ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2022, том 67, № 7, с. 972–978

$= \frac{\Phi U3UKOXUMUS}{PACTBOPOB} =$

УДК 541.122:541.49+546.593

ЗАМЕЩЕНИЕ СІ- НА ОН- В ФЕНАНТРОЛИНОВОМ КОМПЛЕКСЕ ЗОЛОТА(III) И ЕГО РЕДОКС-ВЗАИМОДЕЙСТВИЕ С ГЛУТАТИОНОМ В ВОДНОМ РАСТВОРЕ

© 2022 г. И. В. Миронов^{а,} *, В. Ю. Харламова^а

^аИнститут неорганической химии им. А.В. Николаева СО РАН, пр-т Академика Лаврентьева, 3, Новосибирск, 630090 Россия *e-mail: imir@niic.nsc.ru Поступила в редакцию 12.01.2022 г.

После доработки 31.01.2022 г. Принята к публикации 04.02.2022 г.

Фенантролиновые комплексы золота(III) широко исследуются в качестве противоопухолевых средств. На примере Au(phen)X₂⁺ (X = Cl, OH) изучены два важнейших процесса, сопровождающих применение таких комплексов: равновесие замещения Cl⁻ на OH⁻ и редокс-взаимодействие с глутатионом (GSH) в водном растворе при $t = 25^{\circ}$ C и I = 0.2 M (NaCl). Равновесие Au(phen)Cl₂⁺ + iOH⁻ = Au(phen)Cl₂ - iOH⁺ + iCl⁻ характеризуется lg $\beta_i = 8.39$ (i = 1) и 15.41 (i = 2). Восстановление Au(phen)X₂⁺ под действием GSH протекает быстро. Основными продуктами восстановления являются высокоустойчивые комплексы золота(I): полимерный (AuGSH_i)_m и Au(GSH_i)₂. При недостат-ке GSH основным конечным продуктом его окисления является сульфоновая кислота GSO₃H, при избытке – дисульфид GSSG. Показано, что избыток phen на редокс-процесс не влияет, а взаимодействие AuCl₂⁻ с phen в водном растворе приводит к быстрому диспропорционированию с выделением золота(0).

Ключевые слова: азотсодержащие лиганды, комплексообразование, тиолсодержащие кислоты **DOI:** 10.31857/S0044457X22070169

введение

Комплексы золота(III) с азотсодержащими лигандами в последнее время вызывают значительный интерес [1–4]. Это связано с результатами многочисленных исследований, показавших, что они проявляют противоопухолевые свойства и часто превосходят в этом отношении соединения платины(II) [5–8]. Характерным примером являются комплексы золота(III) с 1,10-фенантролином (phen) и его производными. Однако в физиологических условиях использование комплексов золота сопряжено со многими процессами, связанными как с обменом лигандов, так и с редокс-превращениями.

Цель настоящей работы — исследование наиболее важной части таких процессов, а именно: замещение Cl⁻ на OH⁻ в Au(phen)Cl₂⁺, а также редокс-взаимодействие Au(phen)X₂⁺ (X = Cl, OH) с глутатионом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали раствор HAuCl₄ [9], хлористый натрий (ос. ч.), соляную кислоту (фиксанал), фосфатный буфер pH 6.86 (фиксанал), безводный сульфит натрия (ч. д. а.), L-глутатион восстановленный (АО "Вектон", Россия, >98%), фенантролин (phen · H₂O), раствор NaOH ("без CO₂"), прокипяченную бидистиллированную воду. Концентрацию HAuCl₄ устанавливали по УФ-поглощению раствора ($\varepsilon = 5600 \text{ M}^{-1} \text{ см}^{-1}$ при 314 нм, среда 0.1 M HCl).

Все эксперименты проводили при 25° С (водяной термостат U7) и I = 0.20 М (NaCl), такая концентрация хлорид-ионов близка к составу физиологического раствора.

Измерения pH выполняли при помощи стеклянного комбинированного электрода ЭСК 10301/7, прибор Radelkis OP-208. Время установления потенциала составляло 5 мин. Электрод калибровали по растворам сильной кислоты (HCl в 0.2 M NaCl), т.е. измеряемые величины pH равны

-lg[H⁺]. Необходимое для расчетов ионное произведение воды для 25° С и 0.2 M NaCl равно lg K_{w} = = 13.76 [10]. Пересчет константы протонирования $HPO_4^{2^-} + H^+ = H_2PO_4^-$ по уравнению Дебая—Хюккеля с I = 0.05 (стандарт) к I = 0.2 М приводит к вели-

чине рН буферного раствора 6.70 вместо 6.86.

