ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 541.123:546.661'711'21

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ Eu-Mn-O

© 2022 г. Г. А. Бузанов^{а,} *, Г. Д. Нипан^а

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: gbuzanov@vandex.ru

> Поступила в редакцию 31.12.2021 г. После доработки 11.02.2022 г. Принята к публикации 11.02.2022 г.

Методами рентгенофазового анализа исследованы фазовые равновесия в системе Eu–Mn–O для образцов, подвергнутых предварительной механохимической активации и синтезированных при давлении кислорода P_{O_2} 10⁻⁵–10² кПа, а также в восстановительной атмосфере при парциальном давлении водорода $P_{H_2} \sim 5$ кПа. Построены проекции P_{O_2} –Т и *x*–*y* фазовой диаграммы P–*T*–*x*–*y* системы Eu–Mn–O, а также изотермы *x*–*y* квазитройной системы Eu₂O₃–MnO–MnO₂.

Ключевые слова: оксиды европия и марганца, манганиты лантаноидов, перовскит, многокомпонентные системы, мультиферроики

DOI: 10.31857/S0044457X22070054

введение

При изучении мультиферроиков EuMnO₃ [1] и EuMn₂O₅ [2] исследователи часто соотносят физические свойства с идеализированными стехиометрическими соединениями, между тем это нестехиометрические кристаллические фазы [3, 4], гомогенные составы которых зависят от температуры и парциального давления кислорода при синтезе и отжиге, а граничные составы определяются фазами, находящимися с EuMnO₃ и EuMn₂O₅ в равновесии. Сохранение однофазных структур не обеспечивает постоянство химического состава и, как следствие, свойств материалов. Воспроизводимость физических свойств EuMnO₃ (*Pbnm*) со структурой перовскита [5] и EuMn₂O₅ (*pbaM*) [6] связана с получением материалов заданного химического состава при сохранении однофазной структуры, и первым шагом на этом пути является построение фазовой диаграммы системы Eu-Mn-O. Установлено, что диссоциация EuMnO₃ (10⁻⁸ Па < P_{O_2} < 10⁻⁴ Па, 1170 K < T < 1400 K) [7] и EuMn₂O₅ (10^2 Па < P_{O_2} < < 10⁵ Па, 1300 К < T < 1500 К) [8] происходит в соответствии с реакциями:

$$EuMnO_3 = (1/2)Eu_2O_3 + MnO + (1/2)O_2,$$
 (1)

$$EuMn_2O_5 = EuMnO_3 + (1/3)Mn_3O_4 + (1/3)O_2. (2)$$

В работах Балакирева В.Ф. с соавт. [3, 9–13] исследованы фазовые равновесия в системе Eu– Мn–O в изобарических условиях ($P_{O_2} = 21 \text{ к}\Pi a$, 1073 К $\leq T \leq$ 1673 К) [3, 7–12] и при изменении парциального давления кислорода [13]. Это позволило в квазибинарном приближении построить $P_{O_2} - T - x$ фазовую диаграмму (10⁻¹⁵ Па $< P_{O_2} <$ $< 10^5$ Па, 973 К $\leq T \leq$ 1173 К) [13].

В настоящем исследовании при использовании метода механохимической активации и отжига полученных механокомпозитов при варьируемом парциальном давлении кислорода и водорода исследованы фазовые равновесия в системе Eu-Mn-O и с помощью топологического моделирования построены P_{O_2} -*T*- и *x*-*y*-проекции фазовой диаграммы *P*-*T*-*x*-*y* системы Eu-Mn-O, а также *x*-*y*-изотермы квазитройной системы Eu₂O₃-MnO-MnO₂.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве прекурсоров для получения поликристаллитов системы Eu-Mn-O использовали металлический европий (99.99%), а также оксиды Eu₂O₃, MnO₂ и Mn₂O₃ высокой чистоты с содержанием основного компонента не ниже 99.98%. Для получения образцов с точно известным заданным составом оксиды просушивали при 473– 493 К (для Eu₂O₃ – 1173 К). МnO получали пиролизом Mn(CH₃COO)₂ · 4H₂O (573 К, 2 ч) в токе аргона высокой чистоты (не ниже 99.9996% Ar).

