СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.7:546.02

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА НОВОГО ОКСОХЛОРИДА (Mn,Mg)₈Cl₃O₁₀

© 2022 г. К. А. Досаев^{а,} *, С. Я. Истомин^а, Е. В. Антипов^а

^аХимический факультет, Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия *e-mail: dosaev.kirill1@email.com

Поступила в редакцию 01.11.2021 г. После доработки 16.12.2021 г. Принята к публикации 18.12.2021 г.

Разработан метод синтеза оксохлорида $Mn_8Cl_3O_{10}$ в токе Ar (600°С, 8 ч) с использованием в качестве исходных веществ $MnCl_2$ и MnO_2 . Проведено частичное замещение катионов Mn^{2+} на катионы Mg^{2+} в этом соединении в соответствии с формулой $Mg_{0.6}Mn_{7.4}Cl_3O_{10}$. Состав полученного оксохлорида определен по результатам уточнения его кристаллической структуры методом Ритвельда по порошковым рентгеновским данным и подтвержден результатами локального рентеноспектрального анализа. Установлено, что катионы Mg^{2+} в структуре занимают предпочтительно позицию с кубической координацией атомами кислорода (MO_8), а не в октаэдрах MCl_6 .

Ключевые слова: кристаллическая структура, синтез, рентгенография **DOI:** 10.31857/S0044457X22070066

ВВЕДЕНИЕ

Исследование перовскитов (АВО₃) с различными 3*d*-металлами в В-подрешетке показало, что наибольшую активность в реакции восстановления кислорода (РВК) в щелочной среде имеют сложные оксиды трехвалентного марганца [1-3]. Было показано, что в оксидных соединениях, имеющих в своем составе катион Mn³⁺, аналогично платине реализуется 4-электронный механизм РВК [4]. Так, недавние исследования марганецсодержащих оксидных соединений, таких как α -Mn₂O₃, β -MnO₂, α -MnOOH, Mn₃O₄, LaMnO₃, показали высокую активность α-Mn₂O₃ со структурой биксбиита [5, 6]. Установлено существование взаимосвязи между активностью соединения в РВК и поверхностным окислительно-восстановительным потенциалом пары Mn⁴⁺/Mn³⁺ (чем выше потенциал, тем выше активность), что позволяет предположить, что последний является новым дескриптором электрокатализа РВК. Высказано предположение, что исключительно высокая активность α -Mn₂O₃ (всего в 4 раза меньше, чем v Pt), скорее всего, связана с особенностями кристаллической структуры биксбиита [7, 8].

Можно предположить, что оксогалогениды марганца, содержащие катионы Mn³⁺, могут представлять интерес для поиска новых электрокатализаторов PBK в щелочном растворе. Это связано с тем, что они, в отличие от оксидов, мо-

гут кристаллизоваться в различных кристаллических структурах, а присутствие в них галогенидионов может влиять на степень ионности связей Mn³⁺-О [9]. Среди оксогалогенидов марганца, содержащих катионы Mn³⁺, известны Mn₈Cl₃O₁₀ [10–13] и изоструктурная фаза Mn_{7 5}O₁₀Br₃ [14]. Кристаллическая структура $Mn_8Cl_3O_{10}$ $(Mn^{2+}Mn_7^{3+}Cl_3O_{10})$ представляет собой трехмерный каркас (рис. 1), в состав которого входят пять кристаллографически независимых катионов марганца. Катионы Mn²⁺ расположены в кубе MnO₈ и октаэдре MnCl₆, а катионы Mn³⁺ – в двух кристаллографически независимых искаженных октаэдрах $MnCl_2O_4$ (d(Mn-O) = 1.847-1.918 Å, d(Mn-Cl) = 2.822-2.826 Å [13]) и в практически правильном октаэдре MnO_6 (d(Mn-O) = 2.007-2.02 Å [13]).

В настоящей работе разработан новый метод синтеза оксохлорида $Mn_8Cl_3O_{10}$. Учитывая, что присутствие Mn^{2+} в $Mn_8Cl_3O_{10}$ может влиять на стабильность [15, 16] и электрокаталитическую активность оксогалогенида в РВК [17, 18], проведено замещение катионов Mn^{2+} на Mg^{2+} в соответствии с химической формулой $MgMn_7Cl_3O_{10}$ и уточнена кристаллическая структура новой фазы.

