ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2022, том 67, № 5, с. 599-605

координационные СОЕЛИНЕНИЯ

УЛК 54-386:1546.650.763.1547.544.2

ГЕКСА(ТИОЦИАНАТО-N)ХРОМАТНЫЕ(III) КОМПЛЕКСЫ ЛАНТАНОИДОВ(III) С ДИМЕТИЛСУЛЬФОКСИДОМ: СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

© 2022 г. Т. Г. Черкасова^{*a*}, *, Н. В. Первухина^{*b*}, Н. В. Куратьева^{*b*}, Е. В. Черкасова^{*a*}, Ю. Р. Гиниятуллина^а, Э. С. Татаринова^а

> ^{*а*}Кузбасский государственный технический университет им. Т.Ф. Горбачева. ул. Весенняя, 28, Кемерово, 650000 Россия ^bИнститут неорганической химии им. А.В. Николаева СО РАН, пр-т Академика Лаврентьева, 3, Новосибирск, 630092 Россия *e-mail: ctg.htnv@kuzstu.ru Поступила в редакцию 30.08.2021 г. После доработки 15.11.2021 г. Принята к публикации 29.11.2021 г.

Методами ИК-спектроскопии и рентгеноструктурного анализа изучены двойные комплексные соединения состава $[Ln(DMSO)_8][Cr(NCS)_6]$, где Ln = Nd (1), Eu (2), Gd (3), Dy(4), Ho (5), Lu (6), Тb (7). Yb (8), синтезированные по реакции между водными растворами Ln(NO₃)₃ и K₃[Cr(NCS)₆] и диметилсульфоксидом C₂H₆SO (DMSO). Монокристаллы соединений для PCA получены изотермической перекристаллизацией порошков комплексов из диметилсульфоксидных растворов. Соединения 1-8 изоструктурны, кристаллизуются в триклинной сингонии, пр. гр. Р. Кристаллическая структура островная с катионами [Ln(DMSO)₈]³⁺ и анионами [Cr(NCS)₆]³⁻. В независимой части присутствует по два катиона и по два аниона. Координационное окружение атома Ln состоит из 8 атомов О, принадлежащих молекулам DMSO, располагающимся в вершинах искаженной квадратной антипризмы. В изолированных анионах [Cr(NCS)₆]³⁻ координационный полиэдр хрома(III) близок к правильному октаэдру и состоит из атомов N шести NCS-ионов. Упаковка по центрам комплексных катионов и анионов представляет собой искаженную структуру NaCl.

Ключевые слова: лвойные комплексные соелинения, лантаноилы(III), (тиошианато-N) хроматный(III)-анион, ИК-спектроскопические и кристаллографические параметры DOI: 10.31857/S0044457X22050051

ВВЕДЕНИЕ

На основе разнолигандных неорганическихорганических комплексных соединений, имеющих разнообразные структурные топологии и физико-химические свойства, создаются новые материалы, которые могут найти применение в различных областях науки и технологиях [1].

В дополнение к традиционным областям применения – медицине и фармакологии [2] – водные растворы диметилсульфоксида (DMSO) используются также в оптике, в частности, для производства полимерных оптических волокон. DMSO является эффективным апротонным растворителем для электролитов, обладает высокой диэлектрической проницаемостью, сильной донорной способностью электронных пар и высоким молекулярным дипольным моментом, что позволяет координировать как "мягкие", так и "жесткие" ионы металлов [3-8].

Известны многочисленные координационные соединения лантаноидов с DMSO. Гетеробиметаллические разнолигандные комплексные соединения перспективны как предшественники для получения разнообразных функциональных материалов и композитов [9-13]. В частности, интерес представляют термохромные вещества, изменяющие окраску при воздействии различных температур, особенно вешества возвратного действия [14-18].

