ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2022, том 67, № 9, с. 1301–1309

ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

УДК 539.194

ЭЛЕКТРОННОЕ СТРОЕНИЕ СУЛЬФЕНИЛХЛОРИДА АЦЕТИЛАЦЕТОНАТА ХРОМА(III) И ЕГО γ-ЗАМЕЩЕННЫХ ГРУППАМИ ВИНИЛТРИМЕТИЛСИЛАНА ПО ДАННЫМ МЕТОДОВ РФЭС И ТФП

© 2022 г. В. А. Яшин^{*a*}, И. С. Осьмушко^{*a*, *b*, *, В. И. Вовна^{*a*}, В. В. Короченцев^{*a*, *b*}, Н. П. Шапкин^{*a*}, М. В. Тутов^{*a*, *b*}}

^аДальневосточный федеральный университет, п. Аякс, 10, о. Русский, Владивосток, 690922 Россия ^bИнститут химии ДВО РАН, пр-т 100-летия Владивостока, 159, Владивосток, 690022 Россия

**e-mail: osmushko.is@dvfu.ru* Поступила в редакцию 17.02.2022 г. После доработки 21.03.2022 г. Принята к публикации 30.03.2022 г.

Методами рентгеновской фотоэлектронной спектроскопии и теории функционала плотности исследовано электронное строение сульфенилхлорида ацетилацетоната хрома(III) и его замещенных с одной, двумя и тремя группами винилтриметилсилана. Экспериментальные данные соответствуют расчетным значениям эффективных зарядов при включении в базис поляризационных функций. Учет плотности состояний и сечений ионизации позволил интерпретировать полосы валентной области рентгеновских фотоэлектронных спектров. Расчетные одноэлектронные состояния в валентной области модельных соединений коррелируют с положениями максимумов полос спектра для всех соединений. Установлена возможность определения количества заместителей в γ-положениях по потере атомов хлора. Результаты представляют интерсе в исследовании строения дендримеров и полимеров, построенных на базе силоксановых соединений и комплексов металлов.

Ключевые слова: комплексы металлов, валентная область, интерпретация фотоэлектронных спектров

DOI: 10.31857/S0044457X22090203

введение

Исследуемые в данной работе соединения являются удобными блоками для модификации кремнийорганических полимеров. Интерес, проявленный к исследованию кремнийорганических соединений, связан с их свойствами и разнообразием функциональных групп, присоединенных к атому кремния. Мономерные и полимерные кремнийорганические соединения играют важную роль в промышленности (металлургической, химической и т.д.), медицине и других областях. В последнее время большой интерес в науке вызывает получение и исследование соединений с заданной пространственной структурой, в том числе дендримеров на их основе. Преимущество дендримеров заключается в том, что их можно получать с точно заданными молекулярной массой и размерами. Имеющаяся возможность получения многофункциональных дендримеров с определенным количеством реакционноспособных (функциональных) концевых групп позволяет контролировать поверхностные свойства и морфологию получаемых материалов на их основе, поэтому они являются исключительно важными соединениями для получения различных пленок и мембран. Материалы на основе дендримеров также находят широкое применение в электрохимии, оптике, катализе и других наукоемких отраслях [1–6].

Ранее представлены результаты исследования по поливинилсилоксану и дендронам на основе октавинилсилсесквиоксана, а также октавинили октафенилсилсесквиоксанам [7–9]. Для исследования процесса присоединения комплекса хрома к поливинилсилоксану нами были взяты соединения сульфенилхлорида ацетилацетоната хрома(III) с винилтриметилсиланом, полученные на кафедре общей и элементоорганической химии ДВФУ [10]. Имеется ряд других работ по смежным проблемам [11–13].

В настоящей работе представлены результаты исследования экспериментальным методом рентгеновской фотоэлектронной спектроскопии и квантово-химического моделирования методом теории функционала плотности (ТФП) с функционалом B3LYP для сульфенилхлорида ацетилацетоната хрома (Cr(acacSCl)₃) (II) и его комплексов с одной (Cr(acacSCl)₂(acacSViClSiMe₃))

Рис. 1. Оптимизированная структура соединений Cr(acacSCl)₃ и Cr(acacSViClSiMe₃)₃.