Рис. 1. Кристаллическая структура $Mn_8Cl_3O_{10}$ [13]. Атомы кислорода и хлора показаны красными и зелеными сферами соответственно. Катионы Mn^{2+} расположены в кубах MnO_8 (синий) и октаэдрах $MnCl_6$ (серый). Катионы Mn^{3+} находятся в октаэдрах $MnCl_2O_4$ (коричневый) и MnO_6 (фиолетовый).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза $Mn_8Cl_3O_{10}$ использовали $MnCl_2$ и MnO_2 ("Реахим", Россия). $MnCl_2$ предварительно сушили при 150°С ≥10 ч. Для получения оксохлорида применяли два метода: а) синтез в вакуумированных запаянных кварцевых ампулах при 500°С в течение 8 ч [12] и б) в потоке Ar при 600°С в течение 5 ч. В обоих методах использовали стехиометрические количества исходных перетертых вместе реагентов. Оксохлорид $MgMn_7Cl_3O_{10}$ получали отжигом $MnCl_2$, MnO_2 и MgO ("Реахим", Россия) в вакуумированных запаянных кварцевых запаянных кварцевых ампулах при 500°С в течение 8 ч.

Фазовый состав образцов определяли при помощи порошковой рентгеновской дифракции с использованием дифрактометра Huber G670 (Cu $K_{\alpha 1}$ -излучение). Данные для уточнения кристаллической структуры MgMn₇Cl₃O₁₀ были получены с помощью порошкового дифрактометра Bruker D8 Advance (Cu K_{α} -излучение). Фазовый анализ выполняли с использованием базы данных ICDD PDF-2. Для уточнения параметров элементарных ячеек использовали программный пакет STOE "WinXPOW". Уточнение кристаллической структуры проводили с помощью программного пакета GSAS [19].

Исследования методом сканирующей электронной микроскопии выполняли с использованием микроскопа Carl Zeiss NVision 40, рабочее напряжение 1-20 кВ.

Удельную поверхность порошков определяли в ходе физической сорбции N₂ на анализаторе ASAP 2010 (Micromeritics, США) многоточечным методом Брунауэра–Эммета–Теллера (БЭТ).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Однофазные образцы $Mn_8Cl_3O_{10}$ были приготовлены двумя методами: в вакуумированных запаянных ампулах и в токе Ar (рис. 2). Поскольку реакция (уравнение (1)) сопровождается выделением большого количества газообразного хлора, синтез в кварцевых ампулах не позволяет получить достаточно большое количество образца для дальнейших исследований.

$$5\mathrm{MnO}_2 + 3\mathrm{MnCl}_2 \rightarrow \mathrm{Mn}_8\mathrm{Cl}_3\mathrm{O}_{10} + 3/2\mathrm{Cl}_2.$$
(1)

Обнаружили, что однофазные образцы Mn_{8-} Cl_3O_{10} можно получить и при синтезе в трубчатой печи в атмосфере Ar при 600°C в течение 8 ч (рис. 2).

Дифрактограмма образца $Mn_8Cl_3O_{10}$, полученного в токе Ar при 600°C (8 ч), была успешно проиндицирована в тетрагональной сингонии в пр. гр. *I4/mmm* с параметрами *a* = 9.268 (2), *c* = = 13.054 (3) Å, близкими к представленным в работе [13].

Учитывая, что присутствие Mn^{2+} в $Mn_8Cl_3O_{10}$ может влиять на стабильность и электрокаталитическую активность оксогалогенида в PBK, решили заменить его другим катионом M^{2+} , для которого не будет происходить изменение степени окисления при электрокаталитическом восстановлении кислорода в щелочном растворе. В качестве такого катиона был выбран Mg^{2+} , имеющий близкий ионный радиус с катионом Mn^{2+}

Рис. 2. Дифрактограммы $Mn_8Cl_3O_{10}$, полученного в токе Ar (1) и в вакуумированной и герметичной ампуле из диоксида кремния (2). Внизу показана штрихрентгенограмма $Mn_8Cl_3O_{10}$ из базы данных ICDD PDF № 30-821.

 $(r(Mn^{2+}) = 0.96$ Å, $r(Mg^{2+}) = 0.89$ Å для KЧ = 8 [20]). Новый замещенный оксохлорид MgMn₇Cl₃O₁₀ был получен отжигом стехиометрических количеств MnCl₂, MnO₂ и MgO в вакуумированных и запаянных кварцевых ампулах при 500°C в течение 8 ч. Большинство рефлексов на дифрактограмме MgMn₇Cl₃O₁₀ (рис. 3), за исключением нескольких слабых отражений ($I_{max} \sim 1\%$), которые нам не удалось отнести ни к одной из известных фаз, были проиндицированы в тетрагональной ячейке с параметрами a = 9.2361(3), c == 13.0583(9) Å. Следует отметить уменьшение объема элементарной ячейки MgMn₇Cl₃O₁₀ (557 Å³) по сравнению с Mn₈Cl₃O₁₀ (562 Å³) из-за меньшего размера катиона Mg²⁺.