Ранее нами сообщалось о получении обратимых термочувствительных двойных комплексных соединений (ДКС) состава $[Ln(DMSO)_8][Cr(NCS)_6]$ [19], перспективных для создания многократно используемых термохромных материалов, однако получить монокристаллы и установить кристаллическую структуру удалось только в случае комплекса [La(DMSO)₈][Cr(NCS)₆] [20]. Проведенные ранее исследования роданохроматных комплексов

Эле- мент	Nd		Eu		Gd		Dy		Но		Lu	
	най-	вычис-										
	дено	лено										
Ln	12.27	12.33	12.85	12.90	13.22	13.29	13.62	13.68	13.80	13.85	14.52	14.57
Cr	4.38	4.44	4.36	4.42	4.35	4.40	4.33	4.38	4.33	4.37	4.30	4.33
С	22.53	22.59	22.40	22.44	22.30	22.34	22.20	22.24	22.15	22.20	21.95	22.01
Н	4.08	4.14	4.05	4.11	4.05	4.09	4.04	4.07	4.02	4.06	4.00	4.03
Ν	7.12	7.18	7.10	7.14	7.07	7.10	7.05	7.07	7.03	7.06	6.97	7.00
S	38.32	38.38	38.08	38.12	37.92	37.95	37.75	37.79	37.67	37.71	37.35	37.39

Таблица 1. Результаты элементного анализа [Ln(DMSO)₈][Cr(NCS)₆], ω, мас. %

лантаноидов с другими органическими лигандами позволили установить структурные особенности соединений цериевой и иттриевой групп состава [Ln(ϵ -C₆H₁₁NO)₈][Cr(NCS)₆] и [Ln(C₅H₅NCOO)₃(H₂O)₂][Cr(NCS)₆] · *n*H₂O [21, 22]. Представляло интерес выяснить структурные закономерности в ряду аналогичных комплексов с ДMSO.

Цель настоящей работы – установление строения комплексных соединений $[Ln(DMSO)_8][Cr(NCS)_6]$, где Ln = Nd (1), Eu (2), Gd (3), Dy (4), Ho (5), Lu (6), Tb (7), Yb (8).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реагенты Ln(NO₃)₃ · 6H₂O, где Ln = Nd (1), Eu (2), Gd (3), Dy (4), Ho (5), Lu (6), Tb (7), Yb (8), и DMSO (все соединения марки "х. ч.") использовали в коммерчески доступной форме без дополнительной очистки (производитель солей лантаноидов – Завод редких металлов, Новосибирск, поставщик DMSO – OOO "Компонент-Реактив", Москва), K₃[Cr(NCS)₆] · 4H₂O получали по известной методике [23] из KNCS и KCr(SO₄) · 12H₂O (реактивы марки "х. ч.", поставщик НПО "Химпроект", Уфа).

Синтез соединений. К 1 М водным растворам, содержащим по 0.001 моль гексагидрата нитрата лантаноида(III) и $K_3[Cr(NCS)_6] \cdot 4H_2O$, добавляли по каплям DMSO. Мольное соотношение реагентов составляло 1 : 1 : 8 соответственно. Полученные в результате реакции кристаллические порошки бледно-малинового цвета промывали холодной водой, отфильтровывали и высушивали на воздухе. Выход соединений составил 65–70%.

Химический анализ на ионы редкоземельных металлов(III) выполняли в виде оксидов, полученных при прокаливании оксалатов [24], хром определяли фотоколориметрически [25], элементный С,H,N,S-анализ проводили на приборе ThermoFlash 2000 фирмы ThermoScientific. Результаты элементного анализа приведены в табл. 1.

ИК-спектры комплексов регистрировали на ИК-фурье- спектрометре Cary 630 FTIR фирмы Agilent в интервале 4000-400 см⁻¹ в матрице KBr. Ниже приведены основные частоты полос поглошения соединений (v. см⁻¹): 1 - 2998 (сл.). 2918 (сл.), 2075 (оч. с.), 1723 (сл.), 1662 (сл.), 1405 (ср.), 1321 (ср.), 1003 (оч. с.), 959 (с.), 825 (ср.), 719 (ср.), 685 (ср.), 485 (ср.); 2 – 2996 (сл.), 2918 (сл.), 2075 (оч. с.), 1723 (сл.), 1662 (сл.), 1405 (ср.), 1321 (ср.), 1003 (оч. с.), 964 (с.), 830 (ср.), 719 (ср.), 685 (ср.), 480 (ср.); 3 – 2996 (сл.), 2912 (сл.), 2080 (оч. с.), 1740 (сл.), 1662 (сл.), 1405 (ср.), 1321 (ср.), 1003 (оч. с.), 964 (с.), 830 (ср.), 719 (ср.), 685 (ср.), 485 (ср.); 4 – 2996 (сл.), 2912 (сл.), 2069 (оч. с.), 1736 (сл.), 1662 (сл.), 1405 (ср.), 1321 (ср.), 998 (оч. с.), 959 (c.), 850 (cp.), 719 (cp.), 685 (cp.), 485 (cp.); 5 -2996 (сл.), 2912 (сл.), 2075 (оч. с.), 1706 (сл.), 1651 (сл.), 1405 (ср.), 1321 (ср.), 1003 (оч. с.), 964 (с.), 820 (ср.), 719 (ср.), 685 (ср.), 480 (ср.); 6 – 2996 (сл.), 2912 (сл.), 2075 (оч. с.), 1706 (сл.), 1662 (сл.), 1416 (ср.), 1321 (ср.), 998 (оч. с.), 964 (с.),835 (ср.), 724 (ср.), 685 (ср.), 480 (ср.); 7 – 2996 (сл.), 2918 (сл.), 2080 (оч. с.), 1706 (сл.), 1405 (ср.), 1321 (ср.), 1003 (оч. с.), 964 (с.), 825 (ср.), 719 (ср.), 682 (сл.), 480 (ср.); 8 – 2996 (сл.), 2912 (сл.), 2069 (оч. с.), 1958 (сл.), 1662 (сл.), 1405 (ср.), 1331 (ср.), 998 (оч. с.), 959 (c.), 815 (cp.), 724 (cp.), 480 (cp.).

