_____ НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ ____ И НАНОМАТЕРИАЛЫ

УДК 544-971

ИСПАРЕНИЕ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА КЕРАМИКИ НА ОСНОВЕ СИСТЕМЫ SrO–Al₂O₃ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ

© 2022 г. В. Л. Столярова^{*a*, *}, С. И. Лопатин^{*a*, *b*}, А. А. Селютин^{*a*}, В. А. Ворожцов^{*a*, *b*}, С. М. Шугуров^{*a*}

^аСанкт-Петербургский государственный университет, Университетская набережная, 7–9, Санкт-Петербург, 199034 Россия

^bИнститут химии силикатов им. И.В. Гребенщикова РАН, набережная Адмирала Макарова, 2, Санкт-Петербург, 199034 Россия *e-mail: v.stolyarova@spbu.ru Поступила в редакцию 07.07.2022 г.

После доработки 28.07.2022 г. Принята к публикации 29.07.2022 г.

Методом высокотемпературной дифференциальной масс-спектрометрии изучены процессы испарения и термодинамические свойства керамики на основе системы $SrO-Al_2O_3$, содержащей 33.3, 20 и 10 мол. % оксида стронция. При температурах 2450 и 2550 К определены состав и парциальные давления молекулярных форм пара над исследуемой системой, а также значения активностей компонентов, энергий Гиббса образования из оксидов и избыточных энергий Гиббса. Установлено, что в рассматриваемой системе наблюдаются значительные отрицательные отклонения от идеальности в изученном температурном интервале.

Ключевые слова: испарение, термодинамические свойства, высокотемпературная масс-спектрометрия, система оксид стронция—оксид алюминия **DOI:** 10.31857/S0044457X22601110

введение

В настоящее время на основе системы SrO-Al₂O₃ продолжается поиск новых многокомпонентных стеклокерамических материалов для электроники [1], радиопрозрачной керамики для авиатехники [2-4], высокотемпературных композитных материалов [1, 5], химически стойких барьерных покрытий (Environmental Barrier Coating – EBC) [6], ситаллов [7], а также нового класса функциональных материалов для устройства локализации расплава активной зоны ядерного реактора [8]. Однако технология получения стронциевой керамики требует высоких температур спекания до 1773 К [4] и, как следствие, дополнительной информации о процессах испарения. Отсутствие экспериментальных данных о процессах испарения и термодинамических свойствах системы SrO-Al₂O₃ не позволяет однозначно выбрать оптимальные условия синтеза и эксплуатации материалов на ее основе, а также модельные подходы для описания фазовых равновесий в рассматриваемой системе [9]. Таким образом, как однозначно следует из вышеизложенного, восполнение пробела в изучении термодинамических свойств и процессов испарения в системе SrO-Al₂O₃ при высоких температурах чрезвычайно актуально для дальнейшего моделирования и предсказания высокотемпературного поведения многокомпонентных систем на ее основе для различных высокотемпературных приложений в современном материаловедении.

Ранее методом высокотемпературной массспектрометрии были определены величины стандартных энтальпий образования соединений, образующихся в системе SrO–Al₂O₃ [10]. Отмечено [10], что найденные значения термодинамических свойств соединений в исследуемой системе находились в соответствии с результатами, полученными с привлечением других экспериментальных подходов [11–16].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы системы SrO–Al₂O₃, содержащие 10, 20 и 33 мол. % оксида стронция, получали методом твердофазного синтеза. Стехиометрическую смесь оксида алюминия со структурой γ -Al₂O₃ и карбоната стронция перетирали в агатовой ступке в течение 1 ч. Карбонат стронция и оксид алюминия предварительно прокаливали в течение 5 ч при 1073 и 573 К соответственно. Полученную шихту прессовали в таблетки в ручной пресс-

Таблица 1. Количественный фазовый состав синтезированных образцов системы SrO–Al₂O₃ по данным рентгенофазового анализа (мол. %)

SrO, мол. %	Фаза									
	SrAl ₁₂ O ₁₉	α -Al ₂ O ₃	SrAl ₂ O ₄							
10	78	22	_							
20	72	_	28							
33	78	—	22							

форме из органического стекла. Таблетки в открытом корундовом тигле помещали в высокотемпературную печь. Температурный режим прокаливания был следующим: подъем температуры до 1723 К за 5 ч с дальнейшей выдержкой при 1723 К в течение 10 ч. Далее образцы остужали в печи до комнатной температуры в течение 10 ч. После прокаливания производили перешихтовку. Затем спеченные таблетки вновь перетирали в порошок в агатовой ступке в течение 20 мин. Шихтование и прокаливание образцов проводили 5 раз. Суммарное прокаливание осуществляли в течение 50 ч при температуре 1723 К. Заключительное прокаливание проводили при 1823 К, причем образцы в платиновых закрытых тиглях помещали в предварительно разогретую печь и выдерживали при постоянной температуре в течение 2 ч с последующим охлаждением образцов в режиме закалки на воздухе при комнатной температуре.