Спектры поглощения записывали на спектрофотометре "СФ-2000" (ОКБ "Спектр") в диапазоне длин волн 250-350 нм, l = 0.05-0.5 см, раствор сравнения — вода.

Комплекс Au(phen)Cl₂⁺ в растворе получали добавлением к раствору $HAuCl_4$ ($C_{Au} = 8.41 \times$ × 10⁻³ моль/л) щелочи NaOH (0.75 : 1) и фенантролина (1.05 : 1). Добавка щелочи нужна, чтобы избежать перехода основной части phen в Hphen⁺, что сильно замедлило бы дальнейшее замещение. Небольшой избыток phen (5%) применяли для того, чтобы в дальнейшем при замещении Cl- на OH⁻ гарантированно сохранить phen во внутренней сфере. В ходе процесса замещения Cl- в AuCl₄ на phen образуется промежуточный продукт — желтый осадок двойной соли Au(phen)Cl₂ \cdot · AuCl₄. Поэтому раствор нагревали почти до кипения в течение ~1 ч до полного растворения осадка. Полученные таким образом растворы использовали в качестве исходных для дальнейших

исследований. Комплекс Au(phen)(OH)₂⁺ в рас-

творе получали из $Au(phen)Cl_2^+$ добавлением щелочи несколькими небольшими порциями с интервалом 10-15 мин между ними. Конечное соотношение $C_{\rm OH}/C_{\rm Au}$ было равно 2. Добавление сразу большого количества щелочи (вследствие невысокой скорости замещения Cl- на OH-) приводило к уходу в сильнощелочную область и восстановлению золота(III).

Раствор, содержащий AuCl₂, готовили восстановлением $AuCl_4^-$ сульфитом натрия: $AuCl_4^-$ + + SO₃²⁻ + H₂O = AuCl₂⁻ + SO₄²⁻ + 2 H⁺ + 2 Cl⁻, взя-тым с избытком 5–8%, в присутствии NaCl (0.2 M) и добавки NaOH ($n_{\text{NaOH}}/n_{\text{Au}} = 3.00$), чтобы избежать появления Au⁰ вследствие диспропорционирования AuCl₂. Раствор Na₂SO₃ (C = 0.2 M) готовили непосредственно перед экспериментом из безводного реактива.

Определение констант замещения из экспериментальной функции образования и разложение спектров проводили при помоши нелинейного и линейного метода наименьших квадратов (МНК).

РЕЗУЛЬТАТЫ И ОБСУЖЛЕНИЕ

В работе рассмотрены комплексы золота(III) с 1,10-фенантролином Au(phen)X⁺₂

где $X = Cl^{-}$, OH^{-} . Комплекс Au(phen) Cl_{2}^{+} был получен и впервые исследован в растворе в работе [11]. Для $X = OH^-$ известен также биядерный комплекс (Phen)Au $\langle {\rm O} \\ {\rm O} \rangle$ Au(Phen)²⁺ и его аналог на основе 2,9-диметил фенантролина, который часто обозначают как "Au2phen" и тоже широко используют в испытаниях противоопухолевой активности [6, 7, 12, 13]. Превращение "Au₂phen²⁺" + $+ 2H_2O \leftrightarrow 2Au(phen)(OH)_2^+$ при обычных условиях в водном растворе протекает медленно. Известно, например, что для аналогичного биядерного комплекса $Au_2(bipy)_2 - (\mu - O)_2^{2+}$ при 70°С и рН 7.4 требуется ~2 ч для количественного превращения в Au(bipy)(OH) $_{2}^{+}$ [14]. Тем не менее сам факт таких переходов свидетельствует о том, что устойчивыми формами в водном растворе являются моноядерные комплексы. Комплексы с двумя молеку-

Замещение Cl⁻ в Au(phen)Cl⁺ на OH⁻ По данным [15], равновесие

$$\operatorname{AuCl}_{4}^{-} + \operatorname{phen} \leftrightarrow \operatorname{Au}(\operatorname{phen})\operatorname{Cl}_{2}^{+} + 2\operatorname{Cl}^{-}$$
 (1)

характеризуется $\lg \beta_{1Cl} = 9.5$ (I = 1 М). При увеличении рН происходит ступенчатое замещение:

$$Au (phen)Cl_{2}^{+} + OH^{-} \leftrightarrow Au (phen)ClOH^{+} + Cl^{-}, \beta_{1}$$

$$Au (phen)Cl_{2}^{+} + 2OH^{-} \leftrightarrow Au (phen)(OH)_{2}^{+} + 2Cl^{-}, \beta_{2}.$$
(2)

лами phen не образуются.

