____ НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ ___ И НАНОМАТЕРИАЛЫ

УДК 546.657

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТЕМПЕРАТУРЫ ОТЖИГА НА КРИСТАЛЛИЗАЦИЮ НАНОЧАСТИЦ Nd₂O₃, СИНТЕЗИРОВАННЫХ МЕТОДОМ ОСАЖДЕНИЯ

© 2022 г. О. Э. Абдурахмонов^{а,} *, М. Э. Алисултанов^а, Д. А. Вертаева^а, А. Г. Мурадова^а

^а Российский химико-технологический университет им. Д.И. Менделеева, Миусская пл., 9, Москва, 125047 Россия

*e-mail: odilzhon.abdurakhmonov@mail.ru Поступила в редакцию 14.02.2022 г. После доработки 15.03.2022 г. Принята к публикации 16.03.2022 г.

Химическим методом осаждения синтезированы наностержни Nd(OH)₃. Термическим отжигом Nd(OH)₃ получен Nd₂O₃. Для определения термических эффектов, при которых проходят фазовые переходы, проведены термический и рентгенофазовый анализы. По определенным термическим эффектам проведен отжиг образца при температурах 330, 635, 794°C. С помощью сканирующей и просвечивающей электронной микроскопии определены размеры полученных наностержней соединений неодима. Методом инфракрасной спектроскопии изучен процесс дегидратации OHгрупп при температурном отжиге. Во время отжига аморфного порошка при температуре 330°C получены наностержни Nd(OH)₃ со средней длиной 29 нм и диаметром 4 нм. Выявлено, что при температуре 794°C образовывались наностержни Nd₂O₃ с гексагональной кристаллической структурой. Средний размер наностержней в длине увеличился до 118 нм, в диаметре – до 28 нм.

Ключевые слова: наностержни, гидроксид неодима, оксид неодима **DOI:** 10.31857/S0044457X22070029

введение

На сегодняшний день наблюдается тенденция развития рынка электродвигателей и электроники в общем. Для миниатюризации электродвигателей и электроники требуется использование постоянных магнитов с высокими магнитными характеристиками и маленьким размером, этим обусловлен рост рынка постоянных магнитов [1]. Во многих электронных устройствах используются компоненты хранения информации, динамики и т.д., они требуют использования постоянных магнитов с высокими магнитными характеристиками [2, 3]. Важными характеристиками являются коэрцитивная сила и намагниченность, на них влияют такие факторы, как размер, форма и ориентация частиц [4].

На сегодняшний день постоянные магниты на основе сплава Nd–Fe–B имеют наибольшие значения коэрцитивной силы и магнитной энергии, что позволяет эффективно использовать их в устройствах, подверженных воздействию высоких внешних размагничивающих магнитных полей [5].

Физические методы – основные способы получения постоянных магнитов Nd–Fe–B, в их основе лежит процесс получения сплава Nd–Fe–B с последующим измельчением до порошков. Далее проводят ориентацию полученных порошков в магнитном поле и спекание [6–9]. Однако физические методы имеют множество недостатков таких, как высокая энергозатратность, сложность контроля размера получаемых частиц, использование в качестве исходного сырья дорогостоящих металлов высокой чистоты, длительное время производства [10]. Все вышеперечисленные факторы влияют на магнитные характеристики и себестоимость получаемой продукции [11]. Следовательно, необходима разработка альтернативного метода получения наноструктурированного сплава Nd—Fe—B.

Химические методы получения наноструктурированного сплава Nd–Fe–В являются многообещающей альтернативой физическим методам из-за их простоты и масштабируемости [12–14]. Они позволяют контролировать размер получаемых наночастиц. Кроме того, химические методы имеют такие преимущества, как контролируемый гранулометрический состав, низкие энергозатраты, что влияет на магнитные характеристики и стоимость готовой продукции [15–17].

Ранее мы сообщали о химическом синтезе наноструктурированного сплава Nd—Fe—B [18]. Для получения которого важна однородность и большая удельной площадь поверхности исходных наночастиц оксида неодима, оксида железа и оксобората железа, используемых в качестве основных компонентов для получения наноструктурированного сплава Nd—Fe—B. Эти факторы очень важны для высокой реакционной способности и низкой температуры образования наноструктурированного сплава Nd—Fe—B.

На сегодняшний день представлено небольшое количество работ по получению наночастиц оксида неодима. Для синтеза наночастиц гидроксида и оксида неодима применяют различные методы: гидротермальный [19-21], золь-гель [22, 23], темплатный [24–26], микроэмульсионный [27], осаждения [28-30], электрохимический [31], плазменный [32] и др. Химический метод осаждения – это один из простых, дешевых, он требует небольшого количества специального оборудования и условий [33]. Имеются сообщения о синтезе наночастиц Nd_2O_3 этим методом. Например, в работе [28] получили наночастицы Nd₂O₃ термическим разложением осадка, полученного взаимодействием нитрата неодима с осадителем NH₄HCO₃. В данной работе не обсуждался процесс разложения полученных наночастиц до Nd₂O₃ и их фазовый состав.

Цель работы — исследование влияния температуры отжига на кристаллизацию наночастиц Nd_2O_3 . Задачи исследования: синтезировать наностержни (**HC**) Nd_2O_3 , определить фазовые переходы $Nd(OH)_3$ в NdOOH и Nd_2O_3 .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

HC Nd(OH)₃ получены методом осаждения. В качестве осадителя использовали гидроксид натрия. Синтез HC состоит из двух последовательных стадий. На первой стадии получили промежуточный продукт — наночастицы гидроксида неодима:

 $Nd(NO_3)_3 + 3NaOH \rightarrow Nd(OH)_3 + 3NaNO_3, (1)$

на второй проводили отжиг полученного Nd(OH)₃:

$$2Nd(OH)_3 \rightarrow Nd_2O_3 + 3H_2O.$$
 (2)

Используемые реактивы: гексагидрат нитрата неодима $Nd(NO_3)_3 \cdot 6H_2O$, гидроксид натрия NaOH с классификацией (х. ч.) и бидистиллированная вода. Готовили 0.02 М водный раствор Nd(NO₃)₃ и водный раствор NaOH с концентрацией 0.12 М. Термостатирование полученных растворов Nd(NO₃)₃ и NaOH проводили до температуры 90°C. Затем с помощью перистальтического насоса в раствор Nd(NO₃)₃ по каплям добавляли водный раствор NaOH. Синтез проводили при интенсивном перемешивании (1200 об./мин) с помощью магнитной мешалки и при поддержании постоянной температуры в растворе 90°С. После смешения исходных растворов полученный раствор выдерживали в течение 15 мин при заданной температуре. Полученный осадок Nd(OH)₃ отделяли центрифугированием (3000 об./мин, 5 мин) и промывали 3 раза бидистиллированной водой. Затем осадок высушивали при температуре 100°С в течение 90 мин.

Для определения размера и формы НС использовали просвечивающий электронный микроскоп (ПЭМ) JEM-100СХ (Jeol, Япония). Исследование НС методом сканирующей электронной микроскопии (СЭМ) выполняли с помощью JEOL JEM-6510LV. Фазовый состав образцов определяли по дифракционной картине рентгеновского излучения на поликристаллических порошках. Дифрактограммы снимали на приборе D2 Phaser (Bruker-AXS, Германия), излучение CuK_a , фильтр — Ni, с графитовым монохроматором ($\lambda = 1.54178$ Å). Режим трубки (Cu) 10 мА, 30 кВ. Диапазон значений угла 20 от 10° до 90°, шаг 0.02° , шель 0.6 мм, выдержка в точке -1 с, дискриминатор по энергиям – 0.17–0.23 кэВ. Расшифровку спектра и расчет фазового состава осуществляли с помощью библиотеки JCPDS-ICDD с использованием специализированного программного обеспечения. Термический анализатор (STA 449 F5 Jupiter, Netzsch, Германия) использовали для записи профилей термогравиметрической/сканирующей калориметрии (ТГ/ДСК). Для измерений брали свежеприготовленный гидроксид неодима с начальной массой 8.61 мг. Анализ проводили в инертной атмосфере азота, образцы прогревали до 900°С со скоростью увеличения температуры 10 град./мин. ИК-спектры образцов получали с помощью спектрофотометра ИК-Фурье Nicolet 380 (Thermo Scientific, США) в области измерения 400-4000 см⁻¹. Отжиг образцов проводили в муфельной печи Nabertherm (Nabertherm, Германия).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для изучения изменений в кристаллической структуре с повышением температуры полученные порошки гидроксида неодима исследовали методом ДСК/ТГ (рис. 1). На кривой ДСК анализа можно наблюдать несколько экзотермических эффектов при температурах 330, 559, 635 и 794°С. На производной от кривой ТГ зафиксировано два пика при температуре 330 и 635°С, которые совпадали с двумя термическими эффектами ДСК анализа. По данным ТГ анализа, первая стадия потери веса происходила постепенно, между 29-330°С. Потеря массы составила 8.92%. При последующем изменении температуры в диапазоне 330-635°С наблюдалась потеря массы 12.08%, что связано с частичной дегидратацией гидроксильных групп в Nd(OH)₃. В диапазоне температур

Рис. 1. Кривые ДСК/ТГ анализа для синтезированных Nd(OH)₃.

635–900°С потеря массы составила 3.43%, это связано с полной дегидратацией. Для подробного изучения изменений, происходящих в образце при выше указанных термических эффектах ДСК/ТГ, проведен отжиг образцов при температурах 330, 635 и 794°С и РФА. На рис. 2 представлена дифракторамма образца после сушки и образцов, отожженных при температурах 330, 635 и 794°С.

По представленным на рис. 2 дифрактограммам определен фазовый состав полученных образцов в зависимости от температуры отжига. На дифрактограмме исходного образца расположение пиков соответствуют гексагональной структуре Nd(OH)₃ с пр. гр. *P*63/*m* и параметрами решетки a = b = 6.442, c = 3.756 Å по базе JSPDS № 06-0601 (рис. 2д) [34]. По ширине и высоте дифракционных пиков с помощью формулы Шеррера определен размер кристаллитов, он составлял 10 нм. Степень кристалличности образца определяли по данным РФА расчетным способом по формуле:

$$\chi_c = \frac{A_c}{A_c + A_a}$$

где χ_c — кристалличность образца, A_c — площадь кристаллических пиков, A_a — площадь аморфных пиков.

После отжига образца при температуре 330°С можно заметить, что пики стали менее интенсивными по сравнению с исходным. Это можно объ-

яснить тем, что более крупные частицы Nd(OH)₃ могли начать рассыпаться при дегидратации, что еще сильнее ухудшило дифракцию. Это подтверждает степень кристалличности данного образца, она составила 28.61%. После отжига образцов неодима при температуре 635°С пики, относящейся к Nd(OH)₃, не наблюдались. Но отмечены новые пики, относящиеся к NdOOH и Nd₂O₃. Образование NdOOH связано со вторым этапом дегидратации: $2Nd(OH)_3 \rightarrow 2NdOOH + 2H_2O$ [35]. После отжига образца при 794°С на дифрактограмме пики, относящейся к NdOOH, не наблюдались. Все полученные пики совпадают с Nd₂O₃. Все полученные пики по данным JSPDS № 43-1023 [36] относятся к гексагональной структуре Nd₂O₃ с пр. гр. Р6/тт с параметрами решетки a = b = 6.165, c = 3.217 Å. На основании расшифровки полученных дифрактограмм сделан вывод, что Nd(OH)₃ при температуре 635°C образуется смесь NdOOH и Nd₂O₃, а при повышении температуры до 794°С – Nd₂O₃.

Морфологию синтезированных частиц гидроксида неодима исследовали с помощью ПЭМ и СЭМ. Можно заметить, что полученные порошки после сушки состоят из агрегатов аморфных частиц Nd(OH)₃ (рис. 3).

После отжига образца при 330°С (рис. 4а) частицы имели форму HC, длиной 29 нм и диаметром 4 нм. Данные образцы имели характерный для соединения Nd(OH)₃ светло-сиреневый цвет.

Рис. 2. Дифрактограммы: *а* – частиц Nd(OH)₃, высушенных при 100°С, прокаленных при температуре: δ – 330, *в* – 635, *е* – 794°С; *е* – стандартная дифрактограмма Nd(OH)₃ JSPDS № 06-0601, ∂ – стандартная дифрактограмма Nd₂O₃ JSPDS № 43-1023.

У образцов после отжига при 635° С (рис. 4в) увеличились размеры, длина до 53 нм, а диаметр – до 9 нм. При отжиге образца при 794°С (рис. 4д) средний размер частиц также увеличился: длина до 118 нм, а диаметр до 28 нм. Визуально выявлено, что при увеличении температуры отжига проходило "осветление" образца. Отожженный образец имел голубовато-серый цвет, характерный для Nd₂O₃.

Для дальнейшего изучения структуры проанализировали ИК-спектры образцов (рис. 5). В спектре исходного образца обнаружено несколько пиков, в том числе узкий пик при 3608 см⁻¹ и более широкий пик 3450 см⁻¹, который можно отнести к валентному колебанию ОН-группы в Nd(OH)₃ [37, 38]. Пики при 684 и 847 см⁻¹ относятся к колебаниям связи OH-группы в Nd(OH)₃ [39]. Два пика при 1388 и 1495 см⁻¹ относятся к связям соединений OH-группы в Nd(OH)₃ соответственно [35].

Для образцов, отожженных при температурах 330 и 450°С (рис. 56, 5в), интенсивность колебания связей ОН-группы уменьшилась. При температуре 450°С (рис. 5в) в спектре образца наблюдалось появление интенсивных пиков 857 и 1474 см⁻¹, которые относятся к колебаниям связи ОН-группы в NdOOH [33]. После отжига при температуре 635°С (рис. 5г) интенсивность пиков 857 и 1474 см⁻¹ увеличивается. В образцах после отжига при 794°С (рис. 5е) пики, относящиеся к колебаниям связи ОН-группы, не наблюдались, но появились пики области поглощения 412 и 450 см⁻¹, они относятся к колебаниям связи Nd–O [40] изза образования нового соединения Nd₂O₃.

Рис. 3. Изображения высушенных после синтеза исходных аморфных частиц неодима Nd(OH)₃: а – СЭМ, б – ПЭМ.

Рис. 4. Изображение с электронного микроскопа и распределение частиц по размерам: а – ПЭМ изображение Nd(OH)₃, б – распределение наностержней Nd(OH)₃ по размерам для образца, прокаленного при 330°С; в – ПЭМ изображение NdOOH, Γ – распределение наностержней NdOOH по размерам для образца, прокаленного при 635°С; в – ПЭМ изображение Nd₂O₃, е – распределение наностержней Nd₂O₃ по размерам для образца, прокаленного при 794°С.

Рис. 5. ИК-спектры синтезированных частиц $Nd(OH)_3$ после осаждения (*a*), прокаленных при 330 (*б*), 450 (*в*), 635 (*г*), 794°С (*d*).

ЗАКЛЮЧЕНИЕ

Методом химического осаждения с последующим отжигом получены HC Nd₂O₃ с гексагональной кристаллической структурой. Средний размер составлял 118 нм в длину и 28 нм в диаметре. Выявлено, что при повышении температуры отжига от 330 до 794°С наблюдается структурно-фазовый переход. Показано, что при 330°С происходит частичная дегидратация Nd(OH)₃ с образованием смеси аморфной и кристаллической структур. Средний размер полученных НС Nd(OH)₃ составлял 29 нм в длину и 4 нм в диаметре. При увеличении температуры до 635°С по данным РФА наблюдалось образование НС смеси NdOOH и Nd₂O₃. Средний размер HC составлял 53 нм в длину и 9 нм в диаметре. При температуре 794°С наблюдается полное образование Nd₂O₂. Полученные HC Nd₂O₃ применяли в качестве основного компонента для химического синтеза наноструктурированного сплава Nd-Fe-B.

БЛАГОДАРНОСТЬ

Исследования методом сканирующей электронной микроскопии выполнены на оборудовании Центра коллективного пользования РХТУ им. Д.И. Менделеева.

Исследования методом просвечивающей электронной микроскопии выполнены на оборудовании Центра коллективного пользования ФИЦ биотехнологии РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Конфликт интересов отсутствует.