Полученные образцы идентифицировали методом рентгенофазового анализа на дифрактометре Bruker D2 Phaser с медным катодом (Cu $K_{\alpha 1,2}$ -излучение, напряжение 30 кB). Ширина шага сканирования составляла 0.0202°. Расчет количественного состава проводили с использованием базы ICDD PDF-2/Release 2011 в программе Topas.

Синтезированные образцы идентифицировали также методом рентгенофлуоресцентного анализа на энергодисперсионном рентгенофлуоресцентном спектрометре серии EDX 800 HS (Shimadzu). Анализ проводили в вакууме в диапазоне характеристических линий излучений элементов от углерода до урана.

ТГА/ДСК-анализ полученных образцов был выполнен на приборе синхронного термического анализа Netzsch STA 449 F3 Jupiter в интервале температур 293–1828 К в атмосфере воздуха.

Процессы испарения и термодинамические свойства образцов системы SrO–Al₂O₃ изучали методом высокотемпературной масс-спектрометрии на масс-спектрометре MC-1301. Испарение образцов, содержащих 10, 20 и 33 мол. % SrO, проводили из сдвоенной однотемпературной камеры Кнудсена, изготовленной из вольфрама.

Камеру с образцами нагревали электронной бомбардировкой. В один из отсеков эффузионной камеры загружали изучаемый образец, а во второй образец сравнения, которым служил карбонат стронция. Температуру измеряли оптическим пирометром ЭОП-66 с точностью ±10 К в интервале температур 1400-2500 К. Ионизацию молекул, эффундирующих из эффузионной камеры Кнудсена. проводили методом электронной ионизации. Энергия ионизирующих электронов составляла 30 эВ. Парциальное давление молекулярных форм пара над системой определяли методом сравнения ионных токов, как и в работе [10]. В качестве стандарта парциального давления было выбрано серебро, рекомендованное для этих целей ИЮПАК [17]. Используемая аппаратура в целом предварительно была откалибрована по давлению пара CaF₂ [18].

Отличительной особенностью настоящей работы явились впервые изученные процессы испарения образцов исследуемой системы $SrO-Al_2O_3$ в зависимости от времени в диапазоне температур 2450—2550 К, а также определение зависимостей парциальных давлений молекулярных форм пара над рассматриваемой системой от температуры. Это позволило реализовать возможности метода полного изотермического испарения для определения значений термодинамических свойств системы $SrO-Al_2O_3$ и впервые получить значения энтальпий испарения молекулярных форм пара над исследуемой системой.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

С использованием метода Ритвельда проведен анализ дифрактограмм синтезированных образцов, полученных методом рентгенофазового анализа. Это позволило определить качественный и количественный фазовый состав изученных образцов. В составе образца с содержанием оксида стронция 10 мол. % идентифицированы фазы SrAl₁₂O₁₉ (194, *P*6₃/*mmc*, ICDD PDF-2/Release 2011, № 01-080-1195) и α -Al₂O₃ (167, *R*3*c*, hexagonal, ICDD PDF-2/Release 2011, № 01-071-3646), в образцах с содержанием оксида стронция 20 и 33 мол. % — фазы SrAl₁₂O₁₉ и SrAl₂O₄ (4, *P*1211, ипіque-b, ICDD PDF-2/Release 2011, № 01-076-7488). Рассчитанный фазовый состав полученных образцов приведен в табл. 1.

Определение химического состава образцов системы $SrO-Al_2O_3$ выполнено методом рентгенофлуоресцентного анализа. Полученные результаты приведены в табл. 2.