По данным [16], полученным при помощи Cl-селективного электрода и ¹Н ЯМР-спектроскоколичественный спонтанный переход пии. $Au(phen)Cl_2^+$ в Au(phen)(OH)_2^+ при рH 7.4 занимает

менее 1.5 ч, причем основная часть превращения проходит за 15 мин.

Наше исследование равновесий (2) проводилось рН-метрически, поскольку спектры комплексов различаются очень мало (см. ниже). Процедура была аналогична использованной при изучении замещения Cl⁻ на OH⁻ в AuCl₄⁻ [17]. Раствор, содержащий Au(phen)Cl₂⁺, с исходным pH 3.00 и $C_{\text{NaCl}} = 0.2$ моль/л титровали щелочью (NaOH). Интервалы времени между добавками порций щелочи составляли 10–15 мин, хотя потенциалы принимали стабильные значения уже через 5 мин. Из известных общих концентраций ($C_{\text{Au}}, C_{\text{H}}^{0}, C_{\text{OH}}$) и измеренных величин pH рассчитывали значения функции образования:

$$n^* = (C_{\rm OH} - C_{\rm H}^0 + a_{\rm Hphen} \cdot C + [{\rm H}^+]) / C_{\rm Au}, \quad (3)$$

где $\alpha_{\text{Hphen}}C$ – добавка, обусловленная присутствием в растворе избытка ($C = 0.05 C_{\text{Au}}$) фенантролина: $\alpha_{\text{Hphen}} = K_{\text{H}} [\text{H}^+]/(1 + K_{\text{H}}[\text{H}^+]); K_{\text{H}} = 1.6 \times 10^5 [15]$ – константа протонирования фенантролина, phen + H⁺ \leftrightarrow Hphen⁺. С другой стороны,

$$n^* = (\beta_1 X + 2\beta_2 X^2) / (1 + \beta_1 X + \beta_2 X^2), \qquad (4)$$

где $X = [OH^-]/[Cl^-]$. В условиях экспериментов $C_{Cl} \gg C_{Au}$, поэтому принимали $[Cl^-] = C_{NaCl}$. Величины $[OH^-]$ рассчитывали из измеренных значений рН: $[OH^-] = K_w/[H^+]$. Из полученных значе-

ний $n^*_{_{3\kappaсп}}$ (3) и модели (4) рассчитывали величины β_1 и β_2 при помощи нелинейного МНК, миними-

зируя сумму $\Sigma (n_{\mathfrak{sксп}i}^* - n_{\mathfrak{pacч}i}^*)^2$ в пространстве β_1 и β_2 . Полученные величины составляют: $\lg\beta_1 = 8.39$, $\lg\beta_2 = 15.41$. Отметим, что они только на 0.5–0.6 единиц выше, чем аналогичные величины для замещения Cl⁻ на OH⁻ в AuCl₄⁻ (7.87 и 14.79 соответственно [18]). Рассчитанные и экспериментальные величины *n** показаны на рис. 1 для двух концентраций C_{Au} .

Функция образования $n^*(X)$ имеет обычный вид для случая двух неразделенных ступеней. "Расщепление" кривых для разных C_{Au} не наблюдается, что свидетельствует в пользу отсутствия заметного вклада биядерных форм. Поскольку стандартный потенциал AuCl⁻₄ равен $E_{3/0}^0 = 1.00$ B, из величины $lg\beta_2$ следует, что для Au(phen)(OH)⁺₂ стандартный потенциал равен $E_{3/0}^0 = 0.51$ В. Полученные константы замещения также позволяют оценить гидролитическую устойчивость - одну из основных характеристик комплексов, определяемых перед его использованием в биологических экспериментах. Как следует из наших данных, при pH 7.4 и C_{NaCl} = 0.16 М основной формой фенантролиновых комплексов золота(III) является $Au(phen)(OH)_{2}^{+}$, а доля смешанного комплекca Au(phen)ClOH⁺ составляет ~6%. Возможными

Рис. 1. Функция образования – зависимость n^* от lg[OH⁻]/[Cl⁻]. C_{Au} (×10⁻³ M): 1 - 1.0; 2 - 2.0. Символы – эксперимент, пунктир – расчет.

