НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ

УДК 54-165.2:54-31:[537.311.3+537.622]

ВЛИЯНИЕ КОНЦЕНТРАЦИИ КИСЛОРОДА НА СТРУКТУРНЫЕ И ЭЛЕКТРОМАГНИТНЫЕ ХАРАКТЕРИСТИКИ МАНГАНИТОВ La-Sr С ЗАМЕЩЕНИЕМ МАРГАНЦА КОМБИНАЦИЕЙ ЦИНКА И ТИТАНА

© 2022 г. В. К. Карпасюк^{а, *}, А. Г. Баделин^а, З. Р. Датская^а, И. М. Державин^а, С. Х. Эстемирова^{а, b}

^аАстраханский государственный университет, ул. Татищева, 20а, Астрахань, 414056 Россия ^bИнститут металлургии УрО РАН, ул. Амундсена, 101, Екатеринбург, 620016 Россия *e-mail: vkarpasyuk@mail.ru Поступила в редакцию 21.10.2021 г. После доработки 03.12.2021 г.

Принята к публикации 06.12.2021 г.

Приведены 0 свойствах экспериментальные данные керамических манганитов $La_{0.7}Sr_{0.3}Mn_{0.9}(Zn_{0.5}^{2+}Ti_{0.5}^{4+})_{0.1}O_{3+\gamma}$ с различной концентрацией кислорода. Варьирование индекса кислородной нестехиометрии (γ) достигнуто путем термообработки образцов при различном парциальном давлении кислорода в газовой фазе. Все синтезированные образцы имеют ромбоэдрическую структуру. Индекс у рассчитан по данным об изменении объема элементарной ячейки манганитов по сравнению со стехиометрическим образцом. Объем элементарной ячейки уменьшается как функция у в диапазоне от -0.008 до 0.009, а удельная намагниченность проявляет тенденцию к увеличению. Точка Кюри слабо зависит от ү, при этом наименьшей шириной температурного интервала перехода ферромагнетик-парамагнетик обладает образец с максимальным содержанием кислорода. Температура фазового превращения металл-полупроводник при возрастании у уменьшается. Манганит с $\gamma = -0.008$ имеет наибольшее абсолютное значение магнитосопротивления: |MR| = 60% в поле 0.92 Тл. Установленные закономерности рассмотрены с учетом механизмов зарядовой компенсации, электронной конфигурации и радиусов заместителей марганца, двойного обмена, кулоновского взаимодействия, процессов диффузии и образования микронеоднородностей.

Ключевые слова: элементарная ячейка, индекс нестехиометрии, вакансии, намагниченность, переходы ферромагнетик–парамагнетик и металл–полупроводник

DOI: 10.31857/S0044457X2207011X

ВВЕДЕНИЕ

Манганиты с перовскитоподобной структурой на основе LaMnO_{3+ γ} с различными замещениями элементов базового состава другими катионами обладают, как правило, весьма обширной областью гомогенности при отклонениях содержания кислорода от стехиометрического значения [1–3]. Одно из важных свойств нестехиометрических соединений — существование структурных вакансий, которые являются аналогами атомов и образуют с последними растворы замещения [4].

Перовскитоподобные манганиты относятся к группе сильно коррелированных систем, обладающих тесной взаимосвязью решеточных, орбитальных, зарядовых и спиновых степеней свободы, электрических и магнитных свойств [5–7].

Функциональные магнитные материалы, обладающие колоссальным магнитосопротивлением, которое может сочетаться с гигантской магнитострикцией, электрическим переключением и другими интересными свойствами [5–9], часто разрабатываются на основе широкозонных манганитов La-Sr, которые характеризуются сильной спиновой поляризацией и высокими магнитными параметрами [5, 10, 11].