Термогравиметрический анализ образцов системы $SrO-Al_2O_3$ показал практически полное отсутствие эффекта изменения массы во всем изученном интервале температур вплоть до 1673 К. Итоговое изменение массы образцов составило

~1% по отношению к исходной массе (табл. 3). На зависимостях, полученных методом ДСК, наблюдается плавное повышение значений теплового потока начиная с температуры 1473 К для образцов, содержащих 10 и 20 мол. % SrO, и 1673 К для образца, содержащего 33 мол. % SrO. Следует отметить, что эти изменения крайне малы, причем на полученных кривых отсутствуют максимумы или минимумы, свидетельствующие о протекании каких-либо экзотермических или эндотермических реакций. Таким образом, можно заключить, что до температуры 1673 К не наблюдается протекания процессов, связанных с какойлибо заметной потерей массы образцов. Отмеченное в экспериментах увеличение теплового потока при высоких температурах может быть связано, по-видимому, с плавным изменением теплоемкости образцов при нагревании.

Испарение SrO. В масс-спектре пара над SrCO₃ в интервале температур 1000–1300 К идентифи-

цированы ионы CO_2^+ , характеризующие удаление углекислого газа и превращение карбоната в оксид стронция. При более высоких температурах в интервале 1700—1900 К в масс-спектре пара над SrO найдены следующие ионы: Sr⁺, WO₃⁺ и WO₂⁺. Для определения молекулярных предшественников ионов в масс-спектре пара над SrO были измерены энергии появления указанных выше ионов методом исчезающего ионного тока. В качестве стандарта выбрано серебро с энергией ионизации 7.54 эВ [19]. Найденная величина энергии появления иона Sr⁺, равная 5.8 \pm 0.2 эВ, в пределах погрешности измерений совпадает с энергией ионизации атомарного стронция [19]. Энергии появления ионов WO₃⁺ и WO₂⁺ не изме-

энергии появления ионов wO_3 и wO_2 не измеряли из-за низкой интенсивности их ионных токов. Анализ масс-спектра пара над SrO и результаты определения энергии появления иона Sr⁺ однозначно свидетельствуют о том, что оксид стронция переходит в пар, диссоциируя на атомарный стронций и кислород по уравнению:

$$\operatorname{SrO}(\kappa p) = \operatorname{Sr}(\operatorname{ras}) + \operatorname{O}(\operatorname{ras}).$$
 (1)

В результате определения температурных зависимостей интенсивностей ионного тока Sr⁺ в масс-спектре пара над SrO в интервале температур 1698—1904 К с использованием серебра в качестве внутреннего стандарта парциального давления пара найдена зависимость парциального давления атомарного стронция от температуры над оксидом стронция:

$$lgp(Sr,\Pi a) = -\frac{18242 \pm 586}{T} + (10.56 \pm 0.33).$$
 (2)

Система SrO–Al₂O₃. В масс-спектре пара над образцами системы SrO–Al₂O₃, начиная с температуры 2400 K, найдены следующие ионы: Sr⁺,

Таблица 2. Состав образцов системы SrO–Al₂O₃ по данным рентгенофлуоресцентного анализа (мол. %)

Состав	10 мол. % SrO	20 мол. % SrO	33 мол. % SrO
SrO	9.85 ± 0.23	19.94 ± 0.31	33.15 ± 0.27
Al ₂ O ₃	90.15 ± 0.16	80.06 ± 0.18	66.85 ± 0.15

Таблица 3. Итоговое изменение массы изученных образцов по данным термогравиметрического анализа

Параметр	33 мол. % SrO	20 мол. % SrO	10 мол. % SrO
Δm	-0.93%	-1.20%	-0.93%

 Al^+ , AlO^+ и Al_2O^+ . Энергии появления этих ионов равны соответственно (±0.3 эВ): 5.8 (Sr⁺), 6.2 (Al⁺), 9.6 (AlO⁺), 7.8 (Al₂O⁺) и в пределах погрешности измерений совпадают с величинами энергии ионизации соответствующих нейтральных частиц [19]. Именно этот факт однозначно свидетельствует о протекании процессов прямой ионизации следующих газообразных атомов и молекул: Sr, Al, AlO и Al₂O. Анализ масс-спектров пара над изученными образцами системы SrO-Al₂O₃, а также измеренные значения энергий появления ионов в масс-спектрах пара подтвердили, что SrO испаряется из образцов системы SrO-Al₂O₃ в соответствии с уравнением (1), а Al₂O₃ из исследованных образцов переходит в пар согласно следующим соотношениям:

$$Al_2O_3(\kappa p) = 2Al(ra_3) + 3O(ra_3),$$
 (3)

$$Al_2O_3(\kappa p) = 2AlO(ra3) + O(ra3), \qquad (4)$$

$$Al_2O_3(\kappa p) = Al_2O(ra3) + 2O(ra3).$$
 (5)

