА-А19-119111390022-2 для Института проблем химической физики РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов в финансовой или какой-либо иной сфере.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Gobbo O.L., Sjaastad K., Radomski M.W. et al.* // Theranostics. 2015. V. 5. № 11. P. 1249. https://doi.org/10.7150/thno.11544
- 2. *Cox P.A.* Transition Metal Oxides. Oxford: Clarendon, 1992.
- 3. *Rao C.N., Raveau B.* Transition Metal Oxides. New York: Wiley, 1998.
- Gong Yu., Mingfei Z., Andrews L. // Chem. Rev. 2009. V. 109. P. 6765.
- Fernando A., Weerawardene K.L.D.M., Karimova N.V., Aikens C.M. // Chem. Rev. 2015. V. 115. P. 6112.
- Jones N.O., Reddy B.V., Rasouli F, Khanna S.N. // Phys. Rev. B: Condens. Matter Mater. Phys. 2006. V. 73. P. 119901. https://doi.org/10.1103/PhysRevB.73.119901
- de Oliveira O.V., de Pires J.M., Neto A.C., dos Santos J.D. // Chem. Phys. Lett. 2015. V. 634. P. 25.
- Gutsev G.L., Weatherford C.A., Jena P. et al. // Chem. Phys. Lett. 2013. V. 556. P. 211. https://doi.org/10.1016/j.cplett.2012.11.054
- Ju M., Lv J., Kuang X.-Y. et al. // RSC Adv. 2015. V. 5. P. 6560.
- López S., Romero A.H., Mejna-López J. et al. // Phys. Rev. B: Condens. Matter Mater. Phys. 2009. V. 80. P. 085107. https://doi.org/10.1103/PhysRevB.80.085107
- Palotás K., Andriotis A.N., Lappas A. // Phys. Rev. B: Condens. Matter Mater. Phys. 2010. V. 81. P. 075403. https://doi.org/10.1103/PhysRevB.81.075403
- Logemann R., de Wijs G.A., Katsnelson M.I., Kirilyuk A. // Phys. Rev. B: Condens. Matter Mater. Phys. 2015. V. 92. P. 144427. https://doi.org/10.1103/PhysRevB.92.144427

для реакции $Fe_2O_5 + H_2 \rightarrow Fe_2O_5H_2$ для триплетного состояния реакционной системы. поскольку основное состояние кластера Fe₂O₅ триплетное. Олнако основное состояние пролукта этой реакции – синглетное. Поэтому здесь должны происходить изменения спиновой мультиплетности. Согласно экспериментальным данным, время магнитной релаксации (~100 фс), значительно меньшее времени протекания самой реакции [41]. Теоретические расчеты показывают, что источником такого быстрого перемагничивания являются спин-орбитальные взаимодействия [42, 43]. Реакция $Fe_2O_5 + H_2 \rightarrow Fe_2O_5H_2$ имеет малый активационный барьер в 8.6 ккал/моль (рис. 6), и после его прохождения происходит релаксация в основное состояние продукта реакции Fe₂O₅H₂.

Активационные барьеры, полученные с использованием процедуры IRC, в реакциях кластеров оксидов железа с молекулой водорода при увеличении количества кислорода в оксиде меняются следующим образом: $Fe_2O + H_2$ (31.2 ккал/моль), $Fe_2O_3 + H_2$ (32.9 ккал/моль) и $Fe_2O_5 + H_2$ (8.6 ккал/моль). Следовательно, происходит резкое уменьшение высоты барьера при увеличении содержания кислорода в кластере. В реакциях с молекулой кислорода имеет место противоположная тенденция. Для реакций $Fe_2O + O_2$ и $Fe_2O_3 + O_2$ высота барьера составляет 11.8 и 15.5 ккал/моль соответственно.

ЗАКЛЮЧЕНИЕ

Выполнены расчеты геометрической и электронной структуры кластеров Fe₂O, Fe₂O₃, Fe₂O₅ и продуктов их реакций с молекулами Н₂ и О₂ для всех возможных значений спиновой мультиплетности от 2S + 1 = 1 до 2S + 1 = 7. Расчеты выполнены методом BPW91 теории функционала плотности с использованием базиса 6-311+G* tripleкачества. Найдено, что в реакциях $Fe_2O_3 + O_2 \rightarrow$ \rightarrow Fe₂O₅ и Fe₂O₅ + H₂ \rightarrow Fe₂O₅H₂ начальные полные спиновые магнитные моменты не сохраняются и происходит переход от антиферромагнитного состояния реагентов к ферримагнитному состоянию продуктов в первом случае и к антиферромагнитному во втором. Такое переключение полного спинового магнитного момента продуктов реакции двух реагентов является крайне необычным. Свойство изменения магнитных моментов кластеров оксидов железа при их взаимодействии с H₂ может быть использовано при моделировании химического состав сенсоров для обнаружения молекул водорода. Аналогично можно ожидать, что наночастицы оксидов железа с магнитными свойствами, похожими на таковые у кластеров Fe_2O_3 и Fe_2O_5 , могли бы быть использованы при создании сенсоров для обнаружения молекул кислорода. Полученные величины акти-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 12 2022