продуктами разложения Au(phen)(OH)₂⁺ без изменения степени окисления могут быть только хлоридно-гидроксидные формы Au(OH)_iCl_{4-i}⁻. Как следует из констант замещения Cl⁻ на OH⁻ в AuCl₄⁻ [18], в данных условиях основной формой является AuCl(OH)₃⁻ (60%), доли AuCl₂(OH)₂⁻ и Au(OH)₄⁻ составляют около 30 и 10% соответственно. Равновесная концентрация Au(phen)(OH)₂⁺ и общая концентрация хлоридногидроксидных форм $C'_{Au} = \Sigma \Big[Au(OH)_i Cl_{4-i}^{-} \Big]$ связаны соотношением:

$$\frac{C'_{Au}[phen]}{Au(phen)(OH)_{2}^{+}} = \frac{F[CI^{-}]^{4}}{\beta_{1Cl}\beta_{2}[OH^{-}]^{2}},$$
 (5)

ГАц(рпеп)(OH)₂] р_{1СI}р₂[OH] где β_{1CI} и β_2 – константы (1, 2), $F = 1 + \Sigma \beta_{iCIOH} [OH^-]^i / [CI^-]^i$, β_{iCIOH} – полные константы замещения CI⁻ на OH⁻ в AuCl₄⁻. Для указанных условий значение выражения справа в (5) равно $10^{-12.8}$. Если свободный phen может появиться в растворе только в результате разложения Au(phen)(OH)₂⁺, то $C'_{Au} = [phen]$ и при $C^0_{Au} = 1 \times 10^{-5} - 1 \times 10^{-6}$ М величина $C'_{Au} \approx 1 \times 10^{-9}$ М, т.е. в рассматриваемых статических условиях гидролитическое разложение комплекса Au(phen)(OH)₂⁺

На рис. 2 приведены ЭСП комплексов и форм фенантролина. Спектры форм phen и комплексов заметно перекрываются. Кроме того, спектры всех трех комплексов $Au(phen)Cl_2^+$, $Au(phen)ClOH^+$ (не

2022

Nº 7

Рис. 2. Электронные спектры поглощения форм: 1 phen, 2 - Hphen⁺, 3 - Au(phen)(OH)⁺₂, 4 - Au(phen)Cl⁺₂, 5 - AuGS*, 6 - Au(GS*)₂.

показан) и Au(phen)(OH) $_2^+$ различаются очень мало. Это же относится и к спектру "Au₂phen" [6]. Таким образом, использование УФ-спектроскопии для изучения равновесий (2) было бы невозможно.

Редокс-взаимодействие $Au(phen)X_2^+ c GSH$

Второе исследование относится к редокс-процессу взаимодействия $Au(phen)Cl_2^+$ и $Au(phen)(OH)_2^+$ с глутатионом (GSH) —

трипептидом, содержащим в своем составе тиольную группу, которая способна к координации и легко окисляется многими окислителями. В физиологических условиях концентрация GSH равна ~1 × 10⁻⁵ М в плазме и 1 × 10⁻³ М в клеточной жидкости, а допустимая концентрация золота составляет (1–10) × 10⁻⁶ М. Глутатион может образовывать несколько окисленных форм, основные из которых – это дисульфид GSSG, а также сульфеновая, сульфиновая и сульфоновая кислоты (GSO_iH, где i = 1-3).

