ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2022, том 67, № 5, с. 591–598

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ

УДК 548.736+546.94

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ ДИОКСОМОЛИБДЕНА(VI) С АЦИЛГИДРАЗОНАМИ. КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА НИКОТИНОИЛГИДРАЗОНА 5-НИТРОСАЛИЦИЛОВОГО АЛЬДЕГИДА (H₂L) И СОЛЬВАТОКОМПЛЕКСА M₀O₂(L)·Me₂SO

© 2022 г. В. С. Сергиенко^{а, *}, В. Л. Абраменко^b, М. Д. Суражская^a

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ^bЛуганский государственный университет им. В. Даля, Молодежный квартал, 20А, Луганск, 910341 Украина

> *e-mail: sergienko@igic.ras.ru Поступила в редакцию 03.09.2021 г. После доработки 25.10.2021 г. Принята к публикации 01.11.2021 г.

Проведены синтез и исследование строения никотиноилгидразона 5-нитросалицилового альдегида (H₂L) и сольватокомплекса MoO₂(L)·Me₂SO (I) методами ИК-спектроскопии и рентгеноструктурного анализа. По данным PCA, атом молибдена в I имеет октаэдрическую координацию двумя лигандами *цис*-O₂(оксо), атомами N(L), O(Solv) в *транс*-позициях к O(оксо) и двумя атомами O(L) в *цис*-положениях к O(оксо) и в *транс*-позициях друг к другу. Атом Мо координирует лиганд L^{2–} тридентатным (2O, N) *бис*-хелатным способом. Средние длины связей в I: Mo–O(оксо) 1.690, Mo–N(L) 2.249, Mo–O(L) 1.965, Mo–O(Me₂SO) 2.260 Å, валентный угол O(оксо)MoO(оксо) равен 105.1°. Рассмотрены изменения геометрических параметров лиганда L^{2–} при переходе от H₂L и координации атомом Мо в комплексе I. Получен аддукт MoO₂Cl₂·2H₂L (II), на основании данных ИК-спектро-скопии обсуждено его строение.

Ключевые слова: ацилгидразоны, таутомерия, рентгеноструктурный анализ, ИК-спектроскопия, трансвлияние оксолиганда

DOI: 10.31857/S0044457X22050154

ВВЕДЕНИЕ

Гидразоны и комплексные соединения на их основе интенсивно изучаются в связи с широким спектром их применения, а именно: в качестве лекарственных препаратов [1–5], моделей для изучения механизма биохимических процессов [6–8], селективных катализаторов [9–14], эффективных присадок к смазочным материалам [15, 16] и др. В теоретическом плане гидразоны представляют интерес как амбидентные лигандные системы, для которых характерно наличие в растворах органических растворителей равновесия различных таутомерных форм, что позволяет получать комплексы переходных металлов различного типа и строения — аддукты, или молекулярные комплексы (**MK**), в которых лиганд координирован в нейтральной кетогидразинной форме, и внутрикомплексные соединения (**BKC**), в молекулах которых лиганд обычно находится в депротонированной енолиминной таутомерной форме [17]. Авторами [17, 18] показано, что в комплексах металлов с ароил(ацил)гидразонами замещенных салициловых альдегидов возможна реализация четырех основных типов координации лигандов:

Проведенные в последнее время исследования комплексообразования диоксомолибдена(VI) с анилгилразонами замешенных салиниловых альдегидов убедительно свидетельствуют о том, что состав и строение комплексов существенно зависят от температурных условий синтеза, а также от природы реагирующих компонентов и растворителей [10]. В частности, авторами [10] взаимодействием MoO₂Cl₂ с никотиноилгидразонами замещенных салициловых альдегидов в среде метанола при комнатной температуре получены комплексы состава [MoO₂(HL)(MeOH)]Cl, тогда как реакция ацетилацетоната молибденила MoO₂(Acac)₂ с теми же гидразонами в кипяшем метаноле приводит к образованию моноядерных ВКС [MoO₂(L)(MeOH)]. Обработка моноядерных комплексов парами растворителей или проведение реакций при высоких температурах сопровожлается структурной перестройкой с образованием координационных полимеров [10]. Примечательно, что в мягких условиях (комнатная температура, бензол, эфир) MoO₂Cl₂ реагирует с ацилгидразонами замещенных салициловых альдегидов с образованием МК, аддуктов, MoO₂Cl₂·2H₂L, а не ВКС [19].