Рентгеноструктурный анализ (РСА) соединений 1-6 выполнен на дифрактометре Bruker Nonius X8Арех с 4К ССД-детектором с использованием φ- и ω-сканирования. Поправки на поглощение введены с помощью программы SADABS [26], которая использует многократные измерения одних и тех же отражений при разных ориентациях кристалла. Структуры расшифрованы прямым методом и уточнены полноматричным МНК по F^2 в анизотропном приближении для неводородных атомов с помощью комплекса программ SHELX2014 [27]. Атомы водорода органических лигандов расставлены геометрически и уточнены в приближении жесткого тела. Для соединений 2-6 были введены ограничения на длины некоторых связей S-O на уровне 1.51(2) Å и некоторых связей S-C на уровне 1.78(2) Å в связи с присутствующим в структурах позиционным разупорядочением диметилсульфоксидных лигандов. Кристаллографические данные И детали дифракционного

ГЕКСА(ТИОЦИАНАТО-N)ХРОМАТНЫЕ(III) КОМПЛЕКСЫ

	юграфические д	цаппыс и услов	ия дифракцион.	noro skenepnike	ппадля дне т	•		
Φ ормула $C_{22}H_{48}CrN_{6}LnO_{8}S_{14}$	Ln = Nd(1)	Ln = Eu (2)	Ln = Gd (3)	Ln = Dy (4)	Ln = Ho (5)	Ln = Lu(6)		
М, г/моль	1169.74	1177.46	1182.75	1188.00	1190.43	1200.47		
Сингония, пр. гр.	Триклинная. Р							
a, Å	12.9120(4)	12.8734(9)	12.8276(3)	12.6254(8)	12.7964(5)	12.8161(3)		
b, Å	18.6554(6)	18.6998(14)	18.5524(4)	18.8020(9)	18.5521(7)	18.6827(6)		
<i>c</i> , Å	22.5531(7)	22.6193(17)	22.4064(5)	22.8305(13)	22.4064(8)	22.6245(7)		
α, град	111.846(1)	111.766(2)	111.910(1)	110.407(2)	111.855(1)	111.650(1)		
β, град	91.756(1)	91.611(2)	91.974(1)	92.379(2)	91.900(1)	91.606(1)		
γ, град	92.642(1)	92.667(2)	92.7450(10)	92.415(2)	92.694(1)	92.5730(1)		
$V, \text{\AA}^3 / Z$	5030.4(3)/4	5045.4(6)/4	4933.6(2)/4	5065.8(5)/4	4924.2(3)/4	5024.2(3)/4		
$ ho_{\rm выч},$ г/см ³	1.545	1.550	1.592	1.558	1.606	1.587		
μ, мм ⁻¹	1.860	2.068	2.188	2.297	2.452	2.794		
Размер кристалла,	$0.28 \times 0.22 \times$	$0.33 \times 0.24 \times$	$0.17 \times 0.12 \times$	$0.25 \times 0.15 \times$	$0.13 \times 0.12 \times$	$0.22 \times 0.18 \times$		
MM	× 0.18	× 0.14	× 0.06	× 0.15	$\times 0.07$	× 0.11		
Диапазон сбора	0.974-26.453	0.970-25.681	0.981-26.454	0.953-27.217	0.981-26.438	0.969-27.179		
данных по σ, град								
Диапазон <i>h</i> , <i>k</i> , <i>l</i>	$-16 \le h \le 15$	$-15 \le h \le 15$	$-16 \le h \le 15$	$-16 \le h \le 16$	$-16 \le h \le 15$	$-15 \le h \le 16$		
	$-23 \le k \le 23$	$-22 \le k \le 22$	$-21 \le k \le 23$	$-24 \le k \le 21$	$-22 \le k \le 23$	$-23 \le k \le 24$		
_	$-24 \le l \le 28$	$-207 \le l \le 23$	$-28 \le l \le 26$	$-29 \le l \le 29$	$-25 \le l \le 28$	$-29 \le l \le 29$		
<i>I_{hkl}</i> измеренных	41 813	34741	41 898	45844	41440	45569		
$I_{hkl} > 2\sigma_I(R_{int})$	20675	19031	19973	22398	20017	22061		
	$(R_{\rm int} = 0.0203)$	$(R_{int} = 0.0153)$	$(R_{\rm int} = 0.0490)$	$(R_{\rm int} = 0.0377)$	$(R_{\rm int} = 0.0467)$	$(R_{\rm int} = 0.0323)$		
Макс. и мин.	0.745 и 0.679	0.746 и 0.630	0.745 и 0.655	0.746 и 0.629	0.745 и 0.588	0.746 и 0.608		
пропускание								
GOOF для F_{hkl}^2	1.113	1.040	1.018	1.035	1.052	1.046		
$R(I \ge 2\sigma_I)$	$R_1 = 0.0414,$	$R_1 = 0.0369,$	$R_1 = 0.0536,$	$R_1 = 0.0769,$	$R_1 = 0.0621,$	$R_1 = 0.0474,$		
	$wR_2 = 0.0926$	$wR_2 = 0.0832$	$wR_2 = 0.1099$	$wR_2 = 0.2027$	$wR_2 = 0.1412$	$wR_2 = 0.1244$		
<i>R</i> (<i>I_{hkl}</i> изм.)	$R_1 = 0.0480,$	$R_1 = 0.0441,$	$R_1 = 0.0877,$	$R_1 = 0.1056,$	$R_1 = 0.0911,$	$R_1 = 0.0650,$		
	$wR_2 = 0.0948$	$wR_2 = 0.0861$	$wR_2 = 0.1185$	$wR_2 = 0.2167$	$wR_2 = 0.1492$	$wR_2 = 0.1315$		
Макс. и мин. ост.	2.106 и -0.857	2.314 и -1.369	1.846 и —1.189	3.265 и -2.478	3.419 и -1.128	2.617 и -1.165		
эл. плотность, $e/Å^3$								

Таблица 2. Кристаллографические данные и условия дифракционного эксперимента для ДКС 1-6

эксперимента приведены в табл. 2, основные длины связей для соединений 1-6 – в табл. 3. Структурные данные депонированы в КБСД (ССDС 2105882-2105887) и могут быть получены по запросу на сайте www.ccdc.cam.ac.uk/data_reguest/cif.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Синтезированы устойчивые на воздухе кристаллические порошки бледно-малинового цвета с растворимостью в воде ($25.0 \pm 0.5^{\circ}$ C): **1** – 0.03 моль/л; **2** – 0.02 моль/л; **3** – 0.4 моль/л, **4** – 0.03 моль/л, **5** – 0.02 моль/л, **6** – 0.01 моль/л. ДКС не растворяются в спиртах, *н*-углеводородах, эфирах, ацетоне, толуоле, бензоле, разлагаются концентрированными растворами минеральных кислот, растворимы в DMFA и DMSO.