ИНФОРМАЦИЯ О ВКЛАДЕ АВТОРОВ

О.Э. Абдурахмонов — идея и планирование экспериментов, термическая обработка экспериментальных образцов, анализ экспериментальных данных, написание статьи. М.Э. Алисултанов — получение наночастиц гидроксида неодима, написание статьи. Д.А. Вертаева — получение наночастиц гидроксида неодима. А.Г. Мурадова — организация инструментальных исследований, анализ экспериментальных данных, написание статьи. Все авторы участвовали в обсуждении результатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Coey J.M.D. // Eng. 2020. V. 6. № 2. P. 119. https://doi.org/10.1016/j.eng.2018.11.034
- An X., Jin K., Abbas N. et al. // J. Magn. Magn. Mater. 2017. V. 442. P. 279. https://doi.org/10.1016/j.jmmm.2017.06.071
- 3. *Harimoto D., Matsuura Y., Hosokawa S.* // J. Jpn. Soc. Powder Powder Metallurgy. 2006. V. 53. № 3. P. 282. https://doi.org/10.2497/jjspm.53.282
- 4. Skomski R., Coey J.M.D. // Permanent Magnetism. 1999. https://doi.org/10.1201/9780203743829
- 5. *München D.D., Veit H.M.* // Waste Manag. 2017. V. 61. P. 372.
 - https://doi.org/10.1016/j.wasman.2017.01.032
- Levingston J.M., Pozo-López G., Condo A.M. et al. // Mater. 2018. V. 2. P. 122. https://doi.org/10.1016/j.mtla.2018.07.016
- Hussain M., Liao X., Akram R. et al. // J. Alloys Compd. 2020. V. 845. P. 156292. https://doi.org/10.1016/j.jallcom.2020.156292
- 8. *Zha W., Liu J., Song T. et al.* // J. Rare Earths. 2011. V. 29. № 1. P. 94. https://doi.org/10.1016/S1002-0721(10)60408-5
- 9. Savchenko A.G., Menushenkov V.P., Plastinin A.Yu. et al. // Russ. Metall. 2018. V. 2018. № 4. P. 354. https://doi.org/10.1134/S0036029518040134
- Rahimi H., Ghasemi A., Mozaffarinia R. et al. // J. Magn. Magn. Mater. 2017. V. 444. P. 111. https://doi.org/10.1016/j.jmmm.2017.08.011
- Wakayama H., Yonekura H. // Mater. Chem. Phys. 2019. V. 227. P. 265. https://doi.org/10.1016/j.matchemphys.2019.01.073
- Tan X., Parmar H., Zhong Y. et al. // IEEE Magn. Lett. 2017. V. 8. P. 5508805. https://doi.org/10.1109/LMAG.2017.2746039
- Tan X., Parmar H., Zhong Y. et al. // J. Magn. Magn. Mater. 2019. V. 471. P. 278. https://doi.org/10.1016/j.jmmm.2018.09.017
- 14. *Rahimi H., Ghasemi A., Mozaffarinia R. et al.* // J Supercond. Nov. Magn. 2016. V. 29. № 8. P. 2041. https://doi.org/10.1007/s10948-016-3508-0
- 15. Deheri P.K., Swaminathan V., Bhame S.D. et al. // Chem. Mater. 2010. V. 22. № 24. P. 6509. https://doi.org/10.1021/cm103148n