В настоящем сообщении представлены результаты исследования методами ИК-спектроскопии и рентгеноструктурного анализа (РСА) сольватокомплекса диоксомолибдена(VI) $[MoO_2(L)(Me_2SO)]$ (I) с малоизученным ацилгидразоном — производным 5-нитросалицилового альдегида и гидразида никотиновой кислоты (H_2L) ($R = 3 - C_5H_4N$), а также свободной молекулы H_2L . Реакцией MoO_2Cl_2 с H_2L в тетрагидрофуране получен МК MoO₂Cl₂·2H₂L (II) и рассмотрено его возможное строение. Поскольку в сольватокомплексах типа I "сольватная" молекула координирована с атомом молибдена, структурную формулу подобных соединений естественно заключить в квадратные скобки: $[MoO_2(L^n)(Solv)], n = 0-11, Solv = Me_2SO, MeOH,$ EtOH. OPPh₂.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. Исходный ацилгидразон получали аналогично [19] конденсацией 5-нитросалицилового альдегида с эквимолярным количеством гидразида никотиновой кислоты в этаноле. Получены желтые кристаллы с *t*_{пл} = 271–273°C.

	С	Н	Ν
Найдено, %:	54.68;	3.64;	19.65.
Для C ₃ H ₁₀ N ₄ O ₄			
вычислено, %:	54.55;	3.52;	19.57.

Комплекс I синтезировали методом лигандного обмена между ацетилацетонатом молибденила и H₂L в среде кипящего метанола. К горячему раствору 0.326 г (0.001 моль) $MoO_2(Acac)_2$ в 20 мл метанола добавляли раствор 0.286 г (0.001 моль) H_2L в 10 мл метанола, затем по каплям добавляли 0.5 мл диметилсульфоксида и кипятили реакционную смесь в течение получаса. Смесь оставляли при комнатной температуре для кристаллизации. Выпавшие желтые кристаллы отделяли на фильтре Шотта, промывали холодным метанолом и сушили вначале в токе сухого аргона, затем в эксикаторе над CaCl₂. Выход составил 82% от теоретического. Комплекс десольватируется при нагревании выше 160°C, разлагается выше 300°C.

	С	Н	Ν	Mo
Найдено, %:	36.83;	2.95;	11.54;	19.48.
Для C ₁₅ H ₁₄ MoN ₄ O ₇ S				
вычислено, %:	36.74;	2.88;	11.43;	19.57.

Аддукт II получали взаимодействием диоксодихлорида молибдена с гидразоном в тетрагидрофуране при слабом нагревании до ~40°С и перемешивании в течение 2 ч. Образовавшийся желтый аморфный осадок отделяли на фильтре Шотта, снабженном осушительной системой, и промывали холодным эфиром. Выход комплекса составил 93% от теоретического, $t_{nn} = 157-159$ °C.

	С	Н	Ν	Cl	Mo	
Найдено, %:	40.56;	2.69;	14.60;	9.22;	12.37.	
Для C ₂₆ H ₂₀ Cl ₂ MoN ₈ O ₁₀						
вычислено, %:	40.49;	2.61;	14.53;	9.19;	12.44.	

Элементный анализ проводили с помощью C,H,N-анализатора Carlo-Erba 1106. Содержание молибдена в комплексах определяли прокаливанием навески до весовой формы MoO₃ [19]. Хлор определяли по известной методике Фольгарда.

ИК-спектры соединений регистрировали на спектрометре ИКС-29 в области 3600–400 см⁻¹ (суспензия в вазелиновом масле).

РСА монокристаллов I и H₂L выполнен на автоматическом дифрактометре Enraf-Nonius CAD-4 при комнатной температуре (293 К, графитовый монохроматор, Мо K_{α} -излучение, $\lambda = 0.71073$ Å и Си K_{α} -излучение, $\lambda = 1.54178$ Å соответственно). Поправка на поглощение введена на основании измерений интенсивности эквивалентных отражений [20]. Кристаллографические и экспериментальные данные для комплекса I и H₂L приведены в табл. 1. Обе структуры определены прямым методом и уточнены полноматричным анизотропным МНК по F^2 для всех неводородных атомов [21]. Все атомы водорода найдены из разностного ряда электронной плотности и уточнены изотропно. Структурные характеристики комплекса I и H₂L депонированы в Кембридж-

Таблица 1. Кристаллографические данные и детали РСА для I и H₂L

Параметр	Ι	H ₂ L
Брутто-формула	C ₁₅ H ₁₄ MoN ₄ O ₇ S	C ₁₃ H ₁₁ N ₄ O ₄
M	490.30	287.26
Размер кристалла, мм	$0.17 \times 0.15 \times 0.10$	$0.14 \times 0.13 \times 0.03$
Излучение	$\lambda Mo K_{lpha}$	λCuK
Сингония	Моноклинная	Ромбическая
Пр. гр.	$P2_{1}/c$	Pna2 ₁
Параметры ячейки:		
a, Å	8.388(6)	8.8083(10)
b, Å	19.3105(10)	29.11(2)
<i>c</i> , Å	21.1612(10)	4.781(2)
β, град	93.03(7)	90
<i>V</i> , Å ³	1827.5(1.1)	1225.9(10)
Ζ	4	4
$\rho_{\rm выч},$ г/см ³	1.782	1.551
μ, мм ⁻¹	0.880	1.006
<i>F</i> (000)	984	596
Область θ, град	2.20-29.97	5.25-69.93
Интервалы индексов	$-11 \le h \le 11$ $-14 \le k \le 14$	$-10 \le h \le 10$ $-35 \le k \le 35$
n v	$-29 \le l \le 29$	-5 ≤ l ≤ 5
Всего отражении	15610	8580
Независимых отражении	$(R_{\rm int} = 0.1025)$	$(R_{\rm int} = 0.0664)$
Количество переменных	253	194
$R1(I \ge 2\sigma(I))$	0.0355	0.0365
<i>wR</i> ₂ (все данные)	0.0877	0.1113
Добротность по F^2	0.931	0.881
$\Delta \rho_{\min} / \Delta \rho_{\max}, e / Å^3$	-0.837/0.521	-0.207/0.154

ском банке структурных данных (ССDС, № 2102263 и 2102264 соответственно).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В ИК-спектре комплекса I исчезают полосы поглощения валентных колебаний NH-группы, присутствующие в спектре свободного гидразона при 3210 см⁻¹. В области 1500—1700 см⁻¹ в спектре ацилгидразона наблюдается серия интенсивных полос, обозначаемых как "амид I" (полоса амидной карбонильной группы v(C=O) при 1660 см⁻¹) и "амид II" (полоса δ (N–H) при 1557 см⁻¹) [19]. В спектре комплекса I полосы поглощения "амид I" и "амид II" исчезают, но появляется новая полоса при 1250 см⁻¹, обусловленная колебаниями одинарной связи С–O, что может свидетельство-

вать о координации ацилгидразона в депротонированной имидоалкогольной форме г. Косвенным подтверждением этого предположения являинтенсивности ется увеличение полосы поглощения v(C=N) лиганда (1624 см⁻¹) в результате комплексообразования и ее смещение в низкочастотную область на 8 см⁻¹ в спектре І. Интенсивный дублет при 940 и 907 см⁻¹ относится к асимметричным и симметричным валентным колебаниям группы цис-МоО₂ [19]. В области низких частот полосы поглощения при 635 и 580 см⁻¹ соответствуют колебаниям связей Mo-N(L) и Mo-O(L) [22] Полоса валентных колебаний связи S=O, фиксируемая в спектре свободного ДМСО при 1040 см $^{-1}$, в спектре I понижается на 35 см $^{-1}$, что свидетельствует о координации ДМСО с атомом металла через атом кислорода [23].

На основании результатов ИК-спектроскопии, элементного анализа и литературных данных [24, 25] можно предположить, что в комплексе I атом молибдена имеет искаженную октаэдрическую координацию с двумя оксолигандами *цис*- MoO_2 -группы, атомом азота азометиновой группы и двумя атомами кислорода депротонированной молекулы лиганда L^{2-} (структура *г*). Шестую позицию в координационном октаэдре молибдена занимает атом кислорода сольватной молекулы ДМСО. Данные ИК-спектроскопии подтверждаются результатами монокристального РСА комплекса I.

В ИК-спектре МК II сохраняется полоса поглощения валентных колебаний NH-группы при ~3210 см⁻¹. Полосы поглощения, соответствующие валентным колебаниям связи C=O ("амид I"), также практически не изменяют своего положения, что свидетельствует о неучастии в донорно-акцепторном взаимодействии атома кислорода карбонильной группы. Полосы поглощения "амид II" в спектре комплекса II смещаются незначительно, что является дополнительным подтверждением отсутствия координации органического лиганда через амидный атом кислорода. Отсутствие смещения полосы валентных колебаний гетерокольца (1575 см $^{-1}$) указывает на неучастие в координации с молибденом атома азота пиридинового фрагмента гидразона.

Можно предположить, что в МК, подобно салицилиденалкил(арил)иминам, ацилгидразоны координированы в хиноидной таутомерной форме с локализацией координационной связи на атоме кислорода группы С=О(хиноид) альдегидного фрагмента H₂L. Наблюдаемую в спектре II интенсивную полосу при 1655 см⁻¹, по-видимому, следует отнести к пониженному вследствие комплексообразования карбонильному поглощению хиноидного таутомера молекулы H₂L. Этот вопрос неоднократно обсуждался в литературе (например, [19, 25-27]). Однако окончательное решение вопроса о координации в комплексе II определенной таутомерной формы молекулы лиганда H₂L возможно лишь на основании данных РСА. К сожалению, не удалось получить кристаллы комплекса II, пригодные для проведения прямых рентгеноструктурных исследований.

Строение комплекса I ([MoO₂(L)(Me₂SO)]) установлено методом PCA. Двухосновный лиганд L^{2-} координирован к атому молибдена дважды депротонированным тридентатным *бис*(хелатным) способом (ONO) с образованием двух хелатных колец. Атом N(L) расположен в *транс*-положении к кратносвязанному оксолиганду, два атома O(L) — в *цис*-позициях к лигандам O(оксо) и в *транс*-положении друг к другу. Шестую позицию в координационном октаэдре MoO₅N соединения I занимает атом О сольватной молекулы диметилсульфоксида в транс-позиции к оксолиганду молибдениловой группы MoO₂²⁺. Средняя ллина связи в комплексе I: Mo—O(оксо) 1.690(3) Å. Расстояния Mo-N(L) и Mo-O(ДМСО) (соответственно 2.249(3) и 2.260(3) Å) сильно увеличены вследствие структурного проявления трансвлияния кратносвязанного лиганда О(оксо). Одинарные связи Mo—O(L) в *цис*-положениях к лигандам О(оксо) и в *транс*-позициях друг к другу (среднее значение 1.965(2) Å) заметно короче, чем Mo—O(Solv) (в среднем на 0.295 Å). Лиганд L²⁻ в структуре I при координации с атомом металла замыкает два хелатных кольца, сочлененных по связи M-N: шестичленное MoNC₃O и пятичленное МоN₂CO.

Валентные углы при атоме металла в координационном полиэдре МоО₅N в данной структуре существенно (и закономерно) отклоняются от идеальных значений 90° и 180°. Наибольший угол - $O_{okco}MoO_{okco}$ 105.1(1)°. Четыре угла $O_{okco}MoO(L)$ $97.8(1)^{\circ} - 104.0(1)^{\circ}$. как И $O(5)_{okco}MoN(L)$ 103.0(1)°, также превышают 90°. Углы в металлоциклах O(L)MoN(L) (71.73(9)° и 81.36(9)°) значительно меньше 90° , как и угол N(L)MoO(Solv) (78.95(9)°). Транс-угол O(L)MoO(L) (148.5(1)°) более чем на 30° отклонен от строго линейного значения 180°. Заметно меньше отклонены от 180° углы O_{оксо}MoN(L) (163.0(1)°) и O_{оксо}MoO(Solv) $(168.5(1)^{\circ}).$

Строение комплекса I приведено на рис. 1. В структуре I нет коротких внутри- и межмолекулярных контактов.

Строение органической молекулы H₂L привелено на рис. 2a. В структуре плоские шиклы – фенильный (А, С(1)-С(6)) и пиридильный (Б, C(10)-C(14), N(3)) - связаны зигзагообразной четырехзвенной цепочкой (В) С(8)Н-N(1)-N(2)H—C(9)H. При координации с атомом молибдена дважды депротонированного (по атомам O(2) и N(2)) лиганда L²⁻ некоторые геометрические параметры остаются неизменными (N(1)-N(2) 1.396(3) и 1.378(3), N(1)-С 1.289(4) и 1.282(3), N-O 1.214(5) и 1.226(3) Å соответственно в I и H_2L), тогда как два расстояния (и ряд валентных углов) существенно меняются. При переходе от структуры H₂L к I: а) при координации атома кислорода (O(1) в H₂L, O(3) в I) связь O-C удлиняется от 1.234(3) до 1.327(4) Å; б) при переходе от группы HN(2) к атому N(2)- связь N(2)-С укорачивается от 1.344(3) до 1.294(4) Å. При переходе от структуры H₂L к I меняется также величина (в пределах 3.5°-10.6°) как минимум восьми валентных углов: O(1)C(9)C(10) в H₂L (O(3)C(8)C(9) в I) уменьшается от 121.1(2)° до 115.8(3)°; O(2)C(1)C(2) в H₂L (O(4)C(1)C(6) в I) увеличивается от 117.2(2)° до 122.9(3)°; О(2)С(1)С(6) в H₂L

Рис. 1. Строение комплекса I. Основные межатомные расстояния и валентные углы: Mo(1)–O(2) 1.688(3), Mo(1)–O(5) 1.692(2), Mo(1)–O(3) 1.990(2), Mo(1)–O(4) 1.939(2), Mo(1)–O(1) 2.260(2), Mo–N(1) 2.249(2), N(1)–N(2) 1.396(3), N(1)–C(7) 1.284(4), N(2)–C(8) 1.294(4) Å, N(1)N(2)C(8) 108.8(2)°, N(2)N(1)C(7) 116.6(3)°.

(O(4)C(1)C(2) в I) уменьшается от $122.6(2)^{\circ}$ до $116.9(2)^{\circ}$; N(1)C(8)C(2) в H₂L (N(1)C(7)C(6) в I) увеличивается от $119.6(2)^{\circ}$ до $123.1(3)^{\circ}$; N(1)N(2)C(9) в H₂L (N(1)N(2)C(9) в I) уменьшается от $119.4(2)^{\circ}$ до $108.8(2)^{\circ}$; N(2)C(9)C(10) в H₂L (N(2)C(8)C(9) в I) увеличивается от $116.8(2)^{\circ}$ до $120.3(3)^{\circ}$. Изменение величины указанных валентных углов может свидетельствовать о некотором изменении степени гибридизации центрального атома (С или N).

В структуре H_2L молекулы объединены короткими межмолекулярными контактами (рис. 26), которые можно трактовать как достаточно слабые водородные связи типа D—H...O: N(2)— H(2A)...O(4) #1, O(2)—H(2O)...O(1) #1, N(2)— H(2A)...O(1) #2 (#1 x +1/2, -y + 3/2, z - 1; #2 x, y, z - 1). Соответственно D—H 0.86 (D = N), 0.95(4) (D = O), 0.86 (D = N); H...O 2.45, 1.78(4), 2.50; D...O 3.186(3) (D = N), 2.708(2) (D = O), 3.063(3) (D = N); углы DHO 145° (D = N), 165(3)° (D = O), 124° (D = N).

Комплексные молекулы в структуре I объединены π - π -стэкинг-взаимодействиями, тогда как аналогичные взаимодействия в структуре органической молекулы H₂L отсутствуют.

Сходное строение с соединением I имеют еще девять сольватных комплексов $MoO_2L^n \cdot Solv$ с основаниями Шиффа $(L^n)^{2-}$ – тридентатными

(O,N,O) бис(хелатными) гидразоновыми лигандами: [MoO₂L¹(MeOH)] (исследован методом РСА при 150 (IIIa) [28] и 293 К (IIIб) [29]), $[MoO_2L_2(Me_2SO)]$ (IV) [28], $[MoO_2L_3(MeOH)]$ (V) $[30], [MoO_2L^4(OPPh_3)]$ (VI) $[31], [MoO_2L^5(MeOH)]$ $[MoO_2L^6(MeOH)]$ (VII) [29]. (VIII) [29]. $[MoO_2L^7(MeOH)]$ (IX) [32], $[MoO_2L^8(MeOH)]$ (X) [24] и [MoO₂L⁹(EtOH)] (**XI**) [31]; H₂L¹ – изоникотиноилгидразон ацетилацетона $C_{11}H_{12}N_3O_2; H_2L^2$ – безоилгидразон бензоилацетона $C_{17}H_{11}N_2O_2; H_2L^3$ бензоилгидразон салицилового альдегида $C_{14}H_{13}N_2O_2$; H_2L^4 – бензоилгидразон бензоилацетона C₁₇H₁₄N₂O₂, H₂L⁵ - (4-оксо-4-фенилбутан-2-илиден)изоникотиноилгидразид С₁₆H₁₅N₃O₂, H_2L^6 – (2,3-дигидроксибензилиден)бензогидразид $C_{14}H_1N_2O_3$, H_2L^7 – изоникотиноилгидразон салицилового альдегида $C_{13}H_{11}N_3O_2$; $H_2L^8 - \alpha$ нафтилацетилгидразон салицилового альдегида $C_{19}H_{16}N_2O_2$, H_2L^9 – конденсат 5-нитросалицилальдегида и никотингидразида C₁₃H₁₀N₄O. Геометрические параметры комплексов III-XI сопоставимы с большинством аналогичных величин в исследованном нами соединении I (табл. 2): интервал значений Мо=О(оксо) 1.684-1.698; Mo-N(Lⁿ)_{*mpahc*} 2.216-2.254, Mo-O(Lⁿ)_{*uuc*} 1.956-

Рис. 2. Строение органического соединения H_2L (а). Основные межатомные расстояния и валентные углы: N(1)-N(2) 1.378(3), N(1)-C(8) 1.282(3), N(2)-C(9) 1.344(3) Å, N(1)N(2)C(9) 119.4(2)°, N(2)N(1)C(8) 115.1(2)°. Упаковка структурных единиц в соединении H_2L (б). Пунктирными линиями показаны водородные связи.

1.988 Å. Исключение составляют длины связей Мо— $O(Solv)_{mpahe}$, разброс значений для которых достаточно велик (2.239–2.392 Å). При этом минимальное расстояние Мо– $O(Solv)_{mpahe}$ — для сольватной молекулы трифенилфосфиноксида в структуре VI (2.239 Å). Аналогичные связи для Solv = Me₂SO в структуре I и IV несколько длиннее (2.260 и 2.316 Å), а связи Мо– $O(MeOH)_{mpahe}$ в структуре IIIа, III6, V, VII—X — самые длинные (2.333–2.392 Å). Расстояние Мо– $O(EtOH)_{mpahe}$ в структуре XI (2.290 Å) имеет промежуточное значение.

ЗАКЛЮЧЕНИЕ

Приведенные результаты исследования с учетом ранее полученных данных [19] убедительно свидетельствуют о возможности получения с ацилгидразонами ароматических *о*-оксиальдегидов как внутрикомплексных соединений диоксомолибдена(VI), так и комплексов молекулярного типа — аддуктов. Вопрос о строении последних и координации центральным атомом определенных таутомерных форм ацилгидразонов остается дискуссионным, поскольку до сих пор не удается получить кристаллы, пригодные для РСА, а выводы о строении МК основываются лишь на данных спектроскопических исследований, что интерпретируется достаточно неоднозначно. Напротив, согласно результатам рентгеноструктурных исследований, в сольватокомплексах диоксомолибдена(VI) с ацилгидразонами, как и в комплексах других *d*-металлов [32–35], лиганд координируется в дважды депротонированной имидоалкогольной таутомерной форме с образованием пяти- и шестичленного хелатных металлоциклов (20, N бис-хелатный тридентатный тип координации). Шестую позицию в координационном октаэдре молибдена занимают донорные атомы органических растворителей (Solv) в *транс*-позиции к оксолиганду цис-МоО₂-группы. При этом расстояния Mo-N(L) и Mo-O(Solv) сильно увеличены по сравнению со стандартными значениями вследствие структурного проявления трансвлияния кратносвязанного лиганда О(оксо).

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ ДИОКСОМОЛИБДЕНА(VI)

Комплекс	Мо=О(оксо)	$Mo-O(L^n)_{uuc}$	$Mo-N(L^n)_{mpahc}$	Mo-O(Solv) _{mpahc}	$\Delta (=O)^*$	Источник
$[MoO_2(L)(Me_2SO)] (I)$	1.690(3)	1.965(2)	2.249(3)	2.2600(3)	0.295	Наст.
						работа
[MoO ₂ (L ¹)(MeOH)], 159K (IIIa)	1.698(2)	1.985(2)	2.216(2)	2.333(2)	0.348	[28]
[MoO ₂ (L ¹)(MeOH)], 293K (III6)	1.695(2)	1.988(2)	2.219(2)	2.351(2)	0.363	[29]
$[MoO_2(L^2)(Me_2SO)]$ (IV)	1.695(3)	1.969(3)	2.217(3)	2.316(3)	0.317	[28]
$[MoO_2(L^3)(MeOH)]$ (V)	1.694(3)	1.961(3)	2.243(3)	2.356(3)	0.395	[30]
$[MoO_2(L^4)(OPPh_3)] (VI)$	1.694(2)	1.960(2)	2.226(4)	2.239(2)	0.279	[31]
$[MoO_2(L^5)(MeOH)]$ (VII)	1.697(2)	1.958(1)	2.245(2)	2.367(2)	0.404	[29]
$[MoO_2(L^6)(MeOH)]$ (VIII)	1.693(3)	1.964(2)	2.245(2)	2.359(3)	0.395	[29]
$[MoO_2(L^7)(MeOH)] (IX)$	1.696(3)	1.965(2)	2.250(2)	2.333(2)	0.368	[32]
$[MoO_2(L^8)(MeOH)]$ (X)	1.690(3)	1.956(3)	2.224(4)	2.392(4)	0.436	[24]
$[MoO_2(L^9)(EtOH)]$ (XI)	1.684(4)	1.977(4)	2.254(4)	2.290(4)	0.313	[31]
	1.690(3)	1.956(3)	2.224(4)	2.392(4)	0.436 [24]	

Таблица 2. Средние межатомные расстояния (Å) в мономерных октаэдрических комплексах $[MoO_2(L^n)]$ ·Solv

*∆(=О) – разность длин связей [Mo–O(Solv)] – [Mo–O(L)].

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Машковский М.Д.* Лекарственные средства. М.: Новая волна, 2019. 1216 с.
- Xia L.X., Xia Y.F., Huang L.R. et al. // Eur. J. Med. Chem. 2015. V. 97. P. 83. https://doi.org/10.1016/j.ejmech.2015.04.042
- 3. *Cvijanović D., Pisk J., Pavlović G. et al.* // New. J. Chem. 2019. V. 43. P. 1791.
- 4. *Küçük H.B., Mataraci E., Çelik B.Ö.* // Turkish J. Chem. 2015. V. 1. № 1. P. 1. https://doi.org/10.3906/kim-1502-122
- Kaplanek R., Havlik M., Dolensky B. et al. // Bioorg. Med. Chem. 2015. V. 23. P. 1651. https://doi.org/10.1016/j.bmc.2015.01.029
- Singh V.P., Gupta P. // J. Enzym. Inhib. 2008. V. 23. P. 797. https://doi.org/10.1080/14756360701733136
- Singh V.P., Singh S., Singh D.P. // J. Enzym. Inhib. 2012. V. 27. P. 319. https://doi.org/10.3109/14756366.2011.588228
- Backes G.L., Neuman D.M., Jursic B.S. // Bioorg. Med. Chem. 2014. V. 22. № 17. P. 4629. https://doi.org/10.1016/j.bmc.2014.07.022