По данным [28-30], для иона SCN⁻ характерными являются колебания v(CN), v(CS) и $\delta(NCS)$ при 2066.3, 744 и 468.1 см⁻¹ соответственно. Способ координации тиоцианатной группы влияет на степень кратности связей, что отражается в смещении указанных полос. Значения v(CN) в интервале 2069-2080 см-1 указывают на отсутствие тиоцианатных мостиков в комплексах. Получение (тиоцианато-N)-комплексов подтверждается повышением частот v(CS) до значений 815-850 см⁻¹, характеризующих увеличение кратности связи CS. Дополнительную информацию дает полоса δ (NCS) при 480–485 см⁻¹. Частота валентного колебания "свободного" DMSO равна 1055 см⁻¹, при его координации через кислород это значение всегда понижается на 60-100 см⁻¹. Таким образом, органические лиганды в катио-

Связь	Nd (1)	Eu (2)	Gd (3)	Dy (4)	Ho (5)	Lu (6)
Ln(1)–O(11)	2.423(3)	2.461(3)	2.342(4)	2.331(6)	2.313(5)	2.342(3)
Ln(1)–O(12)	2.427(3)	2.363(3)	2.442(4)	2.403(6)	2.417(5)	2.424(3)
Ln (1)–O(13)	2.500(3)	2.381(3)	2.359(4)	2.302(7)	2.276(6)	2.343(4)
Ln (1)–O(14)	2.466(3)	2.395(3)	2.415(4)	2.349(7)	2.375(5)	2.397(3)
Ln (1)–O(15)	2.410(3)	2.458(3)	2.450(4)	2.410(6)	2.413(5)	2.421(3)
Ln (1)–O(16)	2.430(3)	2.364(3)	2.363(4)	2.334(6)	2.321(5)	2.349(3)
Ln (1)–O(17)	2.488(3)	2.380(3)	2.337(4)	2.337(10)	2.286(7)	2.335(4)
Ln (1)–O(18)	2.404(3)	2.430(3)	2.388(4)	2.364(7)	2.362(6)	2.365(3)
Ln (2)–O(21)	2.491(3)	2.413(3)	2.407(4)	2.348(7)	2.368(6)	2.390(4)
Ln (2)–O(22)	2.416(3)	2.373(3)	2.353(4)	2.312(6)	2.320(5)	2.340(3)
Ln (2)–O(23)	2.463(3)	2.387(3)	2.332(4)	2.278(8)	2.248(6)	2.337(4)
Ln (2)–O(24)	2.409(3)	2.445(3)	2.452(4)	2.367(6)	2.423(6)	2.436(3)
Ln (2)–O(25)	2.455(3)	2.425(3)	2.359(4)	2.319(7)	2.315(6)	2.349(3)
Ln (2)–O(26)	2.412(3)	2.375(3)	2.403(4)	2.369(7)	2.380(6)	2.377(4)
Ln (2)–O(27)	2.480(3)	2.369(3)	2.384(4)	2.343(7)	2.339(6)	2.359(4)
Ln (2)–O(28)	2.416(3)	2.459(3)	2.435(4)	2.362(7)	2.401(5)	2.419(3)
Cr(1) - N(11)	2.003(4)	2.005(4)	2.006(6)	1.984(10)	2.002(8)	2.003(5)
Cr(1) - N(12)	1.992(4)	1.996(4)	1.986(5)	1.997(9)	1.994(7)	1.995(5)
Cr(1) - N(13)	2.003(4)	1.994(4)	1.994(6)	2.002(8)	1.992(8)	2.008(5)
Cr(1) - N(14)	1.999(4)	2.005(4)	1.997(6)	1.994(11)	1.985(8)	1.993(5)
Cr(1) - N(15)	2.012(4)	2.017(4)	2.010(5)	2.000(9)	2.006(7)	2.011(5)
Cr(1) - N(16)	1.991(4)	2.002(4)	1.995(6)	2.001(8)	2.002(8)	2.000(5)
Cr(2)–N(21)	1.997(4)	1.995(4)	1.996(6)	1.984(10)	1.992(8)	1.999(5)
Cr(2)–N(22)	2.011(4)	2.007(4)	1.985(6)	2.011(9)	2.001(7)	2.005(5)
Cr(2)–N(23)	1.997(4)	2.010(4)	1.999(5)	1.995(8)	2.002(7)	2.004(5)
Cr(2)–N(24)	1.995(4)	2.001(4)	1.996(6)	1.990(9)	1.993(8)	1.999(5)
Cr(2)–N(25)	2.000(4)	1.994(4)	2.008(6)	1.999(8)	2.003(7)	2.007(5)
Cr(2)–N(26)	2.008(4)	1.998(4)	2.004(5)	2.005(8)	2.009(8)	2.006(5)

Таблица 3. Основные межатомные расстояния (d, Å) для комплексов 1–6

нах комплексов координируются с комплексообразователями — ионами Ln^{3+} — через атомы кислорода: $v(SO) = 959-964 \text{ см}^{-1}$, v(CS) до 719–724 см⁻¹ [31–33].