Измерение зависимости парциальных давлений атомарных стронция и алюминия, а также AlO и Al₂O от времени испарения образцов, содержащих 33 и 20 мол. % SrO, выполнено при температурах 2450 и 2550 К, а образца, содержащего 10 мол. % SrO, – только при 2550 К. Парциальные давления молекулярных форм пара определены методом сравнения ионных токов с использованием серебра в качестве внутреннего стандарта парциального давления пара [17]:

$$p_i = p_{st} \frac{I_i T_i \sigma_{st} \gamma_{st}}{I_{st} T_{st} \sigma_i \gamma_i},$$
(6)

где p_i — парциальное давление молекулярной формы пара i; I_i — интенсивность ионного тока иона i в масс-спектре пара над исследуемым образцом, усл. ед.; σ_i — поперечное сечение ионизации соответствующей газообразной молекулы i; γ_i — коэффициент конверсии вторично-электронного умножителя, равный $1/\sqrt{M_i}$, где M_i —

Рис. 1. Зависимость парциальных давлений молекулярных форм пара над образцом системы SrO-Al₂O₃, содержащим 33 мол. % SrO, от времени испарения при поэтапном изменении температуры.

молярная масса иона *i*. Индексы *i* и st относятся к образцу и стандарту парциального давления пара соответственно. Атомные сечения ионизации соответствующих газообразных атомов взяты согласно [20]. При определении парциальных давлений молекулярных форм пара были приняты во внимание рекомендации по определению сечений ионизации газообразных молекул [21]. Следует отметить, что в настоящей работе парциальное давление атомарного кислорода экспериментально не было определено из-за значительного фонового сигнала на m/z = 16, а найдено по уравнению, предложенному ранее [22]:

$$p(O) = p(Sr)\sqrt{\frac{M(O)}{M(Sr)}} + 1.5p(Al)\sqrt{\frac{M(O)}{M(Al)}} + 0.5p(AlO)\sqrt{\frac{M(O)}{M(AlO)}} + 2p(Al_2O)\sqrt{\frac{M(O)}{M(Al_2O)}}.$$
(7)

В результате изотермической выдержки при 2450 и 2550 К образца исследуемой системы, содержащего 33 мол. % SrO, было установлено, что в паре преобладающими формами являются атомарные стронций и кислород. Ввиду того, что летучести оксидов стронция и алюминия значительно различаются [23], по мере протекания опыта наблюдалось преимущественное испарение оксида стронция из образца. При этом парциальное давление атомарного стронция уменьшалось, а парциальные давления атомарного алюминия, AlO и Al₂O постепенно повышались. После понижения интенсивности ионного тока Sr⁺ до уровня фона при температуре 2550 К проводили дальнейшее поэтапное повышение температуры для полного испарения остатка исследуемого образца. Зависимость парциальных давлений молекулярных форм пара над образцом системы SrO-Al₂O₃, содержащим 33 мол. % SrO, от времени испарения при поэтапном изменении температуры приведена на рис. 1.

Определение зависимостей интенсивности ионных токов молекулярных ионов Sr^+ , Al^+ , AlO^+ и Al_2O^+ от температуры и парциальных давлений молекулярных форм пара позволило получить следующие температурные зависимости парциальных давлений атомарных стронция и алюминия, а также AlO и Al₂O (табл. 4):

$$\lg p(\Pi a) = -\frac{A \pm \Delta A}{T} + (B \pm \Delta B).$$
(8)

Применение сдвоенной однотемпературной эффузионной камеры Кнудсена, имеющей механизм перемещения, в условиях одного и того же высокотемпературного масс-спектрометрического эксперимента, согласно [23], позволяет определить активность компонента, в частности SrO в образцах системы SrO-Al₂O₃:

$$a(\text{SrO}) = \frac{p(\text{SrO})}{p_0(\text{SrO})} = \frac{p^2(\text{Sr})}{p_0^2(\text{Sr})},$$
(9)

где *р* и *p*₀ – парциальные давления атомарного стронция над образцом системы SrO-Al₂O₃ и индивидуальным оксидом стронция соответствен-

Таблица 4. Коэффициенты А и В температурных зависимостей парциальных давлений атомарных стронция и алюминия, а также AlO и Al₂O (Па) над изученными образцами системы $SrO-Al_2O_3$

