СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.81'78'21+548.5'73+537.226

ПОЛУЧЕНИЕ, РЕНТГЕНОСТРУКТУРНЫЕ И ДИЭЛЕКТРИЧЕСКИЕ ИССЛЕДОВАНИЯ МОНОКРИСТАЛЛОВ ФАЗЫ Рb₅WO₈ СИСТЕМЫ РbO–WO₃

© 2023 г. А. А. Буш^{а, *}, В. И. Козлов^а, А. И. Сташ^b, С. А. Иванов^{с, d}

^аМИРЭА — Российский технологический университет (РТУ МИРЭА), пр-т Вернадского, 78, Москва, 119454 Россия ^bИнститут элементоорганических соединений им. А.Н. Несмеянова РАН, ул. Вавилова, 28, Москва, 119334 Россия ^cМосковский государственный университет им. М.В. Ломоносова, химический факультет, Ленинские горы, 1, Москва, 119991 Россия ^dФедеральный исследовательский центр химической физики им. Н.Н. Семенова РАН, ул. Косыгина, 4, Москва, 119991 Россия *e-mail: aabush@yandex.ru

Поступила в редакцию 17.05.2022 г. После доработки 01.08.2022 г. Принята к публикации 02.08.2022 г.

Путем кристаллизации расплавов смесей (1 - x)PbO · xWO₃ (x = 0.15-0.20) выращены монокристаллы фазы Pb₅WO₈ системы PbO–WO₃, которые использовали для проведения термогравиметрических, рентгеноструктурных и диэлектрических исследований. Выявлено, что фаза плавится с разложением на PbO и жидкость при 712°C. Установлено, что кристаллическая структура Pb₅WO₈ является моноклинной (пр. гр. $P2_1/n$, 293 K) с параметрами элементарной ячейки a = 7.4430(1), b = 12.1156(2), c = 10.6284(2) Å, $\beta = 90.658(1)^\circ$. При 100 K структура Pb₅WO₈ сохраняется, незначительные изменения параметров ячейки связаны только с тепловым расширением. Структура Pb₅WO₈ имеет ярко выраженный слоистый характер, она представляется как чередование вдоль направления [010] слоев, образованных октаэдрами WO₆ и сильно искаженными многогранниками PbO₄, PbO₅. Проведен детальный кристаллохимический анализ структуры. Отмечена важная роль неподеленной пары электронов катионов Pb при формировании в структуре характерных полостей. На температурных зависимостях диэлектрической проницаемости и тангенса угла диэлектрических потерь проявляются максимумы релаксационного характера, связанные с наличием в структуре вакансий свинца и кислорода.

Ключевые слова: фаза Pb₅WO₈, монокристаллы, термогравиметрический анализ, рентгеноструктурный анализ, кристаллическая структура, диэлектрические свойства **DOI:** 10.31857/S0044457X22600815, **EDN:** GVADOV

ВВЕДЕНИЕ

Согласно фазовой диаграмме системы PbO–WO₃ [1], в ней образуются две промежуточные фазы состава PbWO₄ и Pb₂WO₅, плавящиеся конгруэнтно при 1123(5) и 935(5)°С соответственно. Недавно в этой системе была выявлена еще одна фаза состава Pb₅WO₈ моноклинной симметрии [2] и установлена ее изоструктурность с фазой Pb₅TeO₈ [3].

Из известных фаз рассматриваемой системы наиболее изучена фаза $PbWO_4$, монокристаллы которой широко используются в экспериментах по физике высоких энергий [4–7]. По этой причине радиационная стойкость кристаллов $PbWO_4$ широко изучалась в течение последних десятиле-

тий (обзор см. