— КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ

УДК 546.271

СИНТЕЗ И СТРОЕНИЕ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ МЕДИ(I) [Cu₂[B₁₀H₁₀]] И ТАЛЛИЯ(I) Tl₂[B₁₀H₁₀] С *клозо*-ДЕКАБОРАТНЫМ АНИОНОМ

© 2022 г. В. В. Авдеева^{*a*, *}, А. С. Кубасов^{*a*}, С. Е. Короленко^{*a*}, Л. В. Гоева^{*a*}, Е. А. Малинина^{*a*}, Н. Т. Кузнецов^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: avdeeva.varvara@mail.ru

Поступила в редакцию 02.11.2021 г. После доработки 21.12.2021 г. Принята к публикации 22.12.2021 г.

Синтезированы безводные комплексы меди(I) и таллия(I) общей формулы $[M_2[B_{10}H_{10}]]$. Соединения идентифицированы методами ИК-спектроскопии и РСА. Согласно данным РСА, структура соединений представляет собой трехмерный каркас. В комплексе меди(I) $[Cu_2[B_{10}H_{10}]]$ наблюдается образование трехцентровых связей М–Н–В, в соединении таллия(I) $Tl_2[B_{10}H_{10}]$ связь между катионами и анионами ионная, что подтверждается данными ИК-спектроскопии. Для идентификации и анализа внутримолекулярных взаимодействий выполнен анализ поверхности Хиршфельда кластерного аниона бора для обоих соединений.

Ключевые слова: кластерные анионы бора, комплексообразование, трехмерный каркас **DOI:** 10.31857/S0044457X22050026

введение

Кластерные анионы бора $[B_nH_n]^{2-}$ [1-5] образуют самостоятельную область химии бора, которая находится на стыке координационной, неорганической, органической и элементоорганической химии. Этот класс координационных соединений может участвовать в реакциях замещения терминальных атомов водорода на различные функциональные группы с образованием большого числа замещенных производных [6–9], а также образует комплексные соединения металлов с внутрисферными кластерными анионами бора или их замещенными производными [10–15].

Среди огромного разнообразия комплексных соединений металлов с кластерными анионами бора безводные комплексы вида $[M_{x}[B_{n}H_{n}]]$ (М – атом металла, x = 1 (для металлов в степени окисления +2) или 2 (для металлов в степени окисления +1; $[B_nH_n]$ – кластерный анион бора или его замещенное производное) весьма немногочисленны. Первый комплекс подобного рода, комплекс меди(I) с клозо-декаборатным анионом [Cu₂[B₁₀H₁₀]],, получен в 1962 г. [16, 17] при взаимодействии ацетата меди(II) с солями клозо-декаборатного аниона в воде. Комплекс $[Cu_2[B_{10}H_{10}]]_n$ – первое соединение, в котором предположено, что связь металла с клозо-бороводородным анионом реализуется благодаря трехцентровым двухэлектронным взаимодействиям CuHB. Отметим, что автор данной работы Уильям Нанн Липскомб был награжден в 1976 г. Нобелевской премией по химии "за исследование структуры боранов, выявляющее проблему образования химических связей".

Синтезированные позднее комплексы металлов с кластерными анионами бора подтвердили, что именно этот способ связывания металла с борным кластером наиболее распространен в комплексных соединениях металлов с координированными кластерными анионами бора.

Аналогичный комплекс меди(I) с клозо-додекаборатным анионом $[B_{12}H_{12}]^{2-}$ получен при термической обработке аквакомплекса меди(II) с клозододекаборатным анионом [Cu(H₂O)₆][B₁₂H₁₂] [18]. Соединение [Си₂[B₁₂H₁₂]]_n представляет собой трехмерный каркас. Теми же авторами при термической обработке аквакомплексов кобальта(II) и никеля(II) с клозо-додекаборатным анионом $[M(H_2O)_6][B_{12}H_{12}]$ получены безводные комплексы кобальта(II) и никеля(II) $[M[B_{12}H_{12}]]_n$ (M = Co, Ni) [18]. Соединения построены из бесконечных цепей М-[В₁₂H₁₂]-М. Термическая обработка комплексов марганца(II) [Mn(EtOH)₆][B₁₂H₁₂] и железа(II) [Fe(MeOH)₆][B₁₂H₁₂], содержащих шесть молекул спирта, привела к получению безводных структур $[M[B_{12}H_{12}]]_n$ (M = Mn, Fe), которые имеют различное строение [18]. Комплекс железа(II), так же как и описанные выше комплексы кобальта и никеля, построен из бесконечных цепей М-[B₁₂H₁₂]-М, тогда как комплекс марганца

583

[Mn[B₁₂H₁₂]]_n имеет слоистую структуру, образованную трехъядерными кластерами марганца Mn₃, которые связаны между собой кластерными анионами бора.

В работе [19] рассмотрены синтез и свойства солей таллия(I) с анионами [B₁₀H₁₀]²⁻ и [B₁₂H₁₂]²⁻, полученных при взаимодействии соответствуюших клозо-бороводородных кислот с гидроксидом таллия(I). Сравнительный анализ ИК-спектров и физико-химических свойств двух соединений позволил авторам высказать предположение о различном характере связывания в соединениях $Tl_2[B_{10}H_{10}]$ и $Tl_2[B_{12}H_{12}]$. В соединении $Tl_2[B_{12}H_{12}]$ связь между атомом Tl(I) и анионом $[B_{12}H_{12}]^{2-}$ носит практически ионный характер. В аналогичном соединении с клозо-декаборатным анионом в связи Tl(I)—анион $[B_{10}H_{10}]^{2-}$ присутствует значительная доля ковалентной составляющей. Авторы делают вывод, что атом Tl(I) связан с вершинными атомами бора в анионе, однако вопрос об участии атомов водорода во взаимодействии не обсуждается.

Позднее в работах [20, 21] при взаимодействии $(H_3O)_2[B_{12}H_{12}]$ с карбонатом Tl_2CO_3 получено соединение $Tl_2[B_{12}H_{12}]$, строение которого установлено методом РСА. Это соединение изоструктурно $M_2[B_{12}H_{12}]$ ($M = K^+$, Cs^+ , Rb^+) [22, 23]. Атомы таллия находятся в тетраэдрических пустотах между четырьмя анионами $[B_{12}H_{12}]^{2-}$, т.е. двенадцать атомов водорода четырех треугольных граней ВВВ анионов $[B_{12}H_{12}]^{2-}$ образуют практически совершенную кубооктаэдрическую координационную сферу вокруг каждого атома таллия, расстояния Tl-H составляют 2.956 Å.

Безводные комплексы получены также для замещенных производных кластерных анионов бора. Комплекс никеля [Ni[B₁₂Cl₁₂]] получен при нагревании аквакомплекса [Ni(H₂O)₆][B₁₂Cl₁₂] · · 6H₂O при температуре >450°C [24]. Установлено, что при повышении температуры аквакомплекс никеля теряет кристаллизационные и сольватные молекулы воды с образованием безводного соединения [Ni[B₁₂Cl₁₂]].

Описан синтез комплексов серебра(I) $[Ag_2[B_{10}H_{10}]]$ [25, 26] и $[Ag_2[B_{12}H_{12}]]$ [27]. Соединения образуются при взаимодействии нитрата серебра с солями кластерных анионов бора и мгновенно выводятся из водных растворов с выходом, близким к количественному. Комплексы идентифицированы методами элементного анализа и ИК-спектроскопии. Структура соединений методом РСА не изучена.

При проведении аналогичной реакции с декахлор-*клозо*-декаборатным анионом в результате длительного упаривания раствора, содержащего AgNO₃ и $K_2[B_{10}Cl_{10}]$, получен комплекс $[Ag_2[B_{10}Cl_{10}]]_n$ [14]. Методом РСА установлено, что атом серебра(I) координирует три кластерных аниона бора хелатным способом с образованием октаэдра $AgCl_6$ с расстояниями Ag-Cl 2.706(1)-2.893(1) Å. Каждый кластерный анион взаимодействует с шестью атомами металла, четыре из них координируют один апикальный и один экваториальный атомы хлора, а два атома серебра взаимодействуют с двумя экваториальными атомами хлора.

Для додекахлор-*клозо*-додекаборатного аниона был синтезирован аналогичный комплекс $[Ag_2[B_{12}Cl_{12}]]_n$ [28]. Каждый анион $[B_{12}Cl_{12}]^{2-}$ координируется двумя атомами хлора к атому серебра, что приводит к шестикоординационному окружению атома серебра с искаженной октаэдрической геометрией. Длины связей Ag-Cl (2.83–2.85 Å) в данном комплексе сравнимы с длинами связей в AgCl (2.77 Å) и в различных соединениях серебра с хлорированными карборановыми анионами. В соединениях $[Ag_2[B_{10}Cl_{10}]]$ и $[Ag_2[B_{12}Cl_{12}]]$ атом серебра находится в октаэдрическом окружении, а кластерный анион бора связан с шестью атомами металла, но строение трехмерного каркаса в структурах различно.

В настоящей работе уточнена структура известного полимерного комплекса $[Cu_2[B_{10}H_{10}]]_n$ и синтезирован аналогичный комплекс таллия $Tl_2[B_{10}H_{10}]$, проведено сравнение структур соединений, изучены особенности координации кластерного аниона бора и обсуждена природа связей металла с кластером бора, образующихся в структурах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Декагидро-клозо-декаборат триэтиламмония $(Et_3NH)_2[B_{10}H_{10}]$ синтезировали из декаборана-14 через стадию образования 1,6-бис(триэтил-амин)декаборана согласно методике, описанной в работе [29]. клозо-Декаборат натрия получали кипячением $(Et_3NH)_2[B_{10}H_{10}]$ в водном растворе гидроксида натрия до полного удаления триэтиламина.

Синтез $[Cu_2[B_{10}H_{10}]]_n$ (I). К водному раствору сульфата меди(II) (20 мл) приливали раствор Na₂[B₁₀H₁₀] в воде (10 мл). Наблюдали образование мелкокристаллического осадка. Выход по бору 41%. Кристалл, подходящий для PCA, выбран непосредственно из реакционного раствора.

ИК-спектр (см⁻¹): 2565, 2539, 2512, 2144.

	Н	В	Cu
Найдено для I, %:	4.03;	43.79;	51.32.
Для Cu ₂ B ₁₀ H ₁₀ , %			
Вычислено:	4.11;	44.08;	51.82.

Соединение	Ι	II
Брутто-формула	$B_{10}H_{10}Cu_2$	B ₁₀ H ₁₀ Tl ₂
Μ	245.26	526.92
Т, К	150	297
Сингония	Орторомбическая	Моноклинная
Пр. гр.	Pbca	$P2_1/n$
a, Å	11.3547(12)	7.0283(10)
b, Å	10.0587(11)	11.0848(10)
<i>c</i> , Å	14.4589(15)	12.7739(10)
β, град	90	94.922(10)
<i>V</i> , Å ³	1651.4(3)	991.51(18)
Ζ	8	4
$ \rho_{\text{расч}}, r/cм^3 $	1.973	3.530
μ, мм ⁻¹	5.054	32.384
<i>F</i> (000)	944.0	888.0
Излучение, λ, Å	$MoK_{\alpha} (\lambda = 0.71073)$	$MoK_{\alpha} (\lambda = 0.71073)$
Число измеренных отражений	13750	1379
Число независимых отражений	2395 [$R_{\text{int}} = 0.0543, R_{\text{sigma}} = 0.0423$]	1265 [$R_{\text{int}} = 0.0429, R_{\text{sigma}} = 0.1218$]
GOOF по F^2	1.019	1.081
<i>R</i> ₁ , <i>wR</i> ₂ по <i>N</i> ₀	$R_1 = 0.0307, wR_2 = 0.0680$	$R_1 = 0.0840, wR_2 = 0.2131$
<i>R</i> ₁ , <i>wR</i> ₂ по <i>N</i>	$R_1 = 0.0485, wR_2 = 0.0750$	$R_1 = 0.1643, wR_2 = 0.2539$

Таблица 1. Основные кристаллографические данные, параметры эксперимента и уточнения структур І и ІІ

Синтез $Tl_2[B_{10}H_{10}]$ (II). К раствору $(Et_3NH)_2[B_{10}H_{10}]$ (1 ммоль) в воде (10 мл) добавляли раствор TlNO₃ (2 ммоль) в воде. В течение недели наблюдали образование бесцветных кристаллов. Кристаллы отфильтровывали и высушивали на воздухе. Выход 67%.

ИК-спектр (см⁻¹): 2523, 2458.

	Н	В	T1
Найдено для II, %:	2.03;	20.44;	76.69.
Для Tl ₂ B ₁₀ H ₁₀ , %			
Вычислено:	1.91;	20.52;	77.57.

Элементный анализ проводили на автоматическом газовом анализаторе CHNS-3 FA 1108 Elemental Analyser (Carlo Erba). Определение содержания бора и металлов методом ICP MS выполнено на атомно-эмиссионном спектрометре с индуктивно связанной плазмой iCAP 6300 Duo. Для проведения анализа образцы высушивали до постоянной массы.

ИК-спектры исходных соединений и продуктов термолиза записывали на ИК-фурье-спектрофотометре Инфралюм Φ T-02 (НП Φ АП "Люмекс", Россия); суспензия в вазелиновом масле (Aldrich), пластинки NaCl, область измерения 4000–400 см⁻¹, разрешение 1 см⁻¹.

РСА. Наборы дифракционных отражений получены в Центре коллективного пользования ИОНХ РАН на автоматических дифрактометрах Bruker SMART APEX2 (для кристаллов I) и Enfaf Nonius CAD4 (для II). Структуры расшифрованы прямым методом с последующим расчетом разностных синтезов Фурье. Все атомы водорода уточнены по модели наездника с тепловыми параметрами $U_{\mu_{30}} = 1.2U_{3KB} (U_{\mu_{30}})$ соответствующего неводородного атома. Все неводородные атомы уточнены в анизотропном приближении.

При сборе и обработке массива отражений использовали программы APEX2, SAINT и SADABS [30]. Структура расшифрована и уточнена с помощью программ комплекса OLEX2 [31].

Основные кристаллографические данные, параметры эксперимента и характеристики уточнения структуры приведены в табл. 1. Кристаллографические данные депонированы в Кембриджском банке структурных данных (CCDC № 2118147 и 2118148).

Анализ поверхности Хиршфельда. Для анализа взаимодействий в кристалле использовали программу The Crystal Explorer 17.5 [32]. Донорно-акцепторные группы визуализируются с использованием стандартного (высокого) разрешения поверхности, а поверхности *d*_{norm} отображаются по фиксированной цветовой шкале от -0.640 (красный) до 0.986 а.е. (синий).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Синтез и строение комплекса $[Cu_2[B_{10}H_{10}]]_n$

Комплекс $[Cu_2[B_{10}H_{10}]]_n$ синтезирован при взаимодействии сульфата меди(II) и *клозо*-де-каборатного аниона по реакции [16, 17]:

$$Cu^{2+} + [B_{10}H_{10}]^{2-} \xrightarrow{H_2O} [Cu_2[B_{10}H_{10}]]_n.$$
(I)

При этом выход соединения невысокий, так как часть аниона расходуется на протекание окислительно-восстановительной реакции с атомами меди(II), что приводит к частичной деградации кластерного аниона.

Отметим, что для получения целевого соединения использовали соль $Na_2[B_{10}H_{10}]$, так как при использовании *клозо*-декабората с крупным органическим катионом, например ($Et_3NH)_2[B_{10}H_{10}]$, возможно образование анионного комплекса {(Et_3NH)Cu[$B_{10}H_{10}$]}_n. Комплексы {Cat[Cu[$B_{10}H_{10}$]]}_n подробно изучены в работах [26, 33].

В ИК-спектре соединения I наблюдается сильно расщепленная полоса валентных колебаний ВН-связей v(BH) с максимумами при 2565, 2539, 2512 и 2144 см⁻¹, что свидетельствует об участии кластерного аниона бора в координации к металлу.

В отличие от работы [16] атомы водорода борного кластера в соединении І локализованы в разностном синтезе Фурье и уточнены независимо в изотропном приближении. Кристаллографически независимая часть орторомбической ячейки (пр. гр. *Pbca*) комплекса [Cu₂[B₁₀H₁₀]] содержит два атома меди и один анион. В кристаллической структуре комплекса образуется 2D-полимер за счет образования четырех пар трехцентровых двухэлектронных связей СиНВ борного остова с четырьмя атомами меди. Координация осуществляется по двум противоположным аксиальным ребрам одной из вершин аниона (В1В2 и В1В4) и двум соседним ребрам другой (В8В10 и В9В10). Длины связей Cu-В и Cu-Н приведены в табл. 2 и согласуются с данными для комплекса, описанного в работе [16].

Контакты Cu–H показаны на рис. 1 (выделены цветом). Анализ поверхности Хиршфельда аниона $[B_{10}H_{10}]^{2-}$ показывает, что на контакты

Таблица 2. Длины связей Си-В и Си-Н в комплексе I

Связь	Длина связи, Å	Связь	Длина связи, Å	
Cu1–B1	2.226(2)	Cu1–H1	2.033	
Cu1–B2	2.161(3)	Cu1–H2	1.804	
Cu1–B9 ^{<i>a</i>}	2.160(2)	Cu1–H9 ^a	1.823	
Cu1-B101	2.232(2)	Cu1–H10 ^{<i>a</i>}	2.062	
Cu2–B1	2.228(2)	Cu2–H1	2.097	
Cu2–B4	2.148(2)	Cu2–H4	1.768	
Cu2–B8 ⁶	2.143(2)	Cu2–Н8 ^б	1.73	
Cu2–B10 ⁶	2.320(2)	Cu2-H10 ^б	2.248	
$a_{-1/2} + r \frac{1}{2} - v \frac{1}{2} - \frac{r}{6} - \frac{1}{2} + r + v \frac{3}{2} - r$				

Н...Н с соседними кластерами приходится 70.8% поверхности аниона, на контакты H-Cu - 23.8% поверхности, а на контакты B-Cu - 5.4% (рис. 2).

Синтез и строение комплекса $Tl_2[B_{10}H_{10}]$

Комплекс таллия(I) получен при взаимодействии нитрата таллия с солью $(Et_3NH)_2[B_{10}H_{10}]$ по реакции:

$$2Tl^{+} + [B_{10}H_{10}]^{2-} \xrightarrow{H_{2}O} Tl_{2}[B_{10}H_{10}].$$
(II)

Соединение образуется с высоким выходом (67%).

В ИК-спектре соединения наблюдаются полосы v(BH) с максимумами при 2523 и 2458 см⁻¹, это позволяет предположить отсутствие координации между катионом металла и кластерным анионом бора, так как в спектре не фиксируется низкочастотная полоса $v(BH)_{MHB}$ координированных ВН-групп борного кластера, максимум которой обычно наблюдается в области 2300– 2200 см⁻¹.

Соль II изоструктурна описанным ранее солям клозо-декаборатного аниона с щелочными металлами Na, K, Rb [34] аналогично соли $Tl_2[B_{12}H_{12}]$ [20, 21], изоструктурной солям клозо-додекаборатного аниона с K, Rb и Cs [22, 23]. Кристаллографически независимая часть моноклинной элементарной ячейки (пр. гр. $P2_1/n$) включает анион $[B_{10}H_{10}]^{2-}$ и два катиона, которые находятся в общей позиции (рис. 3). Клозо-декаборатный анион находится в окружении восьми катионов Tl^+ (рис. 2) с расстояниями Tl...B 3.17–3.65 Å (рис. 2) и Tl...H 2.67–3.44 Å. Как видно на поверхности

Рис. 1. Мономерное звено комплекса I (а) и часть 2D-полимерной сети (б).

Рис. 2. Карта $d_{\text{погт}}$, нанесенная на молекулярную поверхность Хиршфельда аниона $[B_{10}H_{10}]^{2-}$ в соединении I (а), и границы взаимодействия Си–Н на этой поверхности (б). 2D-развертка поверхности Хиршфельда аниона (в) и границы Н...Н (г), Н...Си (д) и В...Си (е) контактов.

Рис. 3. Кристаллографическая структура соединения II, вид вдоль оси *а*.

Хиршфельда кластерного аниона бора (рис. 2а), катионы талия находятся над центрами граней *клозо*-декаборатного аниона, и длины контактов T1...В меньше суммы их ван-дер-ваальсовых радиусов (красный цвет на рис. 26). При этом на контакты T1...В приходится 1.9% поверхности аниона, с расстоянием T1–В меньше суммы их ван-дер-ваальсовых радиусов. на контакты T1...Н – 33.9%, а оставшиеся 64.2% приходятся на контакты H...Н соседних анионов с наименьшим расстоянием ~2.15 Å.

В каждом случае катион таллия находится в окружении четырех граней борного остова (рис. 3) четырех разных анионов $[B_{10}H_{10}]^{2-}$.

Анализ поверхности Хиршфельда двух соединений показывает, что в комплексе меди существенно возрастает доля контакта М–В, в отличие от соли II (5.4% по сравнению с 1.9%), в то время как доля контактов М–Н в комплексе I составляет 23.8%, а в соли II – 33.9%, что связано с большим ионным радиусом Tl⁺. Полученные комплексные соединения, строение которых представляет собой трехмерный каркас, в дальнейшем могут быть использованы для направленного синтеза металлоорганических полимеров (МОF) [35–40] с участием кластерных анионов бора.

Отметим, что комплексные соединения с кластерными анионами бора находят свое применение в качестве экстрагентов солей тяжелых металлов, компонентов для получения термозащитных покрытий, в медицине, катализе и т.д. [41–45].

ЗАКЛЮЧЕНИЕ

Таким образом, в работе синтезированы комплексы меди(I) и таллия(I) состава $M_2[B_{10}H_{10}]$. Соединения изучены методами ИК-спектроскопии и РСА. В комплексе меди(I) $[Cu_2[B_{10}H_{10}]]_n$ *клозо*-декаборатный анион координирован атомами металла с образованием трехцентровых связей М-H-B, расстояния Cu-B составляют 2.143(2)–2.320(2) Å. В ИК-спектре соединения

Рис. 4. Карта d_{norm} , нанесенная на молекулярную поверхность Хиршфельда аниона $[B_{10}H_{10}]^{2-}$ в соединении (II) (а) и границы взаимодействия Tl–B (б) на этой поверхности. 2D-развертка поверхности Хиршфельда аниона (в) и границы H...H (г), H...Tl (д) и B...Tl (е) контактов.

присутствует полоса $v(BH)_{MHB}$, также свидетельствующая о координации кластерного аниона бора. В комплексе таллия(I) $Tl_2[B_{10}H_{10}]$ можно предположить ионный характер связывания катиона с анионом, расстояния Tl...В составляют 3.17–3.65 Å. В ИК-спектре присутствуют только полосы v(BH) некоординированных BH-связей.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

БЛАГОДАРНОСТЬ

Аналитические исследования выполнены в ЦКП ФМИ ИОНХ РАН в рамках госзадания ИОНХ РАН.

Рис. 5. Карта d_{norm} , нанесенная на молекулярную поверхность Хиршфельда катиона Tl^+ в соединении II.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Greenwood N.N., Earnshaw A.* Chemistry of the Elements. Butterworth-Heinemann, 1997.
- 2. *Grimes R.N.* Carboranes. London: Academic Press, 2016. 1058 p.
 - https://doi.org/10.1016/B978-0-12-801894-1.09989-3
- Boron Science: New Technologies and Applications / Ed. Hosmane N.S. CRC Press, 2012.
- 4. Boron-Based Compounds: Potential and Emerging Applications in Medicine / Eds. Hey-Hawkins E., Viñas Teixidor C. John. Wiley & Sons Ltd., 2018. 470 p. https://doi.org/10.1002/9781119275602
- Sivaev I.B., Bregadze V.I. Polyhedral Boron Hydrides in Use: Current Status and Perspectives. Hauppauge: Nova Science Publishers, 2009. 85 p.
- Сиваев И.Б. // Журн. неорган. химии. 2021. Т. 66. № 9. С. 1192. [Sivaev I.B. // Russ. J. Inorg. Chem. 2021. V. 66. № 9. Р. 1289.] https://doi.org/10.1134/S0036023621090151
- Клюкин И.Н., Селиванов Н.А., Быков А.Ю. и др. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1345. [Klyukin I.N., Selivanov N.A., Bykov A.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 10. Р. 1547.] https://doi.org/10.1134/S0036023620100113
- Нелюбин А.В., Селиванов Н.А., Быков А.Ю. и др. // Журн. неорган. химии. 2020. Т. 65. № 6. С. 719. [Nelyubin A.V., Selivanov N.A., Bykov A.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 6. Р. 795.] https://doi.org/10.1134/S0036023620060133
- Sivaev I.B., Prikaznov A.V., Naoufal D. // Coll. Czech. Chem. Commun. 2010. V. 75. № 11. P. 1149. https://doi.org/10.1135/cccc2010054
- Авдеева В.В., Малинина Е.А., Жижин К.Ю., Кузнецов Н.Т. // Журн. коорд. химии. 2021. Т. 47. № 8. С. 457. [Avdeeva V.V., Malinina E.A., Zhizhin К.Y., Kuznetsov N.T. // Russ. J. Coord. Chem. 2021. V. 47. № 8. Р. 519.] https://doi.org/10.1134/S1070328421080017
- 11. *Kravchenko E.A., Gippius A.A., Kuznetsov N.T.* // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 546. https://doi.org/10.1134/S0036023620040105
- Матвеев Е.Ю., Новиков И.В., Кубасов А.С. и др. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 187. [*Matveev E.Y., Novikov I.V., Kubasov A.S., et al.* // Russ. J. Inorg. Chem. 2021. V. 66. № 2. Р. 187.] https://doi.org/10.1134/S0036023621020121
- Malinina E.A., Korolenko S.E., Zhdanov A.P. et al. // J. Cluster Sci. 2020. V. 32. P. 755. https://doi.org/10.1007/s10876-020-01840-5
- Avdeeva V.V., Buzanov G.A, Malinina E.A. et al. // Crystals. 2020. V. 10. № 5. P. 389. https://doi.org/10.3390/cryst10050389
- Короленко С.Е., Авдеева В.В., Малинина Е.А. и др. // Журн. коорд. химии. 2020. Т. 46. № 5. С. 259. [Korolenko S.E., Avdeeva V.V., Malinina E.A. et al. // Russ. J. Coord. Chem. V. 46. № 5. Р. 297.] https://doi.org/10.1134/S1070328420050024
- Dobrott R.D., Lipscomb W.N. // J. Chem. Phys. 1962.
 V. 37. P. 1779. https://doi.org/10.1063/1.1733368

- 17. Paxton T.E., Hawthorne M.F., Brown L.D., Lipscomb W.N. // Inorg. Chem. 1974. V. 13. № 11. P. 2772.
- Didelot E., Sadikin Y., Łodzian Z., Černýa R. // Solid State Sci. 2019. V. 90. P. 86. https://doi.org/10.1016/i.solidstatesciences.2019.02.005
- 19. Канаева О.А., Климчук Г.С., Солнцев К.А. // Журн. неорган. химии. 1987. Т. 32. № 3. С. 803.
- 20. Van N.-D., Tiritiris I., Schleid T. // Z. Anorg. Allg. Chem. 2004. V. 630. № 11. P. 1764. https://doi.org/10.1002/zaac.200470140
- Tiritiris I., Van N.-D., Schleid T. // Z. Anorg. Allg. Chem. 2011. V. 637. № 6. P. 682. https://doi.org/10.1002/zaac.201000457
- Tiritiris I., Schleid T., Müller K., Preetz W. // Z. Anorg. Allg. Chem. 2000. V. 626. № 2. P. 323. https://doi.org/10.1002/(SICI)1521-3749(200002)626:2<323::AID-ZAAC323>3.0.CO;2-Q
- 23. Tiritiris I., Schleid Th. // Z. Anorg. Allg. Chem. 2003. V. 629. № 78. P. 1390. https://doi.org/10.1002/zaac.200300098
- Kleeberg F.M., Dinnebier R.E., Schleid T. // Inorg. Chim. Acta. 2017. V. 467. P. 147. https://doi.org/10.1016/j.ica.2017.07.066
- 25. *Muetterties E.L., Baltnis J.H., Chia Y.T. et al.* // Inorg. Chem. 1964. V. 3. № 3. P. 444. https://doi.org/10.1021/ic50013a030
- 26. *Малинина Е.А., Жижин К.Ю., Полякова И.Н. и др. //* Журн. неорган. химии. 2002. Т. 47. № 8. С. 1275.
- Дроздова В.В., Малинина Е.А., Белоусова О.Н. и др. // Журн. неорган. химии. 2008. Т. 53. № 7. С. 1105. [Drozdova V.V., Malinina E.A., Belousova O.N. et al. // Russ. J. Inorg. Chem. 2008. V. 53. № 7. Р. 1024.] https://doi.org/10.1134/S0036023608070097
- 28. *Tiritiris I., Schleid T.* // Z. Anorg. Allg. Chem. 2003. V. 629. № 5. P. 581. https://doi.org/10.1002/zaac.200390095
- 29. *Knoth W.H., Miller H.C., Sauer J.C. et al.* // Inorg. Chem. 1964. V. 3. № 2. P. 159. https://doi.org/10.1021/ic50012a002
- Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
- 32. Spackman P. R., Turner M. J., McKinnon J. J. et al. // J. Appl. Cryst. 2021. V. 54. P. 1006. https://doi.org/10.1107/S1600576721002910
- Малинина Е.А., Дроздова В.В., Полякова И.Н., Кузнецов Н.Т. // Журн. неорган. химии. 2008. Т. 53. № 2. С. 238. [Malinina E.A., Drozdova V.V., Polyakova I.N., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2008. V. 53. № 2. Р. 197.] https://doi.org/10.1007/s11502-008-2008-v
- 34. Hofman K., Albert B. // Z. Kristallogr. 2005. V. 220. P. 142. https://doi.org/10.1524/zkri.220.2.142.59144
- Трофимова О.Ю., Ершова И.В., Малеева А.В. и др. // Журн. коорд. химии. 2021. Т. 47. № 9. С. 552. [Trofimova O.Y., Ershova I.V., Maleeva A.V. et al. // Russ.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 5 2022

J. Coord. Chem. 2021. V. 47. № 9. P. 610.] https://doi.org/10.1134/S1070328421090086

- 36. *Kang H.X., Fu Y.Q., Xin L.Y. et al.* // Russ. J. Gen. Chem. 2020. V. 90. № 12. P. 2365. https://doi.org/10.1134/S107036322012021X
- 37. Gusarov V.S., Cheplakova A.M., Samsonenko D.G. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1374. https://doi.org/10.1134/S0036023621090035
- Wang Y.F., Zhang S.Q., Feng Y.X. et al. // Russ. J. Gen. Chem. 2021. V. 91. P. 1566. https://doi.org/10.1134/S1070363221080193
- 39. Mikhaylov V.N., Balova I.A. // Russ. J. Gen. Chem. 2021. V. 91. P. 2194. https://doi.org/10.1134/S1070363221110098
- 40. Pechenyuk S.I., Domonov D.P., Gosteva A.N. // Russ. J. Gen. Chem. 2021. V. 91. P. 1834. https://doi.org/10.1134/S1070363221090310

- 41. *Plešek J.* // Chem. Rev. 1992. V. 92. P. 269. https://doi.org/10.1021/cr00010a005
- 42. *Teixidor F., Viñas C., Demonceau A., Núñez R. //* Pure Appl. Chem. 2003. V. 75. P. 1305. https://doi.org/10.1351/pac200375091305
- 43. *Sivaev I.B., Bregadze V.I //* Organometallic Chemistry Research Perspectives / Ed. Irwin R.P. Nova Publ., 2007. P. 1.
- 44. Sivaev I.B., Bregadze V.I. // Eur. J. Inorg. Chem. 2009.
 V. 11. P. 1433. https://doi.org/10.1002/ejic.200900003
- 45. *Leśnikowski Z.J.* // J. Med. Chem. 2016. V. 59. № 17. P. 7738. https://doi.org/10.1021/acs.jmedchem.5b01932