Медленной изотермической кристаллизацией при 298 К из разбавленных диметилсульфоксидных растворов порошков соединений получены монокристаллы ДКС.

Все полученные комплексы изоструктурны. Кристаллическая структура островная, с катионами $[Ln(DMSO)_8]^{3+}$ и анионами $[Cr(NCS)_6]^{3-}$. В независимой части присутствует по два катиона и по два аниона (рис. 1). Координационное окружение атома Ln состоит из восьми атомов О, принадлежащих молекулам DMSO, располагающимся в вершинах искаженной квадратной антипризмы. Расстояния Ln–O лежат в диапазоне 2.404(3)–2.500(3) Å, среднее 2.44(3) Å для 1; 2.363(3)–2.461(3) Å, среднее 2.40(4) Å для 2; 2.332(4)–2.452(4) Å, среднее 2.39(4) Å для 3; 2.278(8)–2.410(6) Å, среднее 2.35(3) Å для 4; 2.248(6)–2.417(5) Å, среднее 2.34(5) Å для 5; 2.335(4)–2.436(3) Å, среднее 2.37(3) Å для 6. Геометрические характеристики координированных молекул DMSO хорошо согласуются с известными литературными данными [34]. Координационный полиэдр хрома(III) в изолированных анионах [Cr(NCS)₆]^{3–} состоит из атомов N шести NCS-ионов и близок к правильному октаэдру (отклонение углов от 90° не превышает 1.90°) (рис. 2). Упаковка по центрам комплексных катионов и анионов представляет собой искаженную структуру NaCl (рис. 3).

Для соединений [Ln(DMSO)₈][Cr(NCS)₆], где Ln = Тb и Yb, определены кристаллоструктурные характеристики ($P\overline{l}$, a = 12.5996(8), b == 18.8078(11), c = 22.8852(16) Å, $\alpha = 110.523(3)^{\circ}$, $\beta = 92.419(3)^{\circ}$, $\gamma = 92.508(3)^{\circ}$ и a = 12.350(7), b =

Рис. 1. Упаковка элементарной ячейки [Nd(DMSO)₈][Cr(NCS)₆].

Рис. 2. Строение и нумерация атомов в комплексном соединении состава [Nd(DMSO)₈][Cr(NCS)₆].

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 5 2022

Рис. 3. Атомы металлов и первой координационной сферы вокруг них в произвольной ориентации ячейки. Видно чередование катионов и анионов по типу NaCl.

= 18.995(12), c = 23.097(14) Å, $\alpha = 110.48(1)^{\circ}$, $\beta = 90.04(2)^{\circ}$, $\gamma = 89.92(2)^{\circ}$ соответственно), показывающие, что они изоструктурны с вышеописанной серией соединений. Однако недостаточно хорошее качество кристаллов не позволило получить достаточный массив экспериментальных данных для определения структуры, и, как следствие, из-за низкого качества данных и полученных моделей с $R_1 \sim 15\%$ и частично не локализованными лигандами DMSO результаты не депонировались в КБСД. Попытки заново окристаллизовать эти соединения предпринимались неоднократно, но так и не привели нас к хорошим результатам.

Проведенные исследования ДКС [Ln(DMSO)₈] [Cr(NCS)₆] показали, что для них, как и для других подобных соединений с ε -капролактамом и никотиновой кислотой состава [Ln(ε -C₆H₁₁NO)₈][Cr(NCS)₆] и [Ln(C₅H₅NCOO)₃(H₂O)₂] [Cr(NCS)₆] · *n*H₂O, характерны ионные островные структуры, состоящие из изолированных катионов [Ln(DMSO)₈]³⁺ и анионов [Cr(NCS)₆]³⁻ [21, 22]. Образование соединений ионного типа хорошо объяснимо на основе "жестко-жесткого" взаимодействия "жестких" кислот – акцепторов электронных пар Ln³⁺ и Cr³⁺ с "жесткими" основаниями Льюиса – кислородом DMSO и азотом NCS-группы [35–37].