Перед синтезом исходную смесь реагентов подвергали механохимической активации в течение 30 мин при частоте 30 Гц в вибрационной мельнице Retsch MM400 (размольные сосуды и шары –

Рис. 1. Дифрактограммы образцов, полученных в восстановительной атмосфере (ток Ar + 5% H₂): $a - 2Eu + 3MnO (1023 K), \delta - Eu_2O_3 + 4.5Mn_2O_3 (1123 K). 1 - Eu_2O_3, 2 - Mn, 3 - MnO.$

нержавеющая сталь, V = 25 мл, $d_{\text{шаров}} = 2-6$ мм, соотношение масс шаров и прекурсоров ~20:1). Синтез проводили в токе кислорода ($P_{\mathrm{O}_2} \sim 100 \ \mathrm{k} \mathrm{\Pi} \mathrm{a}),$ на воздухе ($P_{O_2} \sim 21 \text{ к}\Pi a$), в токе аргона высокой чистоты ($P_{O_2} \sim 0.3$ кПа), в вакууме ($P_{O_2} \sim 10^{-5}$ кПа) и в восстановительной атмосфере 95% Ar + 5% H_2 $(P_{\rm H_2} \sim 5 \, {\rm k}\Pi a)$. Для синтеза на воздухе использовали муфельную печь Nabertherm L5/11 (отжиг в алундовых тиглях), в остальных случаях – кварцевую трубку-реактор диаметром 26 мм, помещенную в горизонтальную трубчатую печь Nabertherm RT 30-200/15 (отжиг в алундовых цилиндрических тиглях, l = 35 мм, $d_{\text{внут}} = 7$ мм, $d_{\text{внеш}} = 10$ мм). Исследования методом РФА выполнены с использованием оборудования ЦКП ИОНХ РАН в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований на рентгеновском дифрактометре Bruker D8 Advance (Си K_{α} -излучение, Ni-фильтр, детектор LYNX-ЕҮЕ, геометрия на отражение, интервал углов $2\theta = 10^{\circ} - 80^{\circ}$ с шагом не более 0.01125°) в низкофоновых кюветах с подложкой из ориентированного монокристаллического кремния. Для ТГ-ДСК-исследований в разных газовых средах (воздух и аргон высокой чистоты) до температуры 1273 К использовали комплекс SDT Q600 V8.3 Build 101. Скорость нагрева составляла 10 град./мин, скорость газового потока 100 мл/мин. Операции, для которых требовалась сухая и/или инертная атмосфера, проводили в боксе СПЕКС ГБ22М (O_2 и $H_2O - 5$ и 10 ppm соответственно).

Рис. 2. Дифрактограммы образцов с соотношением Eu: Mn = 1: 1 и 1: 2. Mn₂O₃ + Eu₂O₃: a - 1073, $\delta - 1273$ K; 2Mn₂O₃ + Eu₂O₃: a - 1073, c - 1173, $\partial - 1273$ K. e -EuMn₂O₅, 923 K. $a - \partial -$ отжиг на воздухе (3 ч), e -отжиг в токе Ar + 5% H₂ (150 мл/мин, 2 ч). 1 – EuMnO₃, 2 – Eu₂O₃, 3 – EuMn₂O₅, 4 – MnO.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Дифрактограммы образцов системы Eu– Mn–O, синтезированных при разных парциальных давлениях кислорода и водорода и различном соотношении компонентов-металлов, представлены на рис. 1–3.

