СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.271

ОБРАЗОВАНИЕ ПОЛИБОРАТОВ ПРИ ПРОВЕДЕНИИ ДИМЕРИЗАЦИИ *КЛОЗО*-ДЕКАБОРАТНОГО АНИОНА И ИЗОМЕРИЗАЦИИ ОКТАДЕКАГИДРОЭЙКОЗАБОРАТНОГО АНИОНА

© 2022 г. А. С. Кубасов^{*a*}, И. В. Новиков^{*b*}, П. А. Стародубец^{*c*}, В. В. Авдеева^{*a*}, *, К. Ю. Жижин^{*a*}, *b*, Н. Т. Кузнецов^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Москва, 119991 Россия ^bМИРЭА – Российский технологический университет (Институт тонких химических технологий им. М.В. Ломоносова), пр-т Вернадского, 86, Москва, 119571 Россия

^сРоссийский химико-технологический университет им. Д.И. Менделеева, Миусская пл., 9, Москва, 125047 Россия

*e-mail: avdeeva.varvara@mail.ru Поступила в редакцию 17.12.2021 г. После доработки 10.01.2022 г. Принята к публикации 15.01.2022 г.

Изучено строение полиборатов цезия и тетрафенилфосфония, полученных в ходе проведения мягкого окисления *клозо*-декаборатного аниона $[B_{10}H_{10}]^{2-}$ в воде солью церия(IV) с образованием в качестве основного продукта $Cs_2[trans-B_{20}H_{18}]$ и в ходе длительной изомеризации аниона $[trans-B_{20}H_{18}]^{2-}$ под действием УФ-облучения с образованием (Ph₄P)₂[*iso*-B₂₀H₁₈] в качестве основного продукта. Соединения выделены в виде сольватов Cs[B₅O₆(OH)₄] · 2H₂O и PPh₄[B₅O₆(OH)₄] · 2DMF · H₂O из фильтратов, полученных после выведения целевых соединений из реакционных растворов. Образование полиборатов объясняется протеканием процессов деградации кластерных анионов бора во времени в реакционных растворах.

Ключевые слова: кластерные анионы бора, УФ-облучение, окисление, бораты **DOI:** 10.31857/S0044457X22070133

введение

Полиэдрические кластерные анионы бора [B₁₀H₁₀]²⁻ и [B₁₂H₁₂]²⁻ [1-4] и переходные металлы способны образовывать комплексы различного состава и строения. В комплексах с металлами, которые относят к "мягким" кислотам Пирсона (Cu(I), Ag(I), Pb(II) и др.), кластеры бора могут входить в координационную сферу металла [5-8], тогда как в комплексах с более "жесткими" кислотами Пирсона кластерные анионы бора обычно играют роль противоионов [9–14]. Реакции с некоторыми катионами и комплексами переходных металлов также могут приводить к образованию продуктов замещения терминальных атомов водорода на молекулы лигандов или растворителей [15-20], окислению [15, 21] или восстановлению полиэдров бора, которое сопровождается внедрением металла [22, 23].

В реакциях, которые сопровождаются окислительно-восстановительными превращениями с участием кластерных анионов бора, в качестве побочных продуктов образуются продукты деградации борного кластера. Они легко идентифицируются методами ИК- и ¹¹В ЯМР-спектроскопии. Обычно их строение не рассматривается подробно, однако данный вид соединений также заслуживает внимания [24–26]. К полиборатам относятся соединения различных металлов, анионные фрагменты которых содержат атомы бора, координированные тремя или четырьмя атомами кислорода с образованием треугольников BO_3 и тетраэдров BO_4 . В частности, в обзоре [27] проанализирован широкий круг неорганических полиборатов; проведенный анализ позволил определить место новых соединений среди исследованных ранее, сопоставить их структуры и выявить особенности строения, а также обосновать свойства новых материалов и оптимизировать их поиск.