$\lg p(\Pi a) = -\frac{1}{T} + (B \pm \Delta B)$												
сос обра мол	тав азца, 1. %	темпера- турный					В					
SrO	Al ₂ O ₃	интервал, к	Sr	Al	AlO	Al ₂ O	Sr	Al	AlO	Al ₂ O		
33.0	67.0	2229-2563	24294 ± 1113	39042 ± 2082	34043 ± 685	33702 ± 2880	10.26 ± 0.47	15.72 ± 0.85	13.18 ± 0.28	13.02 ± 1.16		
20.0	80.0	2380-2646	26705 ± 2438	39815 ± 1694	39064 ± 1797	39038 ± 1318	10.26 ± 0.97	15.85 ± 0.67	14.95 ± 0.71	14.69 ± 0.52		
10.0	90.0	2424-2762	24525 ± 726	33010 ± 4344	34265 ± 1398	32465 ± 1685	8.92 ± 0.38	13.81 ± 1.14	13.04 ± 0.49	12.56 ± 0.55		

 $A \pm \Delta A + (\mathbf{p} + \mathbf{A}\mathbf{p})$ $la n(\Pi a) =$

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ 2022 том 67 № 12

Таблица 5. Парциальные давления молекулярных форм пара над образцами системы SrO–Al₂O₃, активности компонентов, значения энергий Гиббса образования из оксидов и избыточных энергий Гиббса в зависимости от состава образца при температуре 2450 К

Исходный состав, мол. д.	Состав, мол. д.			Π	арциаль	ное дав	ление, 1	Активность компонента		$-\Delta G, -\Delta G$	$-\Delta G^{\rm E}$,	
	SrO	Al ₂ O ₃	1, К	Sr	Al	AlO	Al ₂ O	Ο	$rom SrO \times 10^7$	Al ₂ O ₃	ОЛЬ	кдж/м оль
0.33 SrO-0.67 Al ₂ O ₃	0.331	0.669	2446	0.56	0.12	0.03	0.03	0.41	2.58	0.41	114.3	101.3
	0.301	0.699	2444	0.59	0.19	0.06	0.06	0.53	2.94	0.47	102.9	90.4
	0.248	0.752	2458	0.44	0.34	0.10	0.08	0.69	1.37	0.67	86.1	74.6
	0.197	0.803	2454	0.30	0.34	0.10	0.08	0.63	0.64	0.83	69.4	59.3
	0.128	0.872	2474	0.11	0.27	0.07	0.06	0.44	6×10^2	1.00	49.7	41.3
0.20 SrO-0.80 Al ₂ O ₃	0.200	0.800	2470	0.23	1.76	0.11	0.03	2.24	0.20	0.78	76.1	72.1
	0.151	0.849	2474	0.17	2.71	0.22	0.03	3.43	0.11	0.85	59.0	56.2
	0.144	0.856	2474	0.16	2.71	0.22	0.02	3.42	0.10	0.86	56.6	54.0
	0.139	0.861	2477	0.16	2.71	0.22	0.02	3.43	0.09	0.86	55.0	52.4
	0.129	0.871	2480	0.13	2.50	0.15	0.02	3.09	0.06	0.87	52.0	49.5

но. Как отмечено выше, переход в пар индивидуального оксида стронция протекает при более низкой температуре по сравнению с индивидуальным оксидом алюминия [23]. В связи с этим величины активностей оксила стронция в исследуемой системе были определены следующим образом. В один из отсеков сдвоенной однотемпературной камеры Кнудсена был загружен исследуемый образец системы SrO-Al₂O₃, а в другой (сравнительный) – в качестве стандарта индивидуальный SrO. Парциальные давления атомарного стронция над SrO и изученными образцами исследуемой системы значительно отличались. В связи с этим сначала была найдена зависимость парциального давления стронция над индивидуальным оксидом стронция, а затем после повышения температуры определены парциальные давления молекулярных форм пара над исследуемым образцом.