На рис. 1 приведены дифрактограммы образцов, полученных в восстановительной атмосфере. Так, отжиг смеси металлического Eu и MnO (2:3, Ar или Ar + H₂, 923–1023 K, 2–6 ч) неизменно приводит к образованию смеси Mn и Eu₂O₂ (рис. 1, кривая а). В условиях эксперимента с использованием данных прекурсоров образование EuO или Eu₃O₄ не наблюдали. Отжиг смеси Mn_2O_3 и Eu_2O_3 (Eu : Mn = 1 : 9) в токе аргона с 5% H₂ при 1173 К (2 ч) приводит к образованию фазы манганозита, что не противоречит данным о стабильных фазовых равновесиях системы Mn-O [14], при этом Еи₂O₃ в восстановление не вовлекается (рис. 1, кривая б) даже при увеличении температуры до 1323 К (4 ч). При отжиге в среде с бо́льшим Ро, на воздухе или в кислороде наблюдается образование тройных соединений EuMnO₃ и EuMn₂O₅. Получение однофазных образцов EuMnO₃ возможно при температуре не ниже 1273 К (4 ч, воздух) из смесей Eu₂O₃ и Mn₂O₃ (или MnO₂) с эквимолярным соотношением компонентов-металлов (рис. 2, кривые a, δ). При увеличении содержания марганца в смеси (до Eu: Mn = 1:2) и отжиге на воздухе при 1073 К (4 ч) происходит образование фазы $EuMn_2O_5$, которая сосуществует с Eu_2O_3 и EuMnO₃; выше 1073 К (4 ч) наблюдается растворение Eu₂O₃, а при 1273 К образцы становятся однофазными (рис. 2, кривые e-d). Отжиг образцов EuMn₂O₅, полученных вышеуказанным способом, в восстановительной атмосфере (ток Ar + 5% H_2) при 773 К (30 мин) не приводит к получению многофазных смесей, однако с повышением температуры отжига до 923 К (1-2 ч) соединение $EuMn_2O_5$ распадается с образованием Eu_2O_3 , MnO и EuMnO₃ (рис. 2, кривая e). При отжиге в атмосфере кислорода смеси $Eu_2O_3 + + 6MnO_2$ последний присутствует в равновесии до 973 К (2-4 ч, рис. 3, кривые a, δ), с ростом температуры происходит постепенное увеличение содержания Mn₂O₃; твердый раствор на основе Mn₃O₄ присутствует в узком интервале температур и отчетливо наблюдается при 973 К (рис. 2, кривая в). Образование фазы EuMn₂O₅ начинается с 1073 K, при 1173 К в равновесии с ней присутствует только фаза биксбиита — Mn_2O_3 (рис. 3, кривая e).

На основании экспериментальных и литературных данных построены проекции x-y и $P_{O_2}-T$ диаграммы P-T-x-y системы Eu-Mn-O (рис. 4 и 5), на которых представлены субсолидусные фазовые равновесия с участием трех кристаллических фаз и кислорода. Сплошные линии на проекциях –экспериментальные, а штриховые линии – гипотетические. Из-за низкой температуры плавления Mn₂O₇ (~280 K) моновариантное равновесие $EuMn_2O_5-MnO_2-Mn_2O_7-O_2$ (рис. 4) на *P*_{O2}-*T*-проекции не рассматривается. Штриховые ноды EuMnO₃-О и EuMn₂O₅-О на рис. 5 проведены формально и выделяют треугольники. соответствующие дивариантным равновесиям $EuMn_2O_5-Mn_2O_7-O_2$, $EuMnO_3-EuMn_2O_5-O_2$ и Eu₂O₃-EuMnO₃-O₂. Предположение о существовании моновариантного равновесия Eu₂O₃-EuMnO₃-EuMn₂O₅-O₂ экспериментально не подтверждается [9], что, однако, противоречит экспериментальным данным настоящей работы (рис. 2, кривая в) и может быть следствием различия в элементном составе образцов, нода Eu_2O_3 - $EuMn_2O_5$ на *x*-*y*-проекции отсутствует. Цифрами на рис. 4 отмечены области моновариантных равновесий, которым на *P*_{O2}-*T*-проекции (рис. 6) последовательно отвечают линии моновариантных равновесий с участием трех кристаллических фаз и пара. Для областей 1-5 общее давление практически совпадает с парциальным давлением кислорода: $1 - EuMn_2O_5 - Mn_2O_3 - MnO_2 - O_2$ (моноварианта накладывается на моноварианту Mn₂O₃-MnO₂-O₂ бинарной системы Mn-O [15]), 2-EuMn₂O₅-Mn₃O₄-Mn₂O₃-O₂ (моноварианта Mn₃O₄-Mn₂O₃-O₂ для Mn-O [14]), 3 -ЕиМпО₃-ЕиМп₂О₅-Мп₃О₄-О₂ (За [8] и Зб [13] на рис. 5), $4 - EuMnO_3 - MnO - Mn_3O_4 - O_2$ (моновари-