Наиболее близко к материалам данной работы относятся полибораты [Cu(NH₃)₄(H₂O)₂][B₄O₅(OH)₄] · 2H₂O, [Cu(Phen)₂(OC(H)O)][B₅O₆(OH)₄] · DMF, [Ni(Bipy)₃][B₅O₆(OH)₄]Cl · 0.5Bipy · 5H₂O, [Cd(Bipy)₂SO₄]₂ · 2H₃BO₃, (Ph₄P)[B₅O₆(OH)₄] · 2DMF · H₂O и (Me₂NH₂)[B₅O₆(OH)₄], строение которых установлено методом PCA [28]. Соединения получены в результате окисления аниона [B₁₁H₁₄]⁻ при изучении реакций комплексообразования меди, серебра, свинца, никеля, кадмия в присутствии данного кластерного аниона бора.

В настоящей работе исследовано строение полиборатов цезия и тетрафенилфосфония, синтезированных в ходе полного окисления аниона $[B_{10}H_{10}]^{2-}$ при получении анионов [*trans*-B₂₀H₁₈]²⁻ и [*iso*-B₂₀H₁₈]²⁻.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все реакции проводили на воздухе. $(Et_3NH)_2[B_{10}H_{10}]$ синтезировали из декаборана-14 по методике [29]. В работе использовали $(NH_4)_2Ce(NO_3)_6$ и Ph₄PCl (reagent grade, Aldrich). $Cs_2[B_{10}H_{10}]$ синтезировали по методике [30].

Синтез I и Ia. $Cs_2[trans-B_{20}H_{18}]$ (I) получали окислением *клозо*-декаборатного аниона аналогично методике [30] в воде при использовании нитрата церия(IV)-аммония в качестве окислителя. К раствору $Cs_2[B_{10}H_{10}]$ (0.5 ммоль) в воде при постоянном перемешивании приливали оранжевый раствор (NH₄)₂Ce(NO₃)₆ (1 ммоль). Наблюдали быстрое обесцвечивание раствора, что говорит о протекании окислительно-восстановительной реакции и восстановлении церия(IV) до церия(III), и образование хлопьевидного осадка целевого соединения. Осадок соединения I отфильтровывали и высушивали на воздухе, раствор оставляли под тягой. Выход I составил 76%.

Спектр ¹¹В ЯМР (DMSO-d6, δ , м.д.): 31.66 (d, 2B_{ап}), 17.51 (s, 2B, B2, B2'), -5.42 (d, 2B_{экв}), -11.06 (d, 4B_{экв}), -14.42 (d, 4B_{экв}), -18.01 (d, 4B), -24.25 (d, 2B_{ап}).

ИК-спектр (NaCl, v, см⁻¹): $v_{(BH)}$ 2542, 2520, 2505; $\delta_{(BBH)}$ 998.

Спустя 2 недели из фильтрата выпадали кристаллы побочного продукта $Cs[B_5O_6(OH)_4] \cdot 2H_2O$ (**Ia**), которые отфильтровывали и исследовали методом PCA.

Спектр ¹¹В ЯМР (DMSO-d6, δ , м.д.): 20.5. ИКспектр (NaCl, v, см⁻¹): ~1420.

Синтез II и IIa. Облучение раствора $Cs_2[trans-B_{20}H_{18}]$ (1 ммоль) в ДМФА (30 мл) в течение 5 сут с помощью УФ-лампы ДРТ-400 привело к изомеризации $[trans-B_{20}H_{18}]^{2-} \rightarrow [iso-B_{20}H_{18}]^{2-}$ в реакционном растворе, что контролировалось методом ¹¹В ЯМР-спектроскопии. В реакционный раствор добавляли воду (10 мл) и раствор избытка Ph₄PCl (2.1 ммоль) в воде (10 мл). Наблюдали образование белого осадка (Ph₄P)₂[iso-B₂₀H₁₈] (II), который отфильтровывали и высушивали на воздухе. Выход II составил 69%.

Спектр ¹¹В ЯМР (DMSO-d6, δ , м.д.): –1.60 (d, 4B), -2.44 (d, 4B), –23.97 (d, 4B), –25.75 (d, 4B), –27.12 (d, 4B). ИК-спектр (NaCl, v, см⁻¹): v_(BH) 2532, 2515, v_{(BH)BHB} 1778; δ _(BBH) 998. Спустя 4 недели из фильтрата выпали кристаллы побочного продукта $PPh_4[B_5O_6(OH)_4] \cdot 2DMF \cdot H_2O$ (IIa), которые отфильтровали и исследовали методом PCA.