Условную (для pH 7.0) константу равновесия редокс-взаимодействия $Au(phen)(OH)_2^+$ с GSH можно получить, принимая во внимание известные стандартные потенциалы и константы протонирования [9, 19]:

Au (phen)
$$(OH)_{2}^{+} + 3e^{-} = Au^{0} + phen + 2OH^{-},$$

 $E_{3/0}^{0} = 0.51 B(E_{3/0}^{'} = 0.79 B),$
Au $(GS)_{2}^{5^{-}} + e^{-} = Au^{0} + 2GS^{3^{-}},$
 $E_{1/0}^{0} = -0.32B(E_{1/0}^{'} = -0.11B),$ (6)
 $GSSG^{*} + 2e^{-} = 2GS^{*}, \quad E_{2/1}^{'} = -0.22B,$
 $GS^{3^{-}} + iH^{+} = GSH_{i}^{i^{-3}},$
 $\lg K_{H1} = 9.6, \lg K_{H1}K_{H2} = 18.3,$
Au $(GS)_{2}^{5^{-}} + 2H^{+} = Au (GSH)_{2}^{3^{-}}, \quad \lg K_{1}K_{2} \approx 19,$

где E — условные (эффективные) потенциалы для pH 7.0; символ * означает сумму форм разной степени протонирования: [GS*] = Σ [GSH_{*i*}], [Au(GS*)₂] =

$$= \Sigma[\operatorname{Au}(\operatorname{GS})_2 \operatorname{H}_i], \left\lfloor (\operatorname{AuRS})_m^* \right\rfloor = \Sigma[(\operatorname{AuRS})_m \operatorname{H}_i]). \text{ Ipo-}$$

тонирование комплексов происходит из-за наличия у лигандов других (не тиольных) групп, не занятых в координации к золоту: –СОО[–] и –NH₂. Из этих данных следует, что условная константа равновесия

$$Au(phen)(OH)_{2}^{+} + 4GS^{*} =$$

= Au(GS^{*})_{2} + GSSG^{*} + phen (7)

равна $\lg K' = 50$, и для любых реальных концентраций компонентов восстановление золота(III) глутатионом должно проходить количественно.

По данным [20], исследование кинетики ре-

докс-взаимодействия AuCl₄⁻ с тиомалатом, цистеином и глутатионом не показало качественных отличий для всех трех тиолов. Общий процесс включает несколько стадий, из них первые две (замещение Cl⁻ на RS* в AuCl₄⁻ и внутрисферное восстановление AuCl₃RS* до золота(I)) протекают быстро ($\tau_{1/2} < 2$ с) и обе имеют первый порядок по тиолу. При недостатке тиола ($C_{RSH} < 2C_{Au}$) на этом этапе он весь расходуется практически поровну на двухэлектронное восстановление золота(III) и образование высокоустойчивого полимерного тиолатного комплекса золота(I)

 $(AuRS)_m^*$. В результате концентрация свободного RS* становится очень низкой, и дальнейшее намного более медленное восстановление остатка золота(III) происходит в основном за счет частично окисленных форм тиола (сульфеновой и сульфиновой кислот). Концентрация комплекса

 $(AuRS)_m^*$ при этом изменяется очень медленно, а в случае цистеина этот комплекс к тому же чрезвычайно малорастворим. Конечным продуктом окисления тиола является преимущественно сульфоновая кислота (RSO₃H). При значительном избытке тиола процесс восстановления золота(III) протекает очень быстро и количественно.

Рис. 3. Изменение УФ-спектра раствора при редокс-взаимодействии Au(phen) X_2^+ с глутатионом во времени для $C_{GSH}/C_{Au} = 2$: *1* – через 15 с, *2* – 1 мин, *3* – 10 мин, *4* – исходный комплекс, *5* – phen (Hphen⁺). $C_{Au} = 9.97 \times 10^{-4}$ M, $C_{NaCl} = 0.2$ M, *l* = 0.05 см. a – X = Cl, pH 2.00; 6 – X = OH, pH 6.70.

Образовавшаяся на первых стадиях сульфеновая кислота RSOH* быстро взаимодействует со свободным тиолом, давая дисульфид RS–SR*, который в этом случае и является основным продуктом окисления, а все золото(III) переходит в тиолатные формы комплексов золота(I).

Поскольку золото(III) является окислителем, а комплексы золота(I) с тиолами имеют очень высокую устойчивость, у нас не было оснований предполагать, что для других комплексов золота(III) характер взаимодействия будет принципиально другим.