- 9. Bikas R., Lippolis V., Noshiranzadeh N. et al. // Eur. J. Inorg. Chem. 2017. V. 6. P. 999.
- Vrdoljak V., Mandarić M., Hrenar T. et al. // Cryst. Crowth Des. 2019. V. 19. P. 3000. https://doi.org/10.1021/acs.cgd.9b0023
- Pisk J., Bilić L., Đaković M. et al. // Polyhedron. 2018.
 V. 145. P. 70.
- Cordas C.M., Moura J.J.G. // Coord. Chem. Rev. 2019. V. 394. P. 53.
- Asha T.M., Kurup M.R.P. // Polyhedron. 2019. V. 169. P. 151.
- Kuriakose D., Kurup M.R.P. // Polyhedron. 2019. V. 170. P. 749.
- Jaiswal V, Gupta S.R., Rastogi R.B. et al. // J. Mater. Chem. A. 2015. V. 3. № 9. P. 5092. https://doi.org/10.1039/c4ta05663a
- Rastogi R.B., Maurya J.L., Jaiswal V. // Tribol. Trans. 2013. № 56. P. 592. https://doi.org/10.1080/10402004.2012.748115
- Коган В.А., Зеленцов В.В., Ларин Г.М., Луков В.В. Комплексы переходных металлов с гидразонами: Физико-химические свойства и строение. М.: Наука, 1990. 112 с.
- Burlov A.S., Vlasenko V.G., Chal'tsev B.V. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 7. P. 439. https://doi.org/10.1134/S1070328421070010
- 19. Абраменко В.Л., Гарновский А.Д., Абраменко Ю.В. // Коорд. химия. 1994. Т. 20. № 1. С. 39.
- 20. *Sheldrick G.M.* SADABS. Program for scaling and correction of area detector data. University of Gottingen. Germany, 1966.
- 21. *Sheldrick G.M.* // Acta Crystallogr. 2015. V. 71C. № 1. P. 3.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 5 2022

- 22. Sergienko V.S., Abramenko V.L., Surazhskaya M.D. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 495. https://doi.org/10.1134/S0036023620040166
- 23. *Беллами Л.* Инфракрасные спектры сложных молекул. М.: Изд-во иностр. литер., 1963. 592 с.
- Сергиенко В.С., Абраменко В.Л., Миначева Л.Х. // Коорд. химия. 1993. Т. 19. № 1. С. 28.
- Abramenko V.L., Sergienko V.S. // Russ. J. Inorg. Chem. 2009. V. 54. № 13. P. 2031. https://doi.org/10.1134/S00360236091.30014
- 26. *Гарновский А.Д. //* Коорд. химия. 1992. Т. 18. № 7. С. 675.
- Гарновский А.Д., Васильченко И.С., Гарновский Д.А. Современные аспекты синтеза металлокомплексов. Основные лиганды и методы. Ростов-на-Дону: ЛаПО, 2000. 355 с.
- 28. Сергиенко В.С., Абраменко В.Л., Чураков А.В., Суражская М.Д. // Журн. неорган. химии. 2021. Т. 66.

№ 12. C. 1732.

https://doi.org/10.31857/S0044457X21120151

- Nandy M., Shit S., Rizzoli C. et al. // Polyhedron. 2015. V. 88. № 1. P. 63. https://doi.org/10.1016/j.poly.2014.12.017
- 30. Banße W., Ludwig E., Schilde U., Uhlemann E. // Z. Anorg. Allg. Chem. 1995. Bd. 621. № 8. S. 1275.
- Kargar H., Forootan P., Fallah-Mehrijatdi M. et al. // Inorg. Chim. Acta. 2021. V. 523. P. 120414. https://doi.org/10.1016./j.icf.2021.1204414
- Юсупов В.Г., Насирдинов С.Д., Якимович С.И., Парпиев Н.Я. // Коорд. химия. 1984. Т. 10. № 3. С. 387.
- Ludwig E., Hefele H., Uhlemann E. et al. // Z. Anorg. Allg. Chem. 1995. Bd. 621. № 1. S. 23.
- 34. *Hefele H., Ludwig E., Uhlemann E. et al.* / Z. Anorg. Allg. Chem. 1995. Bd. 621. № 9. S. 1431.
- 35. *Banße W., Ludwig E., Schilde U. et al.* // J. Inorg. Biochem. 1995. V. 59. № 2–3. P. 730.