Требуемые параметры манганитов обычно достигаются замещением ионов в базовой системе на гетеровалентные катионы, которые являются донорами или акцепторами, а также варьированием содержания кислорода, что позволяет регулировать концентрацию ионов Mn³⁺, Mn⁴⁺ и дефектов нестехиометрии, контролировать фазовый состав, изменять зонную структуру, тип проводимости и концентрацию носителей заряда, соотношение конкурирующих обменных взаимодействий и тип магнитного упорядочения [1, 12–20]. Взаимодействие замещающих катионов с окружением в кристаллической решетке зависит от их заряда, ионного радиуса и структуры электронных оболочек, степени ионности связей с кислородом [11, 13, 20]. Следует отметить, что введенные катионы влияют на взаимодействие манганитов с атмосферным кислородом. Например, Sr и Ti снижают содержание кислорода в манганитах, а Zn и Ge увеличивают его [1, 15, 16].

В ряде работ исследовано влияние двухвалентных (Mg²⁺, Zn²⁺, Ni²⁺, Co²⁺) [11, 12, 19, 21] и четырехвалентных (Ge⁴⁺, Ti⁴⁺) [15, 16, 20] заместителей марганца, а также комбинированного замещения [11, 14, 20, 22] на фазовый состав, магнитные и электрические свойства манганитов La-Sr. Представленные результаты показали, что комбинированное замещение может способствовать образованию кластеров и микронеоднородностей, представляющих собой области локализации дефектов нестехиометрии совместно с разновалентными ионами и обладающих различными структурными и электромагнитными параметрами.

Образование неоднородностей и их свойства зависят от характеристик заместителей марганца и лантана, а также от содержания кислорода [22, 23].

В настоящей работе исследовано влияние дефицита и избыточного содержания кислорода на структурные, магнитные и электрические характеристики керамических манганитов $La_{0.7}Sr_{0.3}Mn_{0.9} \Big(Zn_{0.5}^{2+}Ti_{0.5}^{4+}\Big)_{0.1}O_{3+\gamma}$. В этих манганитах марганец частично замещен комбинацией двухвалентных и четырехвалентных ионов, имеющих разную электронную конфигурацию: Zn²⁺ имеет полностью заполненную d-оболочку ($3d^{10}$), а Ті⁴⁺ — полностью заполненную p-оболочку ($3p^6$). Содержание стронция выбрано в области заведомо ромбоэдрической структуры, установленной для системы La_{1 - с}Sr_cMnO₃ и соответствующей составу этой системы с максимальными значениями намагниченности и точки Кюри (c = 0.3) [5].

Условия синтеза выбраны таким образом, чтобы получить манганиты с положительными и отрицательными значениями индекса кислородной нестехиометрии ($\gamma > 0$, $\gamma < 0$), а также со стехиометрическим содержанием кислорода ($\gamma = 0$).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы манганитов выбранных составов были синтезированы с использованием технологических процессов традиционной керамической технологии, описанных в [11]. Операцию спекания осуществляли при температуре 1473 К на воздухе в течение 10 ч с последующим охлаждением образцов вместе с печью. Для достижения стехиометрического содержания кислорода ($\gamma = 0$) образцы отжигали в атмосфере с парциальным давлением кислорода $p_{O_2} = 10^{-1}$ Па при 1223 К [1, 11].

Для получения манганитов с $\gamma < 0$ (содержащих анионные вакансии) или $\gamma > 0$ (содержащих катионные вакансии) спеченные образцы подвергали термообработке в течение 96 ч при 1223 К и $p_{0,2} = 10^{-8}$ Па или 10⁵ Па соответственно [22].