Эксперименты с Au(phen)Cl₂⁺ проводили при pH 2.00, $C_{\text{NaCl}} = 0.2$ М и ~ $C_{\text{Au}} = (1-10) \times 10^{-4}$ М. К раствору, содержащему комплекс, добавляли требуемый объем раствора GSH и регистрировали спектры в диапазоне $\lambda = 250-350$ нм или кинетические кривые при $\lambda = \text{const.}$ Экспериментальные спектры разлагали на вклады от спектров отдель-

ных форм $Au(phen)Cl_2^+$, $(AuGS)^*$, Hphen⁺, которые известны (рис. 2):

$$A(\lambda)/l = \varepsilon_{Au(phen)Cl_2} \cdot [Au(phen)Cl_2^{T}] + \varepsilon_{Au(GSH)} \cdot [AuGS^{*}] + \varepsilon_{Hphen} \cdot [Hphen^{+}].$$
(8)

Разложение проводили при помощи линейного МНК: $\Sigma (A(\lambda_i)_{pacy} - A(\lambda_i)_{эксп})^2 \rightarrow min.$ Результатом разложения были концентрации форм. Рассчитанные спектры хорошо соответствовали экспериментальным, и стандартное отклонение аппроксимации нигде не превышало 0.01. Поскольку степень полимеризации *m* неизвестна, сто как (AuGS)*, причем [AuGS*] = $m \Big[(AuGS)_m^* \Big]$. Следует отметить, что условная константа равновесия

$$(1/m)(AuGS^*)_m + GS^* = Au(GS^*)_2, K^*$$
 (9)

зависит от pH, так как включает в себя протонирование лиганда. Поэтому в кислой среде комплекс $Au(GS^*)_2$ практически не образуется даже при большом избытке тиола [9]. В то же время в нейтральной и щелочной среде его вклад становится значительным.

Полученные результаты качественно не отли-

чаются от описанных выше для $AuCl_4^-$. При избытке GSH процесс протекает быстро, и сразу после смешения спектр комплекса переходит в спектр Hphen⁺, который высвобождается при восстановлении золота(III) в золото(I). В частности, при $C_{GSH}/C_{Au} = 2$ уже через <1 мин после смешения спектр показывает практически полное

восстановление Au(phen)Cl₂⁺ в (AuGS)_m^{*} (рис. 3a).

При снижении соотношения $C_{\rm GS}/C_{\rm Au}$ процесс остается быстрым. При $C_{\rm GS}/C_{\rm Au} = 0.6$ через 20 с состав раствора становится близким к ожидаемому, т.е. [AuGS*] ≈ [phen] ≈ 1/2 $C_{\rm GSH}$. Однако через ~1 мин появляется желтый осадок. При этом содержание phen и золота(III) в растворе снижается более чем вдвое. Отметим, что это относится только к кислой области и, возможно, связано с

диспропорционированием $AuCl_2^-$ (см. ниже), присутствующим в растворе при низких соотношениях C_{GSH}/C_{Au} , когда тиола не хватает на свя-

полимерный комплекс (AuGS)^{*} обозначен про-

зывание всего золота(I) в $(AuGS)_m^*$

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 7 2022

Рис. 4. Изменение соотношения $z = [\text{Auphen}(\text{OH})_2^+]/C_{\text{Au}}^0$ во времени в ходе реакции с глутатионом. $C_{\text{GSH}}/C_{\text{Au}}^0$: 1 - 0.60, 2 - 1.0, 3 - 2.0. $C_{\text{Au}} = (9.09 - 9.90) \times 10^{-4} \text{ M}, \text{ pH 6.70}, C_{\text{NaCl}} = 0.2 \text{ M}.$

Эксперименты с Au(phen)(OH)₂⁺ проводили аналогично. Раствор имел pH 6.70 (фосфатный буфер, $C_{6y\phi} = 0.02$ M) и $C_{NaCl} = 0.2$ М. Несмотря на заметное замедление процесса принципиальных отличий не отмечено (рис. 36). Для $C_{GS}/C_{Au} < 2$ УФ-спектр раствора, записанный в ходе протекания процесса, являлся суммой спектров (AuGS)*, Au(phen)(OH)₂⁺ и phen, причем наблюдавшееся значение [(AuGS)*] было близким к ожидаемому ($C_{GS}/2$) и далее изменялось медленно (рис. 4). Так, при $C_{Au} = 1.0 \times 10^{-3}$ М и $C_{GS}/C_{Au} = 0.6$ через 20 с, 5 мин и 20 мин концентрация [AuGS*] составляла 3.1×10^{-4} , 3.3×10^{-4} и 3.7×10^{-4} M соответственно. Выделения осадков не наблюдалось. При всех соотношениях C_{GS}/C_{Au} скорость на начальном этапе была высокой.