(III), двумя (Cr(acacSCl)(acacSViClSiMe₃)₂) (IV) и тремя (Cr(acacSViClSiMe₃)₃) (V) группами винилтриметилсилана (рис. 1). Для анализа приведены также расчетные данные по ацетилацетонату хрома (I).

Комплексы переходных металлов исследовали в работах [14–16] ввиду возможности получения большого количества соединений и варьирования свойств конечных материалов, а также методами фотоэлектронной спектроскопии и квантово-химического моделирования в работах [17, 18].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеновские фотоэлектронные спектры сняты на сверхвысоковакуумном фотоэлектронном спектрометре фирмы Отсоп (Германия) с полусферическим анализатором (радиус кривизны 125 мм) и источником излучения с энергией 1253.6 эВ (линия MgK_{α}).

Для получения РФЭ-спектров образцы наносили из раствора на алюминиевую подложку, частично окисленную на поверхности, затем высушивали на воздухе.

Участки спектров характеристических уровней атомов O1s, C1s, Si2p, Cr2p, S2p, и Cl2p записывали при энергии пропускания анализатора 20 эВ. Аппаратная функция спектрометра в режиме записи линий характеристических уровней атомов, определенная по контуру линии $Ag3d_{5/2}$, имела ширину на полувысоте 1.2 эВ. Обзорный спектр, включающий все характеристические линии, записывали при энергии пропускания анализатора 50 эВ.

Обработку спектров проводили по стандартным процедурам с использованием программы САЅАХРЅ [19]. Анализ химических состояний атомов выполняли с разложением линий на компоненты с контурами, составленными комбинацией типов Гаусса и Лоренца. Количественный анализ проводили по площадям компонент разложения с учетом сечений фотоионизации [19] и зависимости длины свободного пробега электронов в образце от их скорости [20]. Величины процентных содержаний округляли до целых значений. Для расчета использовали характеристические линии элементов: Cr2p, O1s, C1s, S2p, Cl2p, Si2p. Воспроизводимость значений E_{cB} по результатам трех измерений не хуже 0.1 эВ.

Расчеты проводили с помощью программного комплекса Firefly 7.1G [21]. Оптимизацию геометрии осуществляли в приближении ТФП с использованием функционала B3LYP и базисного набора def2-SVP. Для соединений Cr(acac)₃, Cr(acacSCl)₃, Cr(acacSViClSiMe₃)₃ модели строили с сохранением точечной группы симметрии C_3 . Моделирование электронной структуры проводили с использованием базисного набора def2-ТZVPP без симметрии (C_1) для всех соединений. Поскольку в представленных соединениях присутствуют три неспаренных электрона на *d*-уровнях хрома, было применено неограниченное приближение для расчета открытых оболочек. Таким образом матрицы волновых функций представлены α- и β-наборами.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 1 представлена относительная концентрация атомов кислорода, углерода, хрома, хлора, серы и кремния, рассчитанная по экспериментальным данным и брутто-формуле. Оценивая данные с учетом ошибки в определении концен-

Атом	II		III		Ι	V	V		
	$K(\sigma, \lambda)$	<i>К</i> (бр)							
0	18	21	15	18	14	15	13	13	
C (C–C)	52	32	48	41	47	48	48	52	
C (C–O)	16	21	16	18	18	15	17	13	
Cr	2	4	2	3	2	3	2	2	
Cl	3	11	7	9	6	8	7	7	
S	8	11	9	9	8	8	7	7	
Si	_	_	4	3	5	5	7	7	

Таблица 1. Концентрация элементов для исследуемых соединений по экспериментальным $K(\sigma, \lambda)$ и теоретическим $K(\delta p)$ (брутто-формула) данным, %

Таблица 2. Геометрия молекул по данным метода ТФП (def2-SVP)