Спектр ¹¹В ЯМР (DMSO-d6, δ , м.д.): 20.7. ИКспектр (NaCl, v, см⁻¹): ~1420.

ИК-спектры записывали на ИК-фурье-спектрометре ИНФРАЛЮМ ФТ-02 (Люмекс, Россия) в области 4000–400 см⁻¹ с разрешением 1 см⁻¹. Образцы готовили в виде суспензии вещества в вазелиновом масле (Aldrich), пластинки NaCl.

Спектры ¹¹В и ¹¹В $\{^{1}H\}$ ЯМР записывали на спектрометре Bruker AC 200 на частоте 64.297 МГц, внешний стандарт – Et₂OBF₃.

РСА. Набор дифракционных отражений для кристаллов Ia и IIa получен в Центре коллективного пользования ИОНХ РАН на автоматическом дифрактометре Bruker APEX2 CCD (λ Mo K_{α} , графитовый монохроматор, ω-ф-сканирование). Структуры расшифрованы прямым методом с последующим расчетом разностных синтезов Фурье. Все неводородные атомы уточнены в анизотропном приближении. Все атомы водорода в структуре Іа уточнены независимо в изотропном приближении. Все атомы водорода в Па уточнены по модели "наездника" с тепловыми параметрами $U_{_{\rm H30}} = 1.2 U_{_{\rm 3KB}} (U_{_{\rm H30}})$ соответствующего неводородного атома (1.5 $U_{_{\rm H30}}$ для CH₃-групп). При сборе и обработке массива отражений использовали программы APEX2, SAINT и SADABS [31]. Структура расшифрована и уточнена с помощью программ комплекса OLEX2 [32].

Основные кристаллографические данные, параметры эксперимента и характеристики уточнения структуры приведены в табл. 1. Кристаллографические данные депонированы в Кембриджском банке структурных данных (ССDС № 1994750, 1994751).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Анион [*trans*- $B_{20}H_{18}$]²⁻ образуется в результате мягкого окисления *клозо*-декаборатного аниона в воде под действием окислителей, таких как FeCl₃ или Ce(IV) [30]:

$$2[B_{10}H_{10}]^{2-} + 2Ce^{4+} \xrightarrow{H_{2}O} \rightarrow [trans-B_{20}H_{18}]^{2-} + 2Ce^{3+} + 2H^{+}.$$

В литературе описано, что в растворе солей аниона [*trans*- $B_{20}H_{18}$]²⁻ в ацетонитриле под действием УФ-облучения кластерный анион бора способен переходить в *изо*-изомер [*iso*- $B_{20}H_{18}$]²⁻, а при нагревании реакционного раствора или с течением времени происходит обратная реакция [33–36]:

Кроме того, твердофазная обратимая изомеризация [*trans*-B₂₀H₁₈]²⁻ \leftrightarrow [*iso*-B₂₀H₁₈]²⁻ изучена в кристаллах комплексов серебра(I) с Ph₃P и свинца(II) с Віру [37, 38]. При облучении комплексов серебра(I) и свинца(II) анион [*trans*-B₂₀H₁₈]²⁻ полностью переходит в [*iso*-B₂₀H₁₈]²⁻; при нагревании кристаллов комплекс серебра(I) подвергается обратимой изомеризации, а комплекс свинца не подвергается. Самопроизвольная реакция [*trans*-B₂₀H₁₈]²⁻ \rightarrow [*iso*-B₂₀H₁₈]²⁻ в отсутствие УФоблучения изучена в реакциях комплексообразования серебра [37] и кобальта [39].

В настоящей работе изучены продукты окисления кластерных анионов бора, которые образуются в качестве побочных при получении солей $[B_{20}H_{18}]^{2-}$. Отметим, что результаты спектроскопических методов анализа соединений I и II полностью соответствуют данным, описанным в работах [33-39] для соединений с анионами [*trans*- $B_{20}H_{18}]^{2-}$ и [*iso*- $B_{20}H_{18}]^{2-}$.