Рис. 3. Дифрактограммы образцов смеси $Eu_2O_3 + 6MnO_2$, подвергшихся отжигу в токе O_2 . a - 873, $\delta - 973$, e - 1073, e - 1173 K. $1 - Mn_2O_3$, $2 - Eu_2O_3$, $3 - MnO_2$, $4 - Mn_3O_4$, $5 - EuMn_2O_5$.

анта MnO-Mn₃O₄-O₂ для Mn-O [15, 16]) и 5 – Eu₂O₃-EuMnO₃-MnO-O₂ (5а [7] и 5б [13] на рис. 5). Марганец и европий преобладают в паре в равновесиях 6-9 (рис. 4), парциальное давление кислорода (рис. 6) оценено из активности в электрохимических ячейках: 6 – Eu₂O₃-Mn-MnO-O₂ (Mn-MnO-O₂ [17]), 7 – Eu₃O₄-Eu₂O₃-Mn-O₂ (Eu₃O₄-Eu₂O₃-O₂ [18-21]), 8 – EuO-Eu₃O₄-Mn-O₂ (EuO-Eu₃O₄-O₂ [18-21]) и 9 – Eu-EuO-Mn-O₂ (Eu-EuO-O₂ [18]). Кроме того, представлены линии парциального давления кислорода при конгруэнтной сублимации (10 – MnO [14, 22], 11 – Eu₂O₃ [14]), отвечающие условно моновариантным равновесиям в бинарных системах:

MnO (крист.) = Mn (пар) +
$$(1/2)O_2$$
, (3)

Eu₂O₃ (крист.) = 2EuO (пар) +
$$(1/2)O_2$$
. (4)

Для соотнесения P_{O_2} -*T*-проекции с концентрационной диаграммой Eu₂O₃-MnO-MnO₂ построены *x*-*y*-изотермы (рис. 6) для ключевых температур при парциальных давлениях, не превышающих 100 кПа. При построении *x*-*y*-изотерм не учитывали нестехиометрию кристаллических фаз и их полиморфизм [23, 24], а также не рассматривали метастабильные состояния в исследуемой тройной [24, 25] и родственных [26-31] системах.

При $T_1 = 700$ К (рис. 6а) EuMnO₃ участвует в равновесиях с Eu₂O₃, MnO, Mn₃O₄ и EuMn₂O₅. В свою очередь, EuMn₂O₅ сосуществует с Mn₃O₄, Mn₂O₃ и MnO₂, но не с Eu₂O₃ [9]. Следовательно, не

Рис. 4. Субсолидусные равновесия в системе Eu-Mn-O (*x*-*y*-проекция *P*-*T*-*x*-*y*-фазовой диаграммы).

Рис. 5. *Р*_{О2}-*Т*-проекция *Р*-*Т*-*х*-*у*-фазовой диаграммы системы Eu-Mn-O.