- Gutsev G.L., Belay K.G., Gutsev L.G., Ramachandran B.R. // J. Comput. Chem. 2016. V. 37. P. 2527. https://doi.org/10.1002/jcc.24478
- 14. Xue W., Wang Z.-C., He S.-G., Xie Y. // J. Am. Chem. Soc. 2008. V. 130. P. 15879.
- 15. Xie Y., Dong F., Heinbuch S. et al. // J. Chem. Phys. 2009. V. 130. P. 114306.
- 16. Weichman M.L., DeVine J.A., Neumark D.M. // J. Chem. Phys. 2016. V. 145. P. 054302. https://doi.org/10.1063/1.4960176
- Gutsev G.L., Belay K.G., Gutsev L.G. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 4546. https://doi.org/10.1039/C7CP08224J
- Roy D.R., Roblesand R., Khanna S.N. // J. Chem. Phys. 2010. V. 32. P. 194305. https://doi.org/10.1063/1.3425879
- Xue W., Yin S., Ding X.-L. et al. // J. Phys. Chem. A. 2009. V. 113. P. 5302.
- Li P., Miser D.E., Rabiei S. et al. // Appl. Catal. B. 2003.
 V. 43. P. 151. https://doi.org/10.1016/S0926-3373(02)00297-7
- Khedr M.H., Abdel Halim K.S., Nasr M.I. et al. // Mater. Sci. Eng. A. 2006. V. 430. P. 40. https://doi.org/10.1016/j.msea.2006.05.119
- 22. *Reddy B.V., Rasouli F., Hajaligol M.R., Khanna S.N. //* Chem. Phys. Lett. 2004. V. 384. P. 242. https://doi.org/10.1016/j.cplett.2003.12.023
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision C.01. Gaussian, Inc. Wallingford CT, 2009.
- 24. Curtiss L.A., McGrath M.P., Blaudeau J.-P. et al. // J. Chem. Phys.1995. V. 103. P. 6104. https://doi.org/10.1063/1.470438
- 25. Becke A.D. // Phys. Rev. A.1988. V. 38. P. 3098. https://doi.org/10.1103/PhysRevA.38.3098
- 26. Perdew J.P., Wang Y. // Phys. Rev. B.1992. V. 45. P. 13244. https://doi.org/10.1103/PhysRevB.45.13244
- Gutsev G.L., Andrews L., Bauschlicher C.W. // Theor. Chem. Acc. 2003. V. 109. P. 298. . https://doi.org/10.1007/s00214-003-0428-4
- 28. Gutsev G.L., Rao B.K., Jena P. // J. Phys. Chem. A. 2000. V. 104. P. 5374.

- Gutsev G.L., Rao B.K., Jena P. // J. Phys. Chem. A. 2000. V. 104. P. 11961. https://doi.org/10.1021/jp002252s
- Gutsev G.L., Bauschlicher C.W. Jr., Zhai H.-J., Wang L.-S. // J. Chem. Phys. 2003. V. 119. P. 11135. https://doi.org/10.1063/1.1621856
- 31. *Li S., Dixon D.A.* // J. Phys. Chem. A. 2008. V. 112. P. 6646.
- Zhai H.-J., Li S., Dixon D.A., Wang L.-S. // J. Am. Chem. Soc. 2008. V. 130. P. 5167. https://doi.org/10.1021/ja077984d
- Grein F. // Int. J. Quantum. Chem. 2009. V. 109. P. 549. https://doi.org/10.1002/qua.21855
- Li S., Jamie M., Hennigan, et al. // J. Phys. Chem. A. 2009. V. 113. P. 7861. https://doi.org/10.1021/jp810182a
- 35. Yang K., Zheng J., Zhao Y., Truhlar D.G. // J. Chem. Phys. 2010. V. 132. P. 164117. https://doi.org/10.1063/1.3382342
- 36. Gutsev G., Bozhenko K., Gutsev L. et al. // J. Comp. Chem. 2019. V. 40. P. 562. https://doi.org/10.1002/jcc.25739
- Glendening E.D., Reed A.E., Carpenter J.E., Weinhold F. // NBO Version 3.1. California 92717.
- Gutsev G.L., Bozhenko K.V., Gutsev L.G., Utenyshev A.N. Aldoshin S.M. // J. Phys. Chem. A 2018. V. 122. P. 5644. https://doi.org/10.1021/acs.jpca.8b03496
- Li M., Liu S.-R., Armentrout, P. B.// J. Chem. Phys. 2006. V. 131. P. 144310. https://doi.org/10.1063/1.3246840
- 40. Wang Z., Liang Y., Yang Y., Shen X. // Chem. Phys. Lett. 2018. V. 705. P. 59. https://doi.org//10.1016/j.cplett.2018.05.045
- 41. Garcia J.M., Shaffer R.E., Sayres S. G. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 24624.
- Elliott P., Singh N., Krieger K., Gross E.K.U., Sharma S., Dewhurst J.K. // J. Magn. Magn. Mater. 2020. V. 502. P. 166473.
- 43. Zheng Z., Zheng Q., Zhao J. // Phys. Rev. B. 2022. V. 105 P. 085142.