Уточнение кристаллической структуры MgMn₇Cl₃O₁₀ выполнено с использованием в качестве модели структуры Mn₈Cl₃O₁₀ [13]. Катионы Мg²⁺ были помещены в позиции катионов Mn²⁺ (2а и 2b в пр. гр. І4/ттт). Большая разница в факторах атомного рассеяния рентгеновских лучей Mg (Z = 12) и Mn (Z = 25) позволила с хорошей точностью уточнить заселенность этих позиций катионами. Параметры атомных смещений кислорода в позициях O(1), O(2), O(3) уточняли в блоке, тогда как атомов хлора Cl(1) и Cl(2) – индивидуально. Экспериментальные, расчетные и разностные рентгенограммы приведены на рис. 3. Уточненные координаты атомов, параметры атомных смещений и заселенности позиций приведены в табл. 1, а основные межатомные расстояния – в табл. 2. Уточнение заселенностей катионных позиций 2*a* и 2*b* приводит к выводу, что в них все еще присутствуют катионы Mn²⁺. Обнаружено, что катионы Mg²⁺ предпочтительно ло-

Рис. 3. Наблюдаемые, рассчитанные и разностные профили дифрактограмм для $Mg_{0.6}Mn_{7.4}Cl_3O_{10}$. Отражения от примесной фазы отмечены звездочками.

кализуются в позиции $2a \ (g = 0.90(5))$ с кубической координацией атомами кислорода, тогда как позиция 2b с октаэдрической координацией ионами Cl заселена ими только частично (g =0.27(4)). Таким образом, химический состав фазы, рассчитанный из результатов уточнения кристаллической структуры новой фазы, соответствует формуле $Mg_{0.59 \pm 0.03}Mn_{7.41 \pm 0.02}Cl_3O_{10}$. Локальный рентгеноспектральный анализ подтвердил более низкое содержание Мд в полученном соединении: $Mg_{0.62 + 0.05}Mn_{7.38 + 0.03}Cl_3O_{10}$. Формула оксохлорида с учетом степеней окисления может Mn быть записана $Mg_{0.6}Mn_{0.4}^{2+}Mn_7^{3+}Cl_3O_{10}$.

Измеренная площадь поверхности порошка $Mn_8Cl_3O_{10}$ методом БЭТ составляет всего 3 м²/г. Сканирующая электронная микроскопия показала присутствие в образце частиц размером 200—500 нм (рис. 4). В образце $Mg_{0.6}Mn_{7.4}Cl_3O_{10}$ частицы намного крупнее — 1—4 мкм.

ЗАКЛЮЧЕНИЕ

Путем замещения катионов Mn^{2+} на Mg^{2+} синтезирована новая фаза $Mg_{0.6}Mn_{7.4}Cl_3O_{10}$. Соединение кристаллизуется в пр. гр. *I4/mmm* с параметрами элементарной ячейки a = 9.2361(3), c == 13.0583(9) Å. Уточнение кристаллической структуры при использовании рентгенографических данных показало преимущественную локализацию катионов Mg^{2+} в позициях 2*a* с кубической координацией ионами кислорода.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-33-90160 и Междисциплинарной научно-образовательной школы МГУ им. М.В. Ломоносова "Будущее пла-

Таблица 1. Координаты атомов, параметры атомных смещений и заселенности позиций в кристаллической структуре $Mg_{0.6}Mn_{7.4}Cl_3O_{10}$ (пр. гр. *I4/mmm*, *Z* = 4, *a* = 9.2361(3), *c* = 13.0583(9) Å, $\chi^2 = 1.38$, $R_p = 0.0178$, $R_{wp} = 0.0231$)

Атом	Позиция	x	у	Z,	$U_i/U_e \times 100$	g
Mn1	16 <i>m</i>	0.1862(7)	0.1862(7)	0.1712(9)	1.4(4)	1.0
Mn2	8 <i>i</i>	0.344(2)	0.0	0.0	2.9(7)	1.0
Mn3	4 <i>d</i>	0.5	0.0	0.25	2.8(3)	1.0
Mg1/Mn4	2 <i>a</i>	0.0	0.0	0.0	3(1)	0.90(5)/0.10(5)
Mg2/Mn5	2 <i>b</i>	0.0	0.0	0.5	4.4(7)	0.27(4)/0.73(4)
Cl1	8 <i>h</i>	0.317(2)	0.317(2)	0.0	0.7(7)	1.0
C12	4 <i>e</i>	0.0	0.0	0.292(2)	0.3(8)	1.0
O1	16 <i>k</i>	0.148(3)	0.648(3)	0.25	4.1(5)	1.0
O2	8 <i>g</i>	0.5	0.0	0.102(5)	4.1(5)	1.0
O3	16 <i>n</i>	0.191(4)	0.0	0.101(4)	4.1(5)	1.0