Связь	Связь І І		III	IV	V					
Длина связи, Å										
Cr–O	1.97	1.96	1.97/1.94*	1.97/1.95*	1.96					
$O-C_{\beta}$	1.27	1.26	1.26/1.27*	1.28/1.30*	1.30					
S-Cl	_	2.16	2.17	2.38	_					
C–Cl	—	—	1.84	1.93	1.94					
S–C(Vi)	—	—	1.85	1.93	1.93					
$C_{\gamma}-R$	1.09	1.74	1.74/1.78*	1.76/1.84*	1.84					
Si-C(Vi)	—	—	1.93	1.95	1.95					
Si-C(Me)	—	—	1.89	1.91	1.91					
Углы, град										
$C_{\beta}-C_{\gamma}-C_{\beta}$	124	122	122	122	122					
O-Cr-O	90	88	87/88*	87/88*	88					
C _γ -S-X	—	105	105/103	105/102	102					
C(Vi)-C(Vi)-Si	—	—	115	115	115					
C(Vi)–Si–C(Me)	—	—	108	108	108					

* Значение для лиганда с – SCl/заместителем – SViClSiMe₃. Примечание. R = H, S; X = Cl, C, Vi – винил.

траций элементов по данным метода РФЭС, можно отметить, что в соединении сульфенилхлорида ацетилацетоната хрома заметна увеличенная концентрация атомов алифатического углерода, что говорит о наличии примесей. Также для соединений Cr(acacSCl)₃, Cr(acacSCl)₂(acacS-ViClSiMe₃), Cr(acacSCl)(acacSViClSiMe₃)₂ наблюдаются заниженные концентрации для атома хлора. Учитывая тип γ -заместителя и воспроизводимость этого эффекта, такой результат можно отнести к частичному выходу атомов хлора из групп –S–Cl.

Геометрические параметры оптимизированных моделей соединений представлены в табл. 2. Учтено неэквивалентное положение атомов, что отмечено в таблице для длин связей Cr–O, C–O и C_{γ} –R (R = H, S). Отметим, что геометрические

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 9 2022

параметры близки для всех соединений. Различия в соответствующих длинах связей и углов не приводят к заметным расхождениям в параметрах электронной структуры.

Параметры характеристических линий в РФЭспектрах исследуемых соединений приведены в табл. 3. Для 2*p*-линии хрома можно отметить заметный сдвиг (~3 эВ), сопутствующий сильному окислению и соответствующий данным [19, 22, 23]. Различные состояния атомов углерода (С–О, С–С) проявляются в уширении линии C1s до 2.6-2.7 эВ (рис. 2).

Значение $E_{\rm cB}$ (101.2 эВ) для электронов Si2*p*, определенное по положению максимума линии спин-орбитального дублета, хорошо согласуется с литературными данными для органических соединений кремния [19, 22, 23].

ЯШИН и др.

		II	III			IV	V		
Состояние	<i>Е</i> _{св} , эВ	полуширина, эВ							
O1s	532.0	1.9	532.0	1.7	532.0	1.7	532.0	1.7	
C1 <i>s</i> (C)	284.9	1.7	285.0	1.7	285.0	1.8	285.0	1.8	
C1 <i>s</i> (O)	287.1	1.8	287.1	1.6	287.1	1.6	287.1	1.6	
Cr2p3/2	577.4	2.5	577.3	2.3	577.4	2.4	577.4	2.5	
Cl2p3/2	199.9	2.0	200.4	1.7	200.4	1.5	200.3	1.5	
S2p3/2	163.4	1.2	163.6	1.5	163.6	1.4	163.6	1.4	
Si2p	_	_	101.2	1.8	101.2	1.7	101.2	1.8	

Таблица 3. Энергия связи и полуширина линий остовных уровней (РФЭС)

Таблица 4. Эффективные заряды, а.е.

		Ι	II	III	IV	V
Cr		0.83	0.85	0.85	0.85	0.87
0		-0.34	-0.29	-0.29/-0.32*	-0.29/-0.32*	-0.31
S		—	0.1	0.09/0.01*	0.08/0.01*	0
Cl		_	-0.2	-0.21/-0.15*	-0.21/-0.16*	-0.16
Si		—	—	0.46	0.46	0.46
С(хел)	1Me	-0.21	-0.21	-0.22/-0.20*	-0.21/-0.20*	-0.20
	1β	0.24	0.24	0.24/0.24*	0.24/0.23*	0.23
	γ	-0.35	-0.30	-0.30/-0.33*	-0.30/-0.33*	-0.33
	2β	0.24	0.25	0.24/0.23*	0.25/0.23*	0.23
	2Me	-0.21	-0.21	-0.21/-0.23*	-0.21/-0.23*	-0.23
$C_{(Vi)}$	CH ₂	—	—	-0.19	-0.19	-0.19
	CHCl	—	—	-0.11	-0.11	-0.10
$C_{(Si)}$	I	—	_	-0.39; -0.36	-0.39; -0.36	-0.39; -0.36

* Для лиганда с группой –SCl/–SViClSiMe₃.

Для линий Cl2p, S2p, Cr2p заметное спин-орбитальное расщепление позволяет различать состояния дублета. Для атомов Si и S, несмотря на уширение линии 2p-электронов вследствие спинорбитального расщепления энергии конечных состояний ${}^{2}P_{3/2}$ и ${}^{2}P_{1/2}$, ширина линий дублета сопоставима с шириной линий O и C. Разложение на две компоненты приводит к расщеплению в 0.8 эВ (сульфенилхлорид) и 1.2 эВ (соединения с винилтриметилсиланом) для S2p, близкому к теоретическому отношению площадей. Химические сдвиги остовных уровней соответствуют расчетным значениям эффективных зарядов (табл. 4).

Моделирование соединений позволило установить корреляцию расчетных валентных уровней с максимумами спектров в области от -3 до -30 эВ. На рис. 3 приведены спектры валентной области исследуемых соединений. Диаграммы расчетных значений электронных уровней (α , β) приведены под спектрами в том же масштабе со сдвинутой шкалой таким образом, чтобы наиболее ясно интерпретировать экспериментальные максимумы.

Большие абсолютные значения орбитальной энергии электронов свободных соединений по сравнению с положением максимумов в спектрах обусловлены двумя противоположными эффектами. Во-первых, при фотоионизации релаксация в конденсированных средах приводит к сильной переоценке (5–6 эВ) абсолютных значений расчетной энергии молекулярных орбиталей (**MO**) свободных молекул по сравнению с работой выхода. Во-вторых, дефект Купманса характеризует заниженные абсолютные значения энергии расчетных MO на величину ~2 эВ [18, 24–26].

В табл. 5 представлены данные по некоторым молекулярным орбиталям. Указанный характер МО относится к α-спин-орбиталям. Характер β-спин-орбиталей отличается отсутствием орбита-

Рис. 2. РФЭ-спектры остовных уровней Cr2p, O1s, C1s, C12p, S2p для соединений II-V.

лей, имеющих характер *d*-AO, и незначительным вкладом *d*-электронной плотности в лигандные орбитали.

Начало полосы в области меньших энергий связи для сульфенилхлорида ацетилацетоната хрома (соединение II) связано с удалением электрона с антисвязывающей комбинации орбиталей 3p-уровней серы и хлора (рис. 4а, 4б) и комбинации π_3 -орбиталей ацетилацетоната с 3d-уровнем хрома (рис. 4в) (соединения II–V). Для комплексов с винилтриметилсиланом (III–V) 3pуровень атома хлора перестает давать вклад в верхние МО (рис. 4в, 4г).

Пик, находящийся в интервале 4—8 эВ, обусловлен ионизацией с МО 3*d*-уровней хрома (рис. 5) и его комбинаций с n_+ , n_- , π_2 -уровнями ацетилацетоната. Сюда же попадают МО, состоящие из 3*p*-уровней хлора и серы, а также 3*p*-уровней кремния (соединения III, IV, V). В интервале энергий ионизации 8—12 эВ находятся МО, представляющие собой комбинацию 2*p*-уровней кислорода и 2*p*-уровней углерода как хелатного со-

Рис. 3. Спектры валентной области исследуемых соединений.

Taoming 5. Onepring nekolopbix bepanna ypoblich basennion oosidern, basadbi a ypoblich apoma, 70	Таблица 5.	Энергия некотор	рых верхних	уровней ва	алентной о	области,	вклады <i>d</i> -у	ровней хрома,	%
---	------------	-----------------	-------------	------------	------------	----------	--------------------	---------------	---

-	II			III		IV				V	
МО (симм.)	- <i>ε</i> , эВ	Cr	МО	- <i>ε</i> , эВ	Cr	МО	- <i>ε</i> , эВ	Cr	МО	- <i>ε</i> , эВ	Cr
π ₃ (e)	6.96	23		6.56	11		6.32	10	π ₃ (e)	6.09	16
$\pi_3(a)$	7.24	2	π_3	6.87	21	π_3	6.44	8	$\pi_3(a)$	6.34	1
<i>d</i> (a)	7.66	61		7.07	7		6.80	11	<i>d</i> (a)	7.02	67
<i>n_</i> (a)	7.99	2		7.58	61		7.30	66	<i>d</i> (e)	7.27	42
<i>d</i> (e)	8.00	31	d	7.88	31	d	7.49	33	<i>n_</i> (a)	7.43	2
<i>n</i> _(e)	8.55	18		7.92	29		7.60	28	<i>n_</i> (e)	8.01	13
$n_{+}(a)$	9.50	12		7.93	6		7.66	9	$n_+(a)$	8.67	12
<i>n</i> ₊ (e)	9.56	18	<i>n</i> _	8.46	15	<i>n</i> _	8.23	13	<i>n</i> ₊ (e)	8.73	16
$\pi_2(e)$	10.19	2		8.48	15		8.26	14	$\pi_2(e)$	9.43	2
$\pi_2(a)$	10.32	1		9.11	12		8.90	13	$\pi_2(a)$	9.77	4
			<i>n</i> ₊	9.43	13	n_+	8.94	15			
				9.49	19		9.26	13			
				10.17	2		9.95	3			
			π_2	10.29	1	π_2	10.08	2			
				10.32	2		10.17	2			

Рис. 4. ВЗМО для $Cr(acacSCl)_3$ (a), $Cr(acacSCl)_2(acacSViClSiMe_3)$ (б), $Cr(acacSCl)(acacSViClSiMe_3)_2$ (в) и $Cr(acacSViClSiMe_3)_3$ (г).

Рис. 5. Уровни 3*d*-хрома для $Cr(acacSCl)_3$ (a), $Cr(acacSCl)_2(acacSViClSiMe_3)$ (б), $Cr(acacSCl)(acacSViClSiMe_3)_2$ (в) и $Cr(acacSViClSiMe_3)_3$ (г).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 9 2022

Рис. 6. Уровни 2*s*-кислорода для $Cr(acacSCl)_3$ (a), $Cr(acacSCl)_2(acacSViClSiMe_3)$ (б), $Cr(acacSCl)(acacSViClSiMe_3)_2$ (в) и $Cr(acacSViClSiMe_3)_3$ (г).

единения (II, III, IV, V), так и винилтриметилсилана (III, IV, V).

Следующий пик в интервале энергий 12–15 эВ соответствует комбинации 3*s*-уровней серы и 3*s*-уровней хлора. В промежутке энергий 15–22 эВ находятся уровни 2*s*-углерода и 3*s*-хлора, сюда же входят 3*s*-уровни кремния. Последний пик в интервале 22–30 эВ преимущественно вызван ионизацией с 2*s*-уровней кислорода (рис. 6).

ЗАКЛЮЧЕНИЕ

Установлены соответствия в результатах теоретических расчетов электронной структуры отдельных молекул с экспериментальными данными, полученными для поверхности образцов в конденсированном состоянии. Теоретические эффективные заряды соответствуют сдвигам линий в РФЭ-спектре. Установленная природа уровней в валентной области позволяет прояснить механизм взаимодействия исследуемых соединений с силоксановыми соединениями.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке гранта № 075-15-2021-607 (в форме субсидии, направленной на государственную поддержку научных исследований, проводимых под руководством ведущих ученых российских высших учебных заведений, научных фондов и государственных исследовательских центров Российской Федерации) и гранта Министерства науки и образования РФ № 0657-2020-0003.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Sanchez C., Julian B., Belleville P., Popall M. // J. Mater. Chem. 2005. V. 15. P. 3559.
- Pielichowski K., Njuguna J., Janowski B., Pielichowski J. // Adv. Polym. Sci. 2006. V. 201. P. 225.
- Neumann D., Fisher M., Tran L., Matisons J.G. // J. Am. Chem. Soc. 2002. V. 124. P. 13998.