Определение фазового состава и параметров элементарной ячейки осуществляли при комнатной температуре с помощью рентгеновского дифрактометра Shimadzu XRD-7000 в Си K_{α} -излучении. Удельная намагниченность (σ) была измерена баллистическим методом в магнитном поле 0.56 Тл при 80 К с погрешностью 2%. Температурную зависимость магнитной проницаемости $(\mu(T))$ снимали на частоте 99.9 кГц, а точка Кюри (T_c) была определена как температура, при которой величина $|d\mu/dT|$ достигает максимума, с точностью до 2 К. Измерения электрических характеристик проводили с использованием контактов из самозатвердевающего металлоорганического соединения, содержащего 99% серебра. Температуру перехода металл-полупроводник (T_{ms}) определяли по положению пика температурной зависимости сопротивления с точностью до 2 К. Магнитосопротивление (MR) рассчитывали по формуле: MR = (R(B) - R(0))/R(B), где R(B) - R(B)электрическое сопротивление в продольном магнитном поле с индукцией B = 0.92 Тл, а R(0) - coпротивление при B = 0.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Все полученные образцы манганитов имеют ромбоэдрическую кристаллическую структуру. Объем элементарной ячейки (*V*) спеченных образцов увеличивался после отжига в условиях вакуума вследствие повышения концентрации ионов Mn^{3+} (ионный радиус $r(Mn^{3+}) = 0.0645$ нм) за счет содержания Mn^{4+} ($r(Mn^{4+}) = 0.053$ нм). После отжига в кислороде объем элементарной ячейки уменьшался.

Значения индекса нестехиометрии γ были оценены по приращениям V относительно стехиометрического образца, полученного в результате отжига при $p_{O_2} = 10^{-1}$ Па. Значения γ были рассчитаны с использованием модифицированной модели характеристических расстояний катион—анион [24] по методике, предложенной в [16]. Для этого структурная формула манганитов со сверхстехиометрическим содержанием кислорода с учетом равномерного распределения катионных вакансий по подрешеткам и того факта, что $\gamma \ll 1$, была представлена следующим образом:

ВЛИЯНИЕ КОНЦЕНТРАЦИИ КИСЛОРОДА

Индекс нестехиометрии ү	$V \times 10^{3}$, нм ³	а, нм	С, НМ	c/a
-0.008	350.993(1)	0.5506(4)	1.3367(7)	2.428
0.000	350.770(1)	0.5505(5)	1.3363(3)	2.427
0.004	350.727(1)	0.5504(8)	1.3364(8)	2.428
0.009	350.669(1)	0.5504(8)	1.3362(3)	2.427

Таблица 1. Зависимости параметров элементарной ячейки от индекса кислородной нестехиометрии

$$\left\{La_{(1-c)(1-\gamma/3)}^{3+}Sr_{c(1-\gamma/3)}^{2+}\Box_{\gamma/3}\right\}\left[Mn_{(1-x-c-2\gamma)(1-\gamma/3)}^{4+}Mn_{(c+2\gamma)(1-\gamma/3)}^{4+}\left(Zn_{0.5}^{2+}Ti_{0.5}^{4+}\right)_{x(1-\gamma/3)}\Box_{\gamma/3}\right]O_{3}^{2-}.$$

Здесь катионные вакансии обозначены символом
П.

Для манганитов с дефицитом кислорода (т.е. содержащих анионные вакансии) структурная формула была представлена в виде

$$\{La_{1-c}^{3+}Sr_{c}^{2+}\}[Mn_{1-x-c+2\delta}^{3+}Mn_{c-2\delta}^{4+}(Zn_{0.5}^{2+}Ti_{0.5}^{4+})_{x}]O_{3-d}^{2-}(V_{O})_{\delta},$$

где $\delta = |\gamma|$, а V_O обозначает кислородную вакансию.

С использованием известных эффективных характеристических расстояний катион—анион были получены следующие значения γ для исходных (спеченных) манганитов и образцов, отожженных при $p_{O_2} = 10^5$, 10^{-8} Па: $\gamma = 0.004$, 0.009, -0.008 соответственно. В соответствии с полученными данными, значения V и параметров a, c ромбоэдрической решетки в зависимости от γ представлены в табл. 1.

Отношение *c*/*a*, от величины которого зависит соотношение конкурирующих обменных взаимо-

Рис. 1. Температурные зависимости магнитной проницаемости и производной проницаемости по температуре для манганитов с $\gamma = -0.008$ (*1*), 0.000 (*2*), 0.004 (*3*), 0.009 (*4*).

действий [25], одинаково (в пределах ошибки определения) для всех полученных манганитов.

Зависимости магнитной проницаемости и производной $\mu'(T) = d\mu(T)/dT$ от температуры по-казаны на рис. 1.