образуются равновесия Eu_2O_3 - $EuMnO_3$ - $EuMn_2O_5$ - O_2 и Eu_2O_3 - $EuMn_2O_5$ - MnO_2 - O_2 .

При $T_2 = 1000$ К (рис. 6б) и давлении кислорода <100 кПа диссоциирует MnO₂ и не реализуется равновесие EuMn₂O₅-Mn₂O₃-MnO₂-O₂, далее при $T_3 = 1250$ К (рис. 6в) диссоциирует Mn₃O₄ и исчезает равновесие EuMn₂O₅-Mn₃O₄-Mn₂O₃-O₂.

Затем при $T_4 = 1500$ К (рис. 6г) перестает существовать кристаллическая фаза EuMn₂O₅ и вместе с ней равновесие EuMnO₃—EuMn₂O₅—Mn₃O₄—O₂.

В итоге при $T_5 = 2000$ К (рис. 6д) сохранятся оксид MnO и многофазное равновесие Eu₂O₃-EuMnO₃-MnO-O₂. Выше 2500 К в равновесии с кислородом существуют только простые оксиды Eu₂O₃ и MnO.

ЗАКЛЮЧЕНИЕ

Методами рентгенофазового анализа исследованы фазовые равновесия в системе Eu–Mn–O. Образцы, подвергнутые предварительной механохимической активации, синтезированы при давлении кислорода P_{O_2} 10⁻⁵–10² кПа и в восстановительной атмосфере при парциальном давлении водорода $P_{H_2} \sim 5$ кПа. Построены P_{O_2} –*T*- и *x*– *y*-проекции фазовой диаграммы P–*T*–*x*–*y* систе-

Рис. 6. *х*-*у*-Изотермы квазитройной системы Eu_2O_3 -MnO-MnO₂: $T_1 = 700$ K (a), $T_2 = 1000$ K (б), $T_3 = 1250$ K (в), $T_4 = 1500$ K (г), $T_5 = 2000$ K (д).

мы Eu–Mn–O, а также ключевые изотермы *x*–*y* квазитройной системы Eu₂O₃–MnO–MnO₂.

БЛАГОДАРНОСТЬ

Аналитические исследования выполнены с использованием научного оборудования ЦКП НИЦ "Курчатовский институт" – ИРЕА при финансовой поддержке проекта Российской Федерацией в лице Минобрнауки России, Соглашение № 075-11-2021-070 от 19.08.2021.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Mochizuki M., Furukawa N. // Phys. Rev. B. 2009.
 V. 80. Art. 134416. https://doi.org/0.1103/PhysRevB.80.134416
- Vorob'ev S.I., Andrievskii D.S., Barsov S.G. et al. // J. Exp. Theor. Phys. 2016. V. 123. P. 1017. https://doi.org/10.1134/S1063776116130215
- 3. Федорова О.М., Балакирев В.Ф., Голиков Ю.В. // Неорган. материалы. 2007. Т. 43. № 9. С.1109.
- Deng J., Yang A., Farid M.A. et al. // RSC Adv. 2007. V. 7. P. 2019. https://doi.org/10.1039/c6ra25951k
- 5. *Wang K.F., Liu Q.M., Luo S.J. et al.* // Thin Solid Films. 2010. V. 518. № 24. P. e12. https://doi.org/10.1016/j.tsf.2010.03.132
- Golovenchits E.I., Sanina V.A., Zalesskii V.G. // JETP Lett. 2012. V. 95. № 7. P. 386. https://doi.org/10.1134/s0021364012070053
- Atsumi T., Ohgushi T., Kamegashira N. // J. Alloys Compd. 1996. V. 238. № 1–2. P. 35. https://doi.org/10.1016/0925-8388(96)02253-0
- Satoh H., Suzuki S., Yamamoto K., Kamegashira N. // J. Alloys Compd. 1996. V. 234. № 1. P. 1. https://doi.org/10.1016/0925-8388(95)01881-6
- Янкин А.М., Балакирев В.Ф., Федорова О.М., Голиков Ю.В. Манганиты редкоземельных и щелочноземельных элементов. Физико-химический анализ. Екатеринбург: Уро РАН, 2009. 290 с.
- Balakirev V.F., Golikov Y.V., Titova S.G. // Dokl. Phys. Chem. 2001. V. 381. P. 301. https://doi.org/10.1023/A:1013241530220
- Голиков Ю.В., Балакирев В.Ф., Титова С.Г., Федорова О.М. // Журн. физ. химии. 2003. Т. 77. № 12. С. 2294.
- Balakirev V.F., Golikov Y.V. // Inorg. Mater. 2003. V. 39. P. S1. https://doi.org/10.1023/A:1024115817536
- Yankin A.M., Vedmid' L.B., Fedorova O.M. // Russ. J. Phys. Chem. 2012. V. 86. P. 345. https://doi.org/10.1134/S003602441203034X
- 14. *Казенас Е.К., Цветков Ю.В.* Термодинамика испарения оксидов. М.: URSS, 2015. 480 с.