Поскольку определение парциальных давлений молекулярных форм пара над изучаемой системой было выполнено для области гомогенного расплава согласно имеющимся фазовым диаграммам системы SrO–Al₂O₃ [12, 24–26], активности Al₂O₃ были найдены по уравнению Гиббса–Дюгема:

$$\ln a(\operatorname{Al}_{2}\operatorname{O}_{3}) = -\int_{\ln a^{0}(\operatorname{SrO})}^{\ln a(\operatorname{SrO})} \frac{x(\operatorname{SrO})}{x(\operatorname{Al}_{2}\operatorname{O}_{3})} d\ln a(\operatorname{SrO}). \quad (10)$$

Полученные таким образом значения термодинамических свойств системы $SrO-Al_2O_3$ при температурах 2450 и 2550 К приведены соответственно в табл. 5 и 6. Энергии Гиббса образования из оксидов и избыточные энергии Гиббса в системе SrO–Al₂O₃ найдены согласно известным соотношениям:

$$\Delta G = \operatorname{RT} \sum x_i \ln a_i, \tag{11}$$

$$\Delta G^{E} = \operatorname{RT} \sum x_{i} \ln \gamma_{i}, \qquad (12)$$

где x_i — мольная доля *i*-го компонента в исследуемом расплаве, a_i — величина активности *i*-го компонента, γ_i — коэффициент активности *i*-го компонента. Полученные величины энергии Гиббса и избыточные энергии Гиббса в системе SrO— Al₂O₃ приведены при температурах 2450 и 2550 K соответственно в табл. 5 и 6, а также на рис. 2.

Следует отметить, что данные, приведенные в табл. 5 и 6, а также на рис. 2, однозначно свидетельствуют о том, что в изученном концентрационном интервале системы $SrO-Al_2O_3$ наблюдаются значительные отрицательные отклонения от идеальности. При повышении температуры от 2450 до 2550 К степень отклонения от идеальности увеличивается, свидетельствуя о большей гомогенизации расплава. В области концентраций оксида стронция от 2 до 10 мол. % термодинамические свойства исследуемой системы в интервале 2450–2550 К в пределах погрешности определения найденных значений практически не зависят от температуры.

Необходимо подчеркнуть, что определенные в настоящей работе значения активности SrO в расплавах системы SrO–Al₂O₃, содержащих 10.0– 33.3 мол. % SrO, в значительной степени отличаются от данных, опубликованных ранее [10]. Это связано с методическими особенностями проведения высокотемпературного масс-спектромет-

Исходный состав, мол. д.	Состав, мол. д.		TV	Пар	циалы	ное дан	вление,	, Па	Активность компонента		$-\Delta G$,	$-\Delta G^{\mathrm{E}},$
	SrO	Al ₂ O ₃	1, К	Sr	Al	AlO	Al ₂ O	0	$rom{SrO} \times 10^7$	Al ₂ O ₃	кДж/моль	кДж/моль
0.33 SrO-0.67 Al ₂ O ₃	0.321	0.679	2483	1.68	0.41	0.17	0.21	1.43	4.49	0.11	140.0	114.8
	0.301	0.699	2538	2.95	1.33	0.41	0.38	3.30	3.56	0.12	136.1	112.4
	0.249	0.751	2544	1.81	1.65	0.45	0.23	3.18	1.23	0.17	111.8	99.8
	0.202	0.798	2547	1.07	1.81	0.45	0.13	3.02	0.41	0.22	97.8	87.0
	0.150	0.850	2537	0.56	1.80	0.36	0.07	2.69	0.13	0.26	81.8	72.8
	0.100	0.900	2558	0.19	1.18	0.27	0.02	1.72	0.01	0.49	57.1	50.1
0.20 SrO-0.80 Al ₂ O ₃	0.199	0.801	2525	0.36	0.52	0.15	0.18	0.95	0.23	0.53	82.0	72.4
	0.149	0.851	2570	0.28	0.84	0.21	0.28	1.39	0.08	0.89	60.9	53.6
	0.141	0.859	2547	0.21	0.74	0.18	0.25	1.20	0.06	0.97	57.1	50.5
0.10 SrO-0.90 Al ₂ O ₃	0.100	0.900	2513	0.11	3.51	0.23	0.37	4.45	0.04	0.83	44.4	37.4
	0.049	0.951	2553	0.08	4.66	0.32	0.59	5.90	0.01	1.00	20.4	16.1
	0.015	0.985	2552	0.02	3.73	0.21	0.44	4.65	0.01	1.00	6.3	4.5

Таблица 6. Парциальные давления молекулярных форм пара над образцами системы SrO–Al₂O₃, активности компонентов, значения энергий Гиббса образования из оксидов и избыточных энергий Гиббса в зависимости от состава образца при температуре 2550 К