ЗАКЛЮЧЕНИЕ

Двойные комплексные соединения [Ln(DMSO)₈][Cr(NCS)₆] исследованы методами ИК-спектроскопии и РСА. Изучение кристаллографических характеристик монокристаллов ДКС представителей лантаноидов как цериевой (Nd, Eu), так и иттриевой (Gd, Tb, Dy, Ho, Yb, Lu)

группы показало, что комплексы всего ряда лантаноидов однотипны, кристаллизуются в триклинной сингонии (пр. гр. Pl) и представляют собой комплексные соли с катионами $[Ln(DMSO)_8]^{3+}$ и анионами [Cr(NCS)₆]³⁻. Полученные данные еще раз свидетельствуют в пользу концепции ЖМКО, позволяющей прогнозировать строение и, соответственно, характеристики, в частности ДКС, являющихся перспективными прекурсорами для получения различных функциональных, в том числе наноразмерных материалов. Для этого необходимо изучение основных физико-химических характеристик веществ. Ранее установлено, что ДКС состава [Ln(DMSO)₈][Cr(NCS)₆] перспективны для создания возвратных, многократно используемых термохромных материалов. пригодных для визуального контроля температурных режимов в технологических процессах, поэтому исследование таких соединений представляет и практический интерес.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа поддержана Министерством науки и высшего образования Российской Федерации, проект № 121031700313-8.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов

СПИСОК ЛИТЕРАТУРЫ

1. Mishra S., Jeanneau E., Ledoux G., Daniele S. // CrystEngComm. 2012. V. 14. № 11. P. 3894.

- Verstakov E.S., Korobkova S.A., Nosaeva T.A.// Russ. J. Phys. Chem. 2020. V. 94. № 4. Р. 738. [Верстаков Е.С., Коробкова С.А., Носаева Т.А. // Журн. физ. химии. 2020. Т. 94. № 4. С. 564.] https://doi.org/10.1134/SOO3602442004024X
- Abbasi A., Risberg E.D., Eriksson L. et al. // Inorg. Chem. 2007. V. 46. P. 7731. https://doi.org/10.1021/ic7006588
- Pasgreta E., Puchta R., Galle M. et al. // ChemPhysChem. 2007. V. 8. P. 1315.
- Galvao J., Davis B., Tilley M. et al. // FASEB J. 2014.
 V. 28. № 3. P. 1. https://doi.org/10.1096/fj.13-235440
- 6. *Alessio E.* // Chem. Rev. 2004. V. 104. P. 4203. https://doi.org/10.1021/cr0307291
- Verma V., Awasthi A., Kumar M. et al. // Phys. Chem. Liq. 2020. V. 59. № 3. P. 1. https://doi.org/10.1080/00319104.2020.1731809
- Akhmedov M.A., Ibragimova K.O., Khidirov Sh.Sh. // Russ. J. Electrochem. 2020. V. 56. № 5. Р. 396. [Ахмедов М.А., Ибрагимова К.О., Хидиров Ш.Ш. // Электрохимия. 2020. Т. 56. № 5. С. 416.] https://doi.org/10.1134/S1023193520040023
- 9. Pechenyuk S.I., Domonov D.P., Shimkin A.A. et al. // Russ. J. Gen. Chem. 2017. V. 87. № 9. Р. 2212. [Печенюк С.И., Домонов Д.П., Шимкин А.А. и др. // Журн. общ. химии. 2017. Т. 87. № 9. С. 2212.] https://doi.org/10.1134/S1070363217090481
- *Tretyakov Yu.D.* // Russ. J. Chem. Rev. 2004. V. 73. № 9. Р. 831. [*Третьяков Ю.Д.* Успехи химии. 2004. Т. 73. № 9. С. 831.] https://doi.org/10.1070/RC2004v073n09ABEH000914
- 11. Velikanova L.N., Semchenko V.V., Khentov V.Ya. // Russ. J. Appl. Chem. 2011. V. 84. № 9. Р. 1470. [Великанова Л.Н., Семченко В.В., Хентов В.Я. // Журн. прикл. химии. 2011. Т. 84. № 9. С. 1418.] https://doi.org/10.1134/S1070427211090023
- Khentov V.Ya., Velikanova L.N., Semchenko V.V., Slavinskaya A.B. // Russ. J. Appl. Chem. 2007. V. 80. № 7. Р. 1027. [Великанова Л.Н., Семченко В.В., Хентов В.Я. // Журн. прикл. химии. 2007. Т. 80. № 7. С. 1057.]
 - https://doi.org/10.1134/S1070427207070014
- Помогайло А.Д., Розенбере А.С., Джардималиева Г.И. // Рос. хим. журн. (Журн. Рос. хим. общества им. Д.И. Менделеева). 2009. Т. 53. № 1. С. 140.
- 14. Абрамович Б.Г. // Химия и химики. 2008. № 5. С. 19.
- 15. *Кукушкин Ю.Н.* Соединения высшего порядка. Л.: Химия, 1991. 110 с.
- Sone K., Fukuda Y. Inorganic Thermochromism. Berlin: Springer-Verlag, 1987. 134 p.
- Беленький Е.Ф., Рискин И.В., Корсунский И.В., Шапиро И.С. Химия и технология пигментов. Л.: Химия, 1974. 656 с.
- Хентов В.Я., Семченко В.В., Шачнева Е.Ю. Процессы комплексообразования природного и техногенного происхождения. М.: РУСАЙНС, 2020. 266 с.