- Grundy A.N., Hallstedt B., Gauckler L.J. // J. Phase Equilib. 2003. V. 24. № 1. P. 21. https://doi.org/10.1007/s11669-003-0004-6
- Jacob K.T., Kumar A., Rajitha G., Waseda Y. // High Temp. Mater. Proc. 2011. V. 30. № 4. P. 459. https://doi.org/10.1515/htmp.2011.069
- Jacob K.T., Kumar A., Waseda Y. // J. Phase Equilib. Diff. 2008. V. 29. № 3. P. 222. https://doi.org/10.1007/s11669-008-9280-5
- Jacob K.T., Rajput A. // J. Chem. Eng. Data. 2016. V. 61. P. 1710–1717. https://doi.org/10.1021/acs.jced.5b00728
- Сухушина И.С., Васильева И.А., Балабаева Р.Ф. // Журн. физ. химии. 1996. Т. 70. № 1. С. 49.
- 20. *Сухушина И.С., Васильева И.А.* // Журн. физ. химии. 1990. Т. 64. № 12. С. 3218.
- Sukhushina I., Vasiljeva I., Balabajeva R. // J. Chim. Phys. 1998. V. 95. № 1. P. 159. https://doi.org/10.1051/jcp:1998114
- 22. Левинский Ю.В. *p*-*T*-*x*-Диаграммы состояния двойных металлических систем. Кн. 2. М.: Металлургия, 1990. 400 с.
- 23. Balabaeva R.F., Vasil'eva I.A., Sukhushina I.S. et al. // Russ. J. Phys. Chem. 2000. V. 74. № 7. P. 1202.
- 24. Балакирев В.Ф., Бархатов В.П., Голиков Ю.В., Майзель С.Г. Манганиты: Равновесные и нестабильные состояния. Екатеринбург: Уро РАН, 2000. 398 с.
- 25. Buzanov G.A., Nipan G.D., Zhizhin K.Y. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. P. 551. https://doi.org/10.1134/s0036023617050059
- 26. Egorova A.A., Bushkova T.M., Kolesnik I.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 146. https://doi.org/10.1134/S0036023621020066
- 27. Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 9. P. 1416. https://doi.org/10.1134/S0036023621090138
- 28. Zagaynov I.V. // Russ. J. Inorg. Chem. 2021. V. 66. № 8. P. 1212. https://doi.org/10.1134/S0036023621080325
- 29. Koroteev P.S., Dobrokhotova Z.V., Novotortsev V.M. // Russ. J. Gen. Chem. 2018. V. 6. № 88. P. 1306. https://doi.org/10.1134/s1070363218060415
- Tong Z., Peng G., Li P. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 6. P. 948. https://doi.org/10.1134/S0036023620060273
- Gusov A.V., Gagarin P.G., Guskov V.N. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1710. https://doi.org/10.1134/S0036023621110085

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 7 2022