рического эксперимента. В работе [10] в образцах системы $SrO-Al_2O_3$ с низким содержанием оксида стронция интенсивность ионного тока Sr^+ в масс-спектрах пара сначала измерялась над изучаемой системой, а затем осуществлялся переход на сравнительный отсек эффузионной камеры, в котором находился индивидуальный оксид

стронция. Температуры, при которых были выполнены измерения, значительно превышали 2000 К. В этих условиях могло протекать полное испарение индивидуального SrO в сравнительном отсеке эффузионной камеры, следствием этого, по-видимому, было наличие в камере сравнения лишь остатков оксида стронция и измерение давления его ненасыщенного пара. По-види-

Рис. 2. Зависимости энергий Гиббса образования из оксидов и избыточных энергий Гиббса в системе SrO–Al₂O₃ при температурах 2450 и 2550 K ($1 - \Delta G$, 2450 K; $2 - \Delta G^{E}$, 2450 K; $3 - \Delta G$, 2550 K; $4 - \Delta G^{E}$, 2550 K).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 12 2022

мому, именно эта причина привела к значительным погрешностям в определении активностей SrO системы $SrO-Al_2O_3$ в опубликованной ранее работе [10].

Таким образом, полученные в настоящей работе значения термодинамических свойств системы $SrO-Al_2O_3$ при высоких температурах могут быть рекомендованы для дальнейшей оптимизации фазовой диаграммы системы [12, 24–26] в рамках подхода CALPHAD по аналогии, например, с работой [9].

ЗАКЛЮЧЕНИЕ

Методом твердофазного синтеза получены образцы системы SrO-Al₂O₃, содержащие 33, 20 и 10 мол. % оксида стронция. Идентификация образцов проведена с использованием методов рентгенофазового и рентгенофлуоресцентного анализа. Процессы испарения образцов исследуемой системы изучены методом высокотемпературной дифференциальной масс-спектрометрии. Образцы испаряли из сдвоенной однотемпературной эффузионной камеры Кнудсена, нагреваемой электронной бомбардировкой. Температуру измеряли оптическим пирометром ЭОП-66. Идентифицирован состав пара и определены парциальные давления молекулярных форм пара нал изученной системой. а также активности компонентов и значения энергий Гиббса образования из оксидов и избыточных энергий Гиббса в системе $SrO-Al_2O_3$ при температурах 2450 и 2550 К. Установлено, что в системе SrO-Al₂O₃ при содержании оксида стронция от 5 до 33 мол. % наблюдаются значительные отрицательные отклонения от идеальности.

БЛАГОДАРНОСТЬ

Авторы выражают благодарность Криогенному отделу Научного парка Санкт-Петербургского государственного университета за бесперебойную подачу жидкого азота. Определение фазового состава образцов выполнено на оборудовании ресурсного центра "Рентгенодифракционные методы исследования", синхронный термический анализ выполнен в РЦ "Термогравиметрические и калориметрические методы исследования", элементный анализ – в РЦ "Инновационные технологии композитных наноматериалов" Научного парка Санкт-Петербургского государственного университета.

Авторы признательны В.И. Альмяшеву и С.А. Кирилловой за предварительный анализ образцов системы SrO–Al₂O₃ методом PCMA.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена за счет средств гранта Министерства науки и высшего образования РФ № 075-15-2021-1383 "Физико-химическое описание высокотемпературных процессов в многокомпонентных системах для извлечения и утилизации цезия и стронция при ликвидации последствий тяжелых аварий на атомных электростанциях (INES-7)".

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Sarkisov P.D., Orlova L.A., Popovich N.V. et al. // Glass Ceram. 2013. V. 69. № 9–10. P. 306. https://doi.org/10.1007/s10717-013-9468-y
- Lisachuk G.V., Kryvobok R.V., Zakharov A.V. et al. // Funct. Mater. 2016. V. 23. № 1. P. 71. https://doi.org/10.15407/fm23.01.071
- 3. *Lisachuk G.V., Kryvobok R.V., Dajneko K.B. et al.* // Przegląd Elektrotechniczny. 2017. V. 93. № 3. P. 79. https://doi.org/10.15199/48.2017.03.19
- 4. *Lisachuk G.V., Kryvobok R.V., Zakharov A.V. et al.* // Eastern-European J. Enterp. Technol. 2017. V. 85. P. 10.