В то же время быстрое полное восстановление

Au(phen)(OH)₂⁺ до золота(I) происходило только при $C_{GS}/C_{Au} > 4$. До этих соотношений, несмотря на быстрый начальный процесс и, казалось бы, избыток тиола, в спектрах наблюдалось присутствие заметного, медленно изменяющегося количества Au(phen)(OH)₂⁺. Например, при $C_{GS}/C_{Au} = 2$ его доля от C_{Au} составляла 30% через 20 с и 20% через 20 мин. На наш взгляд, есть две причины такого замедления. Во-первых, это быстрый процесс взаимодействия образовавшейся в результате окисления сульфеновой кислоты со свободным тиолом: GSOH + GSH = GSSG + H₂O. Во-вторых, это образование *бис*-комплекса Au(GS*)₂, влияние которого в нейтральной и щелочной области возрастает (см. выше). Оба этих фактора приводят к снижению концентрации свободного тиола и, следовательно, к замедлению процесса восстановления золота(III).

Дополнительно было установлено, что введение избыточного phen, по крайней мере до $C_{\text{phen}}/C_{\text{Au}} = 2$, не влияет на скорости процессов.

Взаимодействие $AuCl_2^-$ с phen

Исходный раствор, содержащий AuCl₂, гото-

вили восстановлением AuCl₄⁻ сульфитом натрия. К полученным растворам ($C_{Au} = 1 \times 10^{-3}$ M, pH 3.0 и 7.0, $C_{NaCl} = 0.2$ M) добавляли раствор phen до концентрации $C_{phen} = (0.6-1) \times 10^{-3}$ М. В растворе сразу появлялись розово-желтые хлопья, которые темнели и переходили в коричневые мелкие частицы. Для pH 7.0 спектр отфильтрованного раствора показал наличие в нем комплекса золо-

та(III) Au(phen)(OH) $_{2}^{+}$ с концентрацией, приблизительно вдвое меньшей исходной C_{Au} . На наш взгляд, основная причина наблюдаемого явления диспропорционирование золота(I). Обычно про-

цесс $3AuCl_2^- \leftrightarrow 2Au^0 + AuCl_4^- + 2Cl^- c \lg K = 7.5 эф$ фективно тормозится введением NaCl при усло $вии, что <math>C_{Au} < 10^{-2}$ М и pH ≥ 3 . Однако введение

phen приводит к образованию из $AuCl_4^-$ намного

более устойчивых $Au(phen)Cl_2^+$ или $Au(phen)(OH)_2^+$, что сильно ускоряет диспропорционирование и ведет к выделению золота(0). Само же золото(I) не способно образовывать хелаты с phen, а устойчивость его комплексов с аминами типа Py-Au-Cl мала.

ЗАКЛЮЧЕНИЕ

Ступенчатое замещение Cl^- на OH^- в Au(phen) Cl_2^+ с образованием Au(phen) $(OH)_2^+$ протекает достаточно быстро – при pH 6.7 и [Cl^-] = = 0.2 М требуется менее 1 ч. При таких же условиях замещение phen на OH^- или Cl^- в Au(phen) $(OH)_2^+$ не происходит.

Комплексы $Au(phen)Cl_2^+$ и $Au(phen)(OH)_2^+$ быстро восстанавливаются глутатионом. Как показывают полученные данные, значительных отличий от аналогичного процесса с участием $AuCl_4^-$ нет. Основными продуктами восстановления являются тиолатные комплексы золота(I)

 $(AuGS)_m^*$ и Au(GS*)₂ (в нейтральной и щелочной среде). Если GSH взят в недостатке, то наряду с

 $(AuGS)_{m}^{*}$ образуются и менее устойчивые ком-

плексы золота(I), такие как $AuCl_2^-$ и комплексы с окисленными формами глутатиона – остатками сульфиновой и сульфоновой кислот в качестве лигандов. В хлоридной среде эти комплексы vстойчивы продолжительное время (обычно несколько часов). однако впоследствии могут диспропорционировать с выделением металлического золота. Если GSH взят в избытке, то золото(III) количественно переходит в тиолатные комплексы, а продуктом окисления GSH является его дисульфид. В биологических экспериментах глутатион присутствует в большом избытке, причем его концентрация в клетках близка к использованной в настоящей работе. Поэтому можно ожидать, что рассматриваемые комплексы золота(III) в течение непрололжительного времени перейлут в устойчивые тиолатные комплексы золота(I).