Таблица 2. Избранные межатомные расстояния (Å) в кристаллической структуре Mg_{0.6}Mn_{7.4}Cl₃O₁₀

Mn1	Mn2	Mn3	Mg1/Mn4	Mg2/Mn5
O1 1.88(2) × 2	O2 1.97(4) × 2	O1 1.94(3) × 4	O3 2.20(1) × 8	Cl1 2.39(2) × 4
O3 1.95(2) × 2	O3 1.93(6) × 2	O2 1.93(6) × 2		Cl2 2.72(3) × 2
Cl1 2.81(2)	Cl1 2.94(1) × 2			
Cl2 2.99(2)				

Рис. 4. СЭМ-изображения Mn₈Cl₃O₁₀ (а, б) и Mg_{0.6}Mn_{7.4}Cl₃O₁₀ (в, г).

882

неты и глобальные изменения окружающей среды". Авторы благодарны А.Е. Баранчикову (ИОНХ РАН) за проведение исследований полученных фаз при помощи сканирующей электронной микроскопии.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Suntivich J., Gasteiger H.A., Yabuuchi N. et al.* // Nat. Chem. 2011. V. 3. № 7. P. 546. https://doi.org/10.1038/nchem.1069
- Chen D., Chen C., Baiyee Z.M. et al. // Chem. Rev. 2015. V. 115. № 18. P. 9869.
- https://doi.org/10.1021/acs.chemrev.5b00073 3. *Hong W.T., Risch M., Stoerzinger K.A. et al.* // Energy
- Environ. Sci. 2015. V. 8. № 5. P. 1404. https://doi.org/10.1039/c4ee03869j
- 4. *Stoerzinger K.A., Risch M., Han B. et al.* // ACS Catal. 2015. V. 5. № 10. P. 6021. https://doi.org/10.1021/ACSCATAL.5B01444
- Ryabova A.S., Napolskiy F.S., Poux T. et al. // Electrochim. Acta. J. 2016. V. 187. P. 161. https://doi.org/10.1016/j.electacta.2015.11.012
- Ryabova A.S., Istomin S.Y., Dosaev K.A. et al. // Electrochim. Acta. 2021. V. 367. P. 137378. https://doi.org/10.1016/j.electacta.2020.137378
- Nikitina V.A., Kurilovich A.A., Bonnefont A. et al. // J. Electrochem. Soc. 2018. V. 165. № 15. P. J3199. https://doi.org/10.1149/2.0261815jes
- 8. *Ryabova A.S., Bonnefont A., Zagrebin P. et al.* // ChemElectroChem. 2016. V. 3. № 10. P. 1667. https://doi.org/10.1002/celc.201600236

- Masquelier C., Croguennec L. // Chem. Rev. 2013. V. 113. № 8. P. 6552. https://doi.org/10.1021/cr3001862
- 10. *Buisson G.* // J. Solid State Chem. 1976. V. 19. № 2. P. 175. https://doi.org/10.1016/0022-4596(76)90166-3
- 11. Buisson P.A.R.G. // Acta Cryst. 1977. V. B33. P. 1031. https://doi.org/10.1107/S0567740877005317
- Léone P., Euzen P., Palvadeau P. et al. // J. Magn. Magn. Mater. 1997. V. 172. № 1–2. P. 153. https://doi.org/10.1016/S0304-8853(97)00099-1
- 13. *Euzen P., Leone P., Palvadeau P. et al.* // Mater. Res. Bull. 1992. V. 27. № 11. P. 1295. https://doi.org/10.1016/0025-5408(92)90094-G
- 14. Euzen P., Leone P., Mansot J.L. et al. // Mater. Res. Bull. 1992. V. 27. № 12. P. 1423. https://doi.org/10.1016/0025-5408(92)90007-M
- Su H.-Y., Gorlin Y., Man I.C. et al. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 14010. https://doi.org/10.1039/c2cp40841d
- 16. Gorlin Y., Lassalle-Kaiser B., Benck D.J. et al. // J. Am. Chem. Soc. 2013. V. 135. № 23. P. 8525. https://doi.org/10.1021/ia3104632
- Cheng F, Shen J., Peng B. et al. // Nat. Chem. 2011.
 V. 3. № 1. P. 79. https://doi.org/10.1038/nchem.931
- Xu C., Lu M., Zhan Y. et al. // RSC Adv. 2014. V. 4. № 48. P. 25089. https://doi.org/10.1039/c4ra01037j
- Toby B.H. // J. Appl. Crystallogr. 2001. V. 34. P. 210. https://doi.org/10.5229/jecst.2013.4.1.34
- 20. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551