https://doi.org/15587/1729-4061.2017.91110

- 5. *Sung Y.-M., Park J.S.* // J. Mater Sci. 1999.V. 34. № 23. P. 5803.
- https://doi.org/10.1023/A:1004714403083
- 6. *Zhang C., Zhang F, Cao W.S. et al.* // Intermetallics. 2010. V. 18. № 8. P. 1419. https://doi.org/10.1016/J.INTERMET.2010.01.032
- 7. Саркисов П.Д., Орлова Л.А., Попович Н.В. и др. Современное состояние в области технологии и производства ситаллов на основе алюмосиликатных систем. Стеклообразование, кристаллизация и формообразование при получении стронций-анортитовых и цельзиановых ситаллов // Все материалы. Энциклопедический справочник. 2011. № 8. С. 17. https://www.elibrary.ru/item.asp?id=16754551
- Гусаров В.В., Альмяшев В.И., Хабенский В.Б. и др. // Рос. хим. журн. 2005. Т. 49. № 4. С. 42.
- Vorozhtcov V.A., Yurchenko D.A., Almjashev V.I. et al. // Glass Phys. Chem. 2021. V. 47. № 5. Р. 417. [Ворожцов В.А., Юрченко Д.А., Альмяшев В.И. и др. // Физика и химия стекла. 2021. Т. 47. № 5. С. 504.] https://doi.org/10.1134/S1087659621050175
- Lopatin S.I., Shugurov S.M., Tyurnina N.G. et al. // Rapid Commun. Mass Spectrom. 2022. V. 36. № 12. P. 9298. https://doi.org/10.1002/rcm.9298
- Термические константы веществ. Справочник в 10-ти выпусках / Под ред. Глушко В.П. М.: ВИНИТИ ИВТ АН СССР, 1979. Вып. 9. 574 с. https://www.elibrary.ru/item.asp?id=18867942
- Ye X.Y., Zhuang W.D., Wang J.F. et al. // J. Phase Equil. Diffus. 2007. V. 28. № 4. P. 362. https://doi.org/10.1007/s11669-007-9086-x

- 13. Brisi C., Abbattista F. // Ann. Chimica. 1960. V. 50. P. 165.
- 14. *Корогодская А.Н., Шабанова Г.Н.* // Збірник наукових праць ПАТ "УКРНДІ Вогнетривів ім. А.С. Бережного". 2012. № 112. С. 208.
- Barin I. Thermochemical Data of Pure Substances. Weinheim: VCH Verlagsgesellschaft mbH. 1995. 1885 p. https://doi.org/10.1002/9783527619825
- Бабушкин В.И., Матвеев Г.М., Мчедлов-Петросян О.П. Термодинамика силикатов / Под ред. Мчедлова-Петросяна Н.О. М.: Стройиздат, 1986. 408 с.
- Paule R.C., Mandel J. // Pure Appl. Chem. 1972. V. 31. № 3. P. 397.
 - https://doi.org/10.1351/pac197231030395
- Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. Справочное издание / Отв. ред. Глушко В.П. М.: Наука, 1981. Т. III. Кн. 2. 400 с.
- 19. Lias S.G., Bartmess J.E., Liebman J.F. et al. // J. Phys. Chem. Ref. Data. Monogr. 1988. V. 17. Suppl. 1. P. 1.

- 20. *Mann J.B.* // J. Chem. Phys. 1967. V. 46. № 5. P. 1646. https://doi.org/10.1063/1.1840917
- 21. Drowart J., Chatillon C., Hastie J. et al. // Pure Appl. Chem. 2005. V. 77. № 4. P. 683. https://doi.org/10.1351/PAC200577040683
- Zeifert P.L. Measurement of vapor pressure of refractories // High Temperature Technology / Ed. Kempbell I.E. N.Y.: John Wiley, 1956. P. 485.
- 23. *Казенас Е.К., Цветков Ю.В.* Испарение оксидов. М.: Наука, 1997. 543 с.
- 24. Ганиц Ф., Чемекова Т.Ю., Удалов Ю.П. // Журн. неорган. химии. 1979. Т. 24. № 2. С. 471.
- 25. Song Y.K., Choi S.K., Moon H.S. et al. // Mater. Res. Bull. 1997. V. 32. № 3. P. 337. https://doi.org/10.1016/S0025-5408(96)00192-4
- Makrovets L.A., Samoilova O.V., Bakin I.V. // Defect and Diffusion Forum. 2021. V. 410. P. 725. https://doi.org/10.4028/www.scientific.net/DDF.410.725