В ИК-спектрах соединений Іа и Па присутствует уширенная полоса с максимумом около 1420 см⁻¹, которая соответствует валентным колебаниям v(BO) в соединении; отсутствие в спектре полос в области 2500 см⁻¹ указывает на полное окисление кластерных анионов бора и отсутствие связей бор—водород. В спектрах ¹¹В ЯМР наблюдается уширенный синглет около 21 м.д., который указывает на присутствие в соединениях связей бор—кислород.

Соединение Ia получено при полном окислении *клозо*-декаборатного аниона под действием солей церия(IV). Соль церия(III) остается в реакционном растворе:

$$2\operatorname{Cs}_{2}[\operatorname{B}_{10}\operatorname{H}_{10}] + 2\operatorname{Ce}^{4+} \xrightarrow{\operatorname{H}_{2}\operatorname{O}} \\ \rightarrow \operatorname{Cs}_{2}[trans-\operatorname{B}_{20}\operatorname{H}_{18}](\mathrm{I}) + \mathrm{Ia}.$$

Соединение IIa получено из фильтрата после выведения из реакционного раствора соединения (Ph₄P)₂[*iso*-B₂₀H₁₈]. Процесс изомеризации проводили в DMF для предотвращения испарения

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 7 2022

воды в ходе длительного УФ-облучения реакционного раствора:

$$\begin{bmatrix} trans-B_{20}H_{18} \end{bmatrix}^{2-} \xrightarrow{\text{DMF, } \forall \Phi \text{-oблучениe}} \rightarrow \\ \xrightarrow{} \begin{bmatrix} iso-B_{20}H_{18} \end{bmatrix}^{2-};$$

Таблица 1. Некоторые длины	связей и валентные углы
в соединениях Ia и IIa	

Связь, Å, угол, град	Ia	IIa				
sp ³ -B						
B3O4	1.476(5)	1.509(4)				
B3O5	1.469(5)	1.485(4)				
B3O6	1.475(4)	1.481(4)				
B3O7	1.478(5)	1.508(4)				
O4B3O5	111.6(3)	111.1(2)				
O6B3O7	110.9(3)	110.7(2)				
sp^2 -B		9				
B1O1	1.360(5)	1.382(4)				
B1O2	1.375(5)	1.404(4)				
B1O5	1.364(4)	1.362(4)				
B2O2	1.382(5)	1.408(4)				
B2O3	1.359(5)	1.380(4)				
B2O4	1.352(4)	1.370(4)				
B4O6	1.358(4)	1.357(4)				
B4O8	1.355(4)	1.388(4)				
B4O9	1.378(5)	1.407(4)				
B5O7	1.352(4)	1.367(4)				
B5O9	1.387(5)	1.403(4)				
B5O10	1.352(5)	1.393(4)				
O2B1O5	121.8(4)	121.8(3)				
O3B2O4	119.4(4)	123.6(3)				
O6B4O9	121.0(3)	121.4(3)				
O7B5O9	121.0(3)	121.4(3)				

Рис. 1. Кристаллографически независимая часть элементарной ячейки Іа.

Рис. 2. Кристаллографически независимая часть элементарной ячейки Иа.

$$\begin{bmatrix} iso-B_{20}H_{18} \end{bmatrix}^{2-} + 2Ph_4P^+ \xrightarrow{\text{DMF/H}_2O} \rightarrow (Ph_4P)_2 \begin{bmatrix} iso-B_{20}H_{18} \end{bmatrix} + IIa.$$

Полученные соединения образуются в реакционных растворах в результате длительного нахождения реакционной смеси в растворенном виде после выведения целевых продуктов. При этом в фильтрате протекают процессы окисления кластерных анионов бора с образованием полиборатов.

Кристаллографически независимая часть моноклинной элементарной ячейки (*P*2₁/*c*) кристалла Іа содержит катион Cs⁺, анион

D	Н	А	<i>d</i> (D–H), Å	<i>d</i> (H–A), Å	<i>d</i> (D–A), Å	DHA, град
01	H1	O3 ¹	0.84	1.92	2.671(4)	148.3
O3	H3	O11 ²	0.84	1.84	2.676(3)	172.3
O 8	H8	O12 ³	0.84	1.84	2.680(3)	175.0
O10	H10	$O8^4$	0.84	1.96	2.730(3)	152.4
O11	H11A	O6 ⁵	0.81	2.04	2.835(4)	168.7
O11	H11B	O7 ⁶	0.96	1.81	2.760(3)	167.1
O12	H12A	O5 ⁷	0.79	2.03	2.795(4)	164.6
O12	H12B	O4 ⁵	1.00	1.85	2.832(4)	166.8

Таблица 2. Водородные связи в Іа

 $\frac{1}{1+x,-1+y,+z;} + \frac{2}{x}, 1+y,+z; \frac{3}{1+x},+y,+z; \frac{4}{x}+x, \frac{3}{2-y}, \frac{1}{2+x}; \frac{5}{1-x}, -\frac{1}{2+y}, \frac{3}{2-z}; \frac{6}{1-x}, 1-y, 2-z; \frac{7}{1-x}, \frac{1}{2+y}, \frac{3}{2-z}.$

Таблица 3. Водородные связи в На

D	Н	А	d(D-H), Å	d(H-A), Å	<i>d</i> (D–A), Å	DHA, град
O1	H1	O1w	0.82	1.96	2.735(4)	157.9
O3	H3A	$O4^1$	0.82	2.00	2.792(3)	162.0
O8	H8A	O12 ²	0.82	2.11	2.909(6)	164.1
O 8	H8A	O13 ²	0.82	2.02	2.76(2)	150.8
O10	H10A	O7 ³	0.82	1.97	2.775(3)	165.8

анионами.

1 - x, -y, 1 - z; 2 - z, 1 - y, -z; 3 - x, -y, 1 - z.

 $[B_5O_6(OH)_4]^-$ и две молекулы воды (рис. 1). Кристаллографически независимая часть триклинной элементарной ячейки IIa (*P*-1) включает аналогичный анион $[B_5O_6(OH)_4]^-$, катион PPh⁺₄, две молекулы DMF и молекулу воды (рис. 2).

В каждом случае анион $[B_5O_6(OH)_4]^-$ состоит из двух колец $[B_3O_3]$, связанных общим тетраэдрическим фрагментом $[BO_4]$ с sp^3 -гибридным атомом бора. Каждое кольцо $[B_3O_3]$ сформировано двумя плоскотреугольными фрагментами $[BO_2OH]$, в которых атом бора имеет sp^2 -гибридизацию (табл. 2). Длина связей В–О в треугольных фрагментах $[BO_2OH]$ лежит в диапазоне 1.352(4)– 1.387(5) Å для Ia и 1.357(4)–1.408(4) Å для IIa. Длина связей В–О для тетраэдрического фрагмента $[BO_4]$ в соединениях Ia и IIa составляет 1.469(5)– 1.478(5) и 1.481(4)–1.509(4) Å соответственно. Данные согласуются с результатами, опубликованными ранее для аниона $[B_5O_6(OH)_4]^-$ с другими органическими катионами [28, 39–44].

В структуре Ia анионы $[B_5O_6(OH)_4]^-$ и молекулы воды образуют 3D-пространственные сети, связанные водородными связями (табл. 3, рис. 3). Катионы цезия располагаются в пустотах, стаби-

лизируя таким образом отрицательно заряженный каркас (рис. 4).

В отличие от структуры Ia, в структуре IIa анионы $[B_5O_6(OH)_4]^-$ и молекулы воды образуют отрицательно заряженные слои, связанные водородными связями (табл. 3, рис. 5), в то время как катионы PPh₄⁺ расположены между этими слоями. Молекулы DMF располагаются в катионном слое и связаны водородными связями OH–O с

Полученные данные предоставляют новую информацию для детального изучения механизмов окислительно-восстановительных процессов, протекающих с участием кластерных анионов бора [45–49].

ЗАКЛЮЧЕНИЕ

Таким образом, методом РСА изучено строение продуктов деградации кластерных анионов бора $Cs[B_5O_6(OH)_4] \cdot 2H_2O$ и PPh₄[B₅O₆(OH)₄] · · 2DMF · H₂O, полученных при проведении окислительно-восстановительных взаимодействий с использованием *клозо*-декаборатного аниона в качестве исходного реагента.

Рис. 3. Фрагмент трехмерного каркаса, образованного водородными связями между анионами [B₅O₆(OH)₄]⁻ и молекулами воды в соединении Ia.

Рис. 4. Фрагмент упаковки соединения Іа.

Рис. 5. Фрагмент упаковки соединения Па.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

БЛАГОДАРНОСТЬ

Аналитические исследования выполнены в ЦКП ФМИ ИОНХ РАН в рамках государственного задания ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Muetterties E.L., Knoth W.H.* // Polyhedral Boranes. New York: Marcel Dekker, 1968.
- Sivaev I.B., Bregadze V.I., Sjöberg S. et al. // Collect. Czech. Chem. Commun. 2002. V. 87. P. 679.
- 3. Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V. 75. P. 1149.
- Zhizhin K.Yu., Zhdanov A.P., Kuznetsov N.T. et al. // Russ. J. Inorg. Chem. 2010. V. 55. P. 2089.
- Korolenko S.E., Kubasov A.S., Goeva L.V. et al. // Inorg. Chim. Acta. 2021. V. 527. P. 120587. https://doi.org/10.1016/j.ica.2021.120587

- Zhang Y., Yang L., Wang L. // Chem. Int. Ed. 2019. V. 58. P. 8145.
- Korolenko S.E., Zhuravlev K.P., Tsaryuk V.I. et al. // J. Lumin. 2021. V. 237. P. 118156. https://doi.org/10.1016/j.jlumin.2021.118156
- Avdeeva V.V., Malinina E.A., Churakov A.V. et al. // Polyhedron. 2019. T. 169. P. 144.
- Avdeeva V.V., Polyakova I.N., Goeva L.V. et al. // Russ. J. Inorg. Chem. 2016. V. 61. P. 302.
- Malinina E.A., Korolenko S.E., Zhdanov A.P. et al. // J. Clust. Chem. 2021. V. 32. P. 755. https://doi.org/10.1007/s10876-020-01840-5
- Korolenko S.E., Avdeeva V.V., Malinina E.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1350. https://doi.org/10.1134/S0036023621090047
- 12. *Sadikin Y., Didelot E., Łodziana Z., Černý R. //* Dalton Trans. 2018. V. 47. P. 5843.
- 13. Zhang Z., Zhang Y., Li Z. et al. // Eur. J. Inorg. Chem. 2018. P. 981.
- Malinina E.A., Kochneva I.K., Avdeeva V.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1210.
- Norman A.H., Kaczmarczyk A. // Inorg. Chem. 1974. V. 13. P. 2316.
- Dziova A.E., Avdeeva V.V., Polyakova I.N. et al. // Dokl. Chem. 2011. V. 440. P. 253.
- Avdeeva V.V., Dziova A.E., Polyakova I.N. et al. // Russ. J. Inorg. Chem. 2013. V. 58. P. 657.
- 18. Safronova E.F., Avdeeva V.V., Polyakova I.N. et al. // Dokl. Chem. 2013. V. 452. P. 240.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 7 2022

- 19. Avdeeva V.V., Vologzhanina A.V., Goeva L.V. et al. // Inorg. Chim. Acta. 2015. V. 428. P. 154.
- Avdeeva V.V., Polyakova I.N., Churakov A.V. et al. // Polyhedron. 2019. V. 162. P. 65.
- 21. Avdeeva V.V., Malinina E.A., Goeva L.V. et al. // Dokl. Chem. 2017. V. 474. P. 141.
- Miao J., Nie Y., Chen H. et al. // Z. Naturforsch. 2011. V. 66B. P. 387.
- Nie Y., Miao J.-L., Hu C.-H. et al. // Polyhedron. 2012. V. 31. P. 607.
- 24. Abakumov G.A., Piskunov A.V., Cherkasov V.K. et al. // Russ. Chem. Rev. 2018. V. 87. P. 393. https://doi.org/10.1070/RCR4795
- Pechenyuk S.I., Domonov D.P., Gosteva A.N. // Russ. J. Gen. Chem. 2021. V. 91. P. 1834. https://doi.org/10.1134/S1070363221090310
- Bardin V.V., Prikhod'ko S.A., Shmakov M.M. et al. // Russ. J. Gen. Chem. 2020. V. 90. P. 50. https://doi.org/10.1134/S1070363220010089
- Topnikova A.P., Belokoneva E.L. // Russ. Chem. Rev. 2019. V. 88. P. 204. https://doi.org/10.1070/RCR4835
- Avdeeva V.V., Malinina E.A., Vologzhanina A.V. et al. // Inorg. Chim. Acta. 2020. V. 509. Art. 119693. https://doi.org/10.1016/j.ica.2020.119693
- Miller H.C., Miller N.E., Muetterties E.L. et al. // J. Am. Chem. Soc. 1963. V. 85. P. 3885. https://doi.org/10.1021/ja00906a033
- Chamberland B.L., Muetterties E.L. // Inorg. Chem. 1964. V. 3. P. 1450. https://doi.org/10.1021/ic50020a025
- 31. Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. P. 3.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339.
- Kaczmarczyk A., Dobrott R.D., Lipscomb W.N. // Proc. Nat. Acad. Sci. USA. 1962. V. 48. P. 729.
- 34. Hawthorne M.F., Pilling R.L., Stokely P.F., Garrett P.M. // J. Am. Chem. Soc. 1963. V. 85. P. 3704.

- Curtis Z.B., Young C., Dickerson R., Kaczmarczyk A. // Inorg. Chem. 1974. V. 13. P. 1760.
- Li F., Shelly K., Knobler C.B., Hawthorne M.F. // Angew. Chem., Int. Ed. 1998. V. 37. P. 1865.
- Avdeeva V.V., Buzin M.I., Malinina E.A. et al. // Cryst-EngComm. 2015. V. 17. P. 8870. https://doi.org/10.1039/C5CE00859J
- 38. Avdeeva V.V., Malinina E.A., Zhizhin K.Yu. et al. // J. Struct. Chem. 2019. V. 60. P. 692. https://doi.org/10.1134/S0022476619050020
- 39. Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. C. 628. https://doi.org/10.1134/S0036023622050023
- Xuetao Xu, Kanyi Liang, Yirou Lin // Z. Anorg. Allg. Chem. 2014. V. 640. P. 110.
- 41. Beckett M.A., Coles S.J., Horton P.N. // J. Cluster Sci. 2017. V. 28. P. 2087.
- 42. *Sa-Ying Li, Zhi-Hong Liu //* J. Therm. Anal. Calorim. 2016. V. 126. P. 913.
- 43. Yang Yang, DongSheng Fu, GuoFa Li, Yun Zhang // Z. Anorg. Allg. Chem. 2013. P. 639.
- 44. Abakumov G.A., Piskunov A.V., Cherkasov V.K. et al. // Russ. Chem. Rev. 2018. V. 87. P. 393. https://doi.org/10.1070/RCR4795
- 45. Korolenko S.E., Goeva L.V., Kubasov A.S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 846. https://doi.org/10.1134/S0036023620060091
- 46. Sivaev I.B. // Russ. J. Inorg. Chem. 2020. V. 65. P. 1854. https://doi.org/10.1134/S0036023620120165
- Matveev E. Yu., Novikov I.V., Kubasov A.S. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 187. https://doi.org/10.1134/S0036023621020121
- Klyukin I.N., Kolbunova A.V., Selivanov N.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1798. https://doi.org/10.1134/S003602362112007X
- 49. Burdenkova A.V., Zhdanov A.P., Klyukin I.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1616. https://doi.org/10.1134/S0036023621110036