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа поддержана Министерством науки и высшего образования Российской Федерации, проект № 121031700315-2.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Radisavljević S., Petrović B. // Front. Chem. 2020. V. 8. P. 379. https://doi.org/10.3389/fchem.2020.00379
- 2. Alhoshani A., Sulaiman A.A.A., Sobeai H.M.A. et al. //
- 2. Anoshani A., Sulaman A.A.A., Sobeli H.M.A. et al. / Molecules. 2021. V. 26. P. 3973. https://doi.org/10.3390/molecules26133973
- 3. *Ott I.* // Coord. Chem. Rev. 2009. V. 253. P. 1670. https://doi.org/10.1016/j.ccr.2009.02.019
- Gabbiani C., Casini A., Messori L. // Gold Bull. 2007. V. 40. P. 73. https://doi.org/10.1007/BF03215296
- Casini A., Kelter G., Gabbiani C. et al. // J. Biol. Inorg. Chem. 2009. V. 14. P. 1139. https://doi.org/10.1007/s00775-009-0558-9

- Cinellu M.A., Maiore L., Manassero M. et al. // ACS Med. Chem. Lett. 2010. V. 1. P. 336. https://doi.org/10.1021/ml100097f
- Guidi F., Puglia M., Gabbiani C. et al. // Mol. BioSyst. 2012. V. 8. P. 985. https://doi.org/10.1039/c1mb05386h
- Landini I., Lapucci A., Pratesi A. et al. // Oncotarget. 2017. V. 8. P. 96062. https://doi.org/10.18632/oncotarget.21708
- Mironov I.V., Kharlamova V.Yu. // J. Solution Chem. 2020. V. 49. P. 583. https://doi.org/10.1007/s10953-020-00994-0
- 10. *Harned H.S., Owen B.B.* The Physical Chemistry of Electrolytic Solutions. N.Y.: Reinhold, 1950.
- Block B.P., Bailar J.C. // J. Am. Chem. Soc. 1951. V. 73. P. 4722. https://doi.org/10.1021/ja01154a071
- Gorini G., Magherini F., Fiaschi T. et al. // Biomedicines. 2021. V. 9. P. 871. https://doi.org/10.3390/biomedicines9080871
- Massai L., Zoppi C., Cirri D. et al. // Front. Chem. 2020. V. 8. P. 581648. https://doi.org/10.3389/fchem.2020.581648
- 14. Casini A., Cinellu M.A., Minghetti G. et al. // J. Med. Chem. 2006. V. 49. P. 5524. https://doi.org/10.1021/jm060436a
- 15. *Миронов И.В., Цвелодуб Л.Д.* // Журн. неорган. химии. 2001. Т. 46. № 1. С. 154. [*Mironov I.V., Tsvelodub L.D.* // Russ. J. Inorg. Chem. 2001. V. 46. № 1. Р. 143.]
- 16. Abbate F, Orioli P, Bruni B. et al. // Inorg. Chim. Acta. 2000. V. 311. P. 1. https://doi.org/10.1016/S0020-1693(00)00299-1
- 17. *Миронов И.В., Харламова В.Ю.* // Журн. неорган. химии. 2020. Т. 65. № 3. С. 391. [*Mironov I.V., Kharlamova V.Yu.* // Russ. J. Inorg. Chem. 2020. V. 65. № 3. Р. 420. https://doi 10.1134/S0036023620030092]
- Миронов И.В., Цвелодуб Л.Д. // Журн. неорган. химии. 2000. Т. 45. № 4. С. 706. [Mironov I.V., *Tsvelodub L.D.* // Russ. J. Inorg. Chem. 2000. V. 45. № 4. Р. 633.]
- Jocelyn P.C. // Eur. J. Biochem. 1967. V. 2. P. 327. https://doi.org/10.1111/j.1432-1033.1967.tb00142.x
- Mironov I.V., Kharlamova V.Yu. // Inorg. Chim. Acta. 2021. V. 525. P. 120500. https://doi.org/10.1016/j.ica.2021.120500