- 19. Черкасова Т.Г., Татаринова Э.С., Кузнецова О.А., Трясунов Б.Г. // Пат. RU 2097714 от 27.11.1997.
- 20. *Черкасова Т.Г.* // Журн. неорган. химии. 1994. Т. 39. № 8. С. 1316.
- Virovets A.V., Peresypkina E.V., Cherkasova E.V. et al. // J. Struct. Chem. 2009. V. 50. № 1. Р. 137. [Вировец А.В., Пересылкина Е.В., Черкасова Е.В. // Журн. структур. химии. 2009. Т. 50. № 1. С. 144.] https://doi.org/10.1007/s10947-009-0018-y
- 22. Черкасова Т.Г., Первухина Н.В., Куратьева Н.В. и др. // Журн. неорган. химии. 2018. Т. 63. № 7. С. 858. [Cherkasova T.G., Pervukhina N.V., Kuratieva N.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 7. Р. 899.] https://doi.org/10.1134/S0036023618070045
- Руководство по неорганическому синтезу / Под ред. Брауэра Г. М.: Мир, 1985. Т. 5. 360 с.
- 24. Коровин С.С., Букин В.И., Федоров П.И., Резник А.М. Редкие и рассеянные элементы. Химия и технология. М.: МИСИС, 2003. 439 с.
- 25. *Булатов М.И., Калинкин И.П.* Практическое руководство по фотометрическим методам анализа. Л.: Химия, 1986. 431 с.
- 26. *Sheldrick G.M.* SADABS. Version 2.01. Bruker AXS Inc. Madison. Wisconsin, 2004.
- 27. *Sheldrick G.M.* // Acta Crystallogr. 2015. V. C71. P. 3. https://doi.org/10.1039/p298700000s1
- Химия псевдогалогенидов / Под ред. Голуба А.М., Келера Х., Скопенко В.В. Киев: Вища. шк., 1981. 360 с.
- Костромина Н.А., Кумок В.Н., Скорик Н.А. Химия координационных соединений. М.: Высш. шк., 1990. 432 с.
- 30. Gordon D.J., Smith D.F. // Spectrochim. Acta. 1974. V. A30. № 10. P. 1953.
- Кукушкин Ю.Н. Химия координационных соединений. М.: Высш. шк., 1985. 455 с.
- 32. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных. М.: Мир, БИНОМ. Лаборатория знаний, 2006. 438 с.
- Васильев А.В., Гриненко Е.В., Шукин А.О., Федулина Т.Г. Инфракрасная спектроскопия органических и природных соединений. СПб.: СПбЛТА, 2007. 54 с.
- 34. Allen F.H., Kennard O., Watson D.G. // J. Chem. Soc., Perkin Trans. 1987. V. 12. P. S1. https://doi.org/10.1039/p298700000s1
- Гарновский А.Д., Садименко А.П., Осипов О.А., Цинцадзе Г.В. Жестко-мягкие взаимодействия в координационной химии. Ростов-на-Дону: Изд-во Ростовск. ун-та, 1986. 272 с.
- Неудачина Л.К., Лакиза Н.В. Химия координационных соединений. М.: Юрайт, 2019. 123 с.
- Киселев Ю.М. Химия координационных соединений. М.: Юрайт, 2019. Ч. 1. 439 с.