Из представленных зависимостей следует, что стехиометрический манганит имеет самый протяженный интервал температур перехода ферромагнетик—парамагнетик (15 К на уровне 0.7 от максимума $|\mu'|$). Расширение интервала может быть связано с образованием кластеров, сегрегаций и микронеоднородностей, обладающих различными магнитными характеристиками [11, 22, 26]. Манганит, отожженный в кислороде, имеет самый узкий интервал перехода (8 К). Очевидно, длительный отжиг в кислороде, вызывающий появление катионных вакансий, сглаживает пространственные вариации состава благодаря вакансионному механизму диффузии катионов.

По температурным зависимостям производной $d\mu(T)/dT$ (рис. 1) и сопротивления (рис. 2) определены значения T_c и T_{ms} , приведенные в табл. 2.

Согласно представленным данным, точка Кюри очень слабо зависит от дефектов нестехиометрии. Анионные вакансии несколько понижают T_c . В то же время температура перехода металл—полупроводник уменьшается с увеличением индекса кислородной нестехиометрии, особенно в области положительных значений γ , т.е. с увеличением концентрации катионных вакансий. Внешнее магнитное поле немного увеличивает значение T_{ms} .

Как следует из табл. 2, удельная намагниченность как функция у проявляет слабую тенденцию к росту в пределах погрешности измерения.

На рис. 3 представлены зависимости *MR(T)* для образцов с разными значениями индекса кислородной нестехиометрии.

С понижением температуры абсолютная величина магнитосопротивления в целом возрастает, что обусловлено туннелированием спин-поляризованных носителей заряда через межкристаллитные границы [5]. Максимальное значение [*MR*] составляет 60% при 120 К в манганите, ото-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 7 2022

Рис. 2. Температурные зависимости сопротивления манганитов с $\gamma = -0.008$ (*I*), 0.000 (*2*), 0.004 (*3*), 0.009 (*4*).

жженном при $p_{O_2} = 10^{-8}$ Па, содержащем анионные вакансии. Эта особенность, вероятно, связана со стоком кислородных вакансий к границам кристаллитов, ускоренной диффузией кислорода по ним и формированием более однородной структуры поверхности зерен [22].

Формирование установленных зависимостей структурных и электромагнитных параметров манганитов от содержания кислорода определяют следующие эффекты:

 изменение соотношения концентраций ионов Mn⁴⁺ и Mn³⁺, связанных двойным обменным взаимодействием, которому могут препятствовать вакансии;

 в манганите с избыточным содержанием кислорода возможно образование кластеров, обладающих повышенной концентрацией катионных вакансий и ионов Mn⁴⁺;

 катионные и анионные вакансии способствуют протеканию диффузионных процессов;

 – в случае γ < 0 ионы Zn²⁺ и Sr²⁺ вследствие кулоновского взаимодействия локализуются вокруг кислородных вакансий; образующиеся неоднородности обладают увеличенным объемом эле-

Рис. 3. Температурные зависимости магнитосопротивления для манганитов с $\gamma = -0.008$ (*1*), 0.000 (*2*), 0.004 (*3*), 0.009 (*4*).

ментарной ячейки и создают механические напряжения в кристаллической решетке [22, 26];

 взаимно компенсирующее влияние Zn и Ti на содержание кислорода и стерический фактор.

Аналогичный эффект наблюдался в $\left(Ni_{0.15}^{2+}Ti_{0.15}^{4+}\right)$ -замещенном манганите [14], в котором намагниченность практически не зависела от условий отжига.

Отметим, что магнитные параметры и температура перехода T_{ms} (Zn,Ti)-содержащих манганитов, полученных в данной работе, ниже соответствующих характеристик образцов подобного состава, но содержащих Ge вместо Ti [11]. Это связано с различием электронных конфигураций ионов Ti⁴⁺ и Ge⁴⁺ и их радиусов ($r(Ti^{4+}) > r(Ge^{4+})$).