- 4. *Hartmann-Thompson C*. (Ed.). Applications of Polyhedral OligomericSilsesquio-xanes. Advances in Silicon Science. 2011. V. 3.
- Lücke S., Stoppek-Langner K. // Appl. Surf. Sci. 1999. V. 144–145. P. 713.
- Laine R.M., Sulaiman S., Brick C. // J. Am. Chem. Soc. 2010. V. 132. P. 3708.
- 7. Вовна В.И., Осьмушко И.С., Короченцев В.В. и др. // Журн. структур. химии. 2010. Т. 51. № 5. С. 904.
- Осьмушко И.С., Вовна В.И., Короченцев В.В. и др. // Журн. структур. химии. 2011. Т. 52. № 7. С. 148.
- 9. *Осьмушко И.С., Вовна В.И., Яшин В.А. и др. //* Журн. структур. химии. 2013. Т. 54. № 3. С. 463.
- Svistunova I.V., Shapkin N.P., Tretyakova G.O., Saigak D.V. // Phosphorus, Sulfur Silicon Relat. Elem. 2015. V. 190. P. 1632.
- Shapkin N.P., Leont'ev L.B., Leont'ev A.L. et al. // Russ. J. Appl. Chem. 2012. V. 85. № 10. C. 1509.
- Shapkin N.P., BalanovM.I., Razov V.I. et al. // J. Mol. Struct. 2018. V. 1155. P. 424. https://doi.org/10.1016/j.molstruc.2017.11.119
- 13. Shapkin N.P., Leont'ev L.B., Makarov V.N. et al. // Russ. J. Appl. Chem. 2014. V. 87. № 12. C. 1810.
- Gusarov V.S., Cheplakova A.M., Samsonenko D.G. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1374. https://doi.org/10.1134/S0036023621090035
- Sergienko V.S., Koksharova T.V., Churakov A.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1492. https://doi.org/10.1134/S0036023621100156

- Isaeva V.A., Gamov G.A., Sharnin V.A. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1696. https://doi.org/10.1134/S0036023621110097
- Ivanova T.M., Kiskin M.A., Sidorov A.A. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 702. https://doi.org/10.1134/S1070328421100031
- 18. Osmushko I.S., Vovna V.I., Tikhonov S.A. et al. // Int. J. Quantum Chem. 2016. V. 116. P. 325.
- CasaXPS Version 2.3.12 Casa Software Ltd, 1999– 2006.
- 20. Карлссон Т.А. Фотоэлектронная и Оже-спектроскопия. Л.: Машиностроение, 1981. 431 с.
- 21. Granovsky A.A. Firefly. version 8.2.0: http://classic.chem.msu.su/gran/gamess/index.html
- 22. Нефедов В.И. Рентгеноэлектронная спектроскопия химических соединений. М.: Химия, 1984. 256 с.
- 23. Naumkin A.V., Kraut-Vass A., Gaarenstroom S.W. et al. NIST X-ray Photoelectron Spectroscopy Database 20, 2012. Version 4.1. https://srdata.nist.gov/xps/
- 24. *Чижов Ю.В.* Дис. ... докт. физ.-мат. наук. Уфа, 2009. 337 с. http://www.issp.ac.ru/ebooks/diss-er/Chizhov_Yu_V.pdf
- 25. Вовна В.И., Короченцев В.В., Доценко А.А. // Коорд. химия. 2011. Т. 37. № 12. С. 38.
- 26. Вовна В.И. Электронная структура органических соединений. М.: Мир, 1991. 247 с.