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 7 2022

- *Zhang Q., Jiang Z., Yan B.* // Inorg. Chem. Front. 2014.
 V. 1. № 5. P. 384. https://doi.org/10.1039/C4QI00049H
- Yonekura H., Wakayama H. // Mater. Sci. Eng. B. 2019.
 V. 244. P. 38. https://doi.org/10.1016/j.mseb.2019.04.021
- Abdurakhmonov O.E., Yurtov E.V., Savchenko E.S. et al. // J. Phys.: Condens. Matter. 2020. V. 1688. № 1. P. 012001. https://doi.org/10.1088/1742-6596/1688/1/012001
- Arunpandian M., Selvakumar K., Raja A. et al. // Colloids Surf. A. 2019. V. 567. P. 213. https://doi.org/10.1016/j.colsurfa.2019.01.058
- 20. *Phuruangrat A., Thongtem S., Thongtem T. //* Ceram. Int. 2012. V. 5. № 38. P. 4075. https://doi.org/10.1016/j.ceramint.2012.01.065
- Simonenko T.L., Bocharova V.A., Gorobtsov Ph.Yu. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 9. P. 1292. https://doi.org/10.1134/s0036023620090193
- Sreethawong T., Chavadej S., Ngamsinlapasathian S. et al. // Eur. J. Solid State Inorg. Chem. 2008. V. 10. № 1. P. 20. https://doi.org/10.1016/j.solidstatesciences.2007.08.010
- Yang W., Qi Y., Ma Y. et al. // Mater. Chem. Phys. 2004.
 V. 84. № 1. P. 52. https://doi.org/10.1016/j.matchemphys.2003.09.042
- Huang B., Huang C., Chen J. et al. // J. Alloys Compd. 2017. V. 712. P. 164. https://doi.org/10.1016/j.jallcom.2017.04.009
- 25. *Mohamed R.M., Ismail A.A., Kadi M.W. et al.* // Catal. Today. 2021. V. 380. P. 259. https://doi.org/10.1016/j.cattod.2020.11.002
- 26. Sharapaev A.I., Kuznetsova S.A., Norenko A.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 5. P. 740. https://doi.org/10.1134/S003602362105017X
- Zhu W., Ma J., Xu L. et al. // Mater. Chem. Phys. 2010.
 V. 122. № 2–3. P. 362. https://doi.org/10.1016/j.matchemphys.2010.03.004

- 28. *Malekfar R., Arabgari S., Motamedi K. et al.* // Am. Instit. Physics Conf. Proceed. 2007. V. 929. № 1. P. 162. https://doi.org/10.1063/1.2776708
- 29. *Intaphong P., Phuruangrat A., Yeebu H. et al.* // Russ. J. Inorg. Chem. 2021. V. 66. № 14. P. 2123. https://doi.org/10.1134/S0036023621140047
- Shilova O.A., Nikolaev A.M., Kovalenko A.S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 3. P. 426. https://doi.org/10.1134/S0036023620030134
- Rahman M.M., Wahid A., Alam M.M. et al. // Mater. Today. 2018. V. 16. P. 307. https://doi.org/10.1016/j.mtcomm.2018.07.009
- 32. *Dhamale G.D., Mathe V.L., Bhoraskar S.V. et al.* // Nanotechnology. 2016. V. 27. № 8. P. 085603. https://doi.org/10.1088/0957-4484/27/8/085603
- 33. Guire M.R.D., Bauermann L.P., Parikh H. et al. // Chemical Solution Deposition of Functional Oxide Thin Films. 2013. P. 319. https://doi.org/10.1007/978-3-211-99311-8 14
- 34. *Shi W., Yu J., Wang H. et al.* // J. Nanosci. Nanotech. 2006. V. 6. № 8. P. 2515. https://doi.org/10.1166/inn.2006.540
- 35. *Nagao M., Hamano H., Hirata K. et al.* // J. Langmuir. 2003. V. 19. № 22. P. 9201. https://doi.org/10.1021/la020954y
- 36. García A., Llusar M., Sorlí S. et al. // Br. Ceram. Trans. 2013. V. 101. № 6. P. 242. https://doi.org/10.1179/096797802225008078
- Kępiński L., Zawadzki M., Miśta W. // Solid State Sci. 2004. V. 6. № 12. P. 1327. https://doi.org/10.1016/j.solidstatesciences.2004.07.003
- Zinatloo-Ajabshir S., Mortazavi-Derazkola S., Salavati-Niasari M. // J. Mol. Liq. 2017. V. 234. P. 430. https://doi.org/10.1016/j.molliq.2017.03.115
- 39. Abu-Zied B.M., Khan A. // J. Mater. Res. 2020. V. 9. № 5. P. 10478. https://doi.org/10.1016/j.jmrt.2020.07.006
- 40. *El-Deen L.M.S., Salhi M.S.A., Elkholy M.M.* // J. Alloys Compd. 2008. V. 1–2. № 465. P. 333. https://doi.org/10.1016/j.jallcom.2007.10.104