ЗАКЛЮЧЕНИЕ

Манганиты $La_{0.7}Sr_{0.3}Mn_{0.9}(Zn_{0.5}^{2+}Ti_{0.5}^{4+})_{0.1}O_{3+\gamma}$ с индексом кислородной нестехиометрии γ от -0.008 до 0.009 обладают ромбоэдрической структурой. С повышением содержания кислорода объем элементарной ячейки уменьшается

Таблица 2. Значения точки Кюри, температуры перехода металл—полупроводник и удельной намагниченности в зависимости от индекса кислородной нестехиометрии

Индекс нестехиометрии ү	<i>T_c</i> , K	<i>T_{ms}</i> , К, при <i>B</i> = 0	<i>T_{ms}</i> , К, при <i>B</i> = 0.92 Тл	σ, А м²/кг, при 80 К
-0.008	219	135	138	55.7
0.000	226	136	137	55.8
0.004	228	122	130	57.0
0.009	229	116	121	57.0

вследствие перехода части ионов Mn^{3+} в состояние Mn^{4+} . Намагниченность и точка Кюри практически не изменяются. Манганит, отожженный в кислороде ($\gamma = 0.009$), имеет самый узкий интервал перехода ферромагнетик—парамагнетик. Температура превращения металл—полупроводник снижается с увеличением γ . Наибольшее значение модуля магнитосопротивления в поле 0.92 Тл составляет 60% при 120 К у манганита, имеющего индекс нестехиометрии $\gamma = -0.008$, содержащего анионные вакансии.

Рассмотрены конкурирующие факторы и взаимодействия, определяющие формирование свойств многокомпонентных манганитов, содержащих дефекты нестехиометрии. Полученные данные расширяют представления о влиянии нестехиометрии по кислороду на электромагнитные характеристики манганитов при совместном замещении марганца двухвалентными и четырехвалентными ионами.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. *Mizusaki J., Mori N., Takai H. et al.* // Solid State Ionics. 2000. V. 129. P. 163.

https://doi.org/10.1016/S0167-2738(99)00323-9

- Балакирев В.Ф., Бархатов В.П., Голиков Ю.В., Майзель С.Г. Манганиты: равновесные и нестабильные состояния. Екатеринбург: УрО РАН, 2000.
- 3. Эстемирова С.Х., Титова С.Г., Балакирев В.Ф. и др. // Изв. РАН. Сер. физ. 2007. Т. 71. № 2. С. 245. [Estemirova S.Kh., Titova S.G., Balakirev V.F. et al. // Bull. Russ. Acad. Sci.: Phys. 2007. V. 71. P. 238. https://doi.org/10.3103/S1062873807020220]
- *Гусев А.И.* Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле. М.: Физматлит, 2007.
- Dagotto E., Hotta T., Moreo A. // Phys. Rep. 2001. V. 344. P. 1. https://doi.org/10.1016/S0370-1573(00)00121-6
- 6. Бебенин Н.Г., Зайнуллина Р.И., Устинов В.В. // Успехи физ. наук. 2018. Т. 188. С. 801. [Bebenin N.G., Zainullina R.I., Ustinov V.V. // Phys.-Usp. 2018. V. 61. P. 719.]
 - https://doi.org/10.3367/UFNe.2017.07.038180
- Королева Л.И., Демин Р.В., Козлов А.В. и др. // ЖЭТФ. 2007. Т. 131. № 1. С. 85. [Koroleva L.I., Demin R.V., Kozlov A.V. et al. // JETP. 2007. V. 104. Р. 76.] https://doi.org/10.1134/S1063776107010098
- Камилов И.К., Алиев К.М., Ибрагимов Х.О. и др. // Письма в ЖЭТФ. 2003. Т. 78. № 8. С. 957. [Kamilov I.K., Aliev К.М., Ibragimov Kh.O. et al. // JETP Lett. 2003. V. 78. P. 485.]
- Koroleva L., Batashev I., Morozov A. et al. // EPJ Web Conf. 2018. V. 185. P. 06014. https://doi.org/10.1051/epjconf/201818506014

- 10. Волков Н.В. // Успехи физ. наук. 2012. Т. 182. С. 263. [Volkov N.V. // Phys.-Usp. 2012. V. 55. P. 250.] https://doi.org/10.3367/UFNe.0182.201203b.0263
- Karpasyuk V.K., Badelin A.G., Derzhavin I.M. et al. // Int. J. Appl. Eng. Res. 2015. V. 10. P. 42746.
- V'yunov O.I., Belous A.G., Tovstolytkin A.I. et al. // J. Eur. Ceram. Soc. 2007. V. 27. P. 3919. https://doi.org/10.1016/j.jeurceramsoc.2007.02.063
- Chezhina N.V., Fedorova A.V. // Russ. J. Gen. Chem. 2010. V. 80. P. 909. https://doi.org/10.1134/S1070363210050075
- 14. Мусаева З.Р., Баделин А.Г., Карпасюк В.К. и др. // Изв. РАН. Сер. физ. 2010. Т. 74. № 10. С. 1523. [Musaeva Z.R., Badelin A.G., Karpasyuk V.K. et al. // Bull. Russ. Acad. Sci.: Phys. 2010. V. 74. Р. 1462.] https://doi.org/10.3103/S1062873810100424
- Yanchevskii O.Z., V'yunov O.I., Belous A.G. et al. // Phys. Solid State. 2006. V. 48. P. 709. https://doi.org/10.1134/S1063783406040159
- Merkulov D., Karpasyuk V., Estemirova S. et al. // Acta Phys. Pol., A. 2015. V. 127. P. 248. https://doi.org/10.12693/APhysPolA.127.248
- 17. Koroleva L.I., Zashchirinskii D.M., Khapaeva T.M. et al. // Phys. Solid State. 2008. V. 50. P. 2298. https://doi.org/10.1134/S1063783408120123
- Liu M.F., Du Z.Z., Xie Y.L. et al. // Sci. Rep. 2015. V. 5. P. 9922. https://doi.org/10.1038/srep09922
- Mitrofanov V.Y., Estemirova S.K., Kozhina G.A. // J. Magn. Magn. Mater. 2019. V. 476. P. 199. https://doi.org/10.1016/j.jmmm.2018.12.097
- Estemirova S.K., Mitrofanov V.Y., Uporov S.A. et al. // J. Magn. Magn. Mater. 2020. V. 502. P. 166593. https://doi.org/10.1016/j.jmmm.2020.166593
- Kaimieva O.S., Kim A.V., Buyanova E.S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 1119. https://doi.org/10.1134/S0036023620080057
- Karpasyuk V.K., Badelin A.G., Derzhavin I.M. et al. // J. Magn. Magn. Mater. 2019. V. 476. P. 371. https://doi.org/10.1016/j.jmmm.2018.12.070
- Пащенко А.В., Пащенко В.П., Прокопенко В.К. и др. // ЖЭТФ. 2017. Т. 71. № 1. С. 116. [Pashchenko A.V., Pashchenko V.P., Prokopenko V.K. et al. // JETP. 2017. V. 124. № 1. Р. 100.] https://doi.org/10.1134/S1063776116150127
- 24. *Кеслер Я.А.* // Неорган. материалы. 1993. Т. 29. № 2. С. 165. [*Kesler Ya.A.* // Inorg. Mater. 1993. V. 29. P. 109.]
- 25. Балагуров А.М., Бобриков И.А., Помякушин В.Ю. и др. // Письма в ЖЭТФ. 2005. Т. 82. № 9. С. 672. [Balagurov A.M., Bobrikov I.A., Pomyakushin V.Yu. et al. // JETP Lett. 2005. V. 82. Р. 594.] https://doi.org/10.1134/1.2161288
- 26. Мусаева З.Р., Выборнов Н.А., Карпасюк В.К. и др. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2007. № 7. С. 66. [Musaeva Z.R., Vybornov N.A., Karpasyuk V.K. et al. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2007. V. 1. P. 423.] https://doi.org/10.1134/S1027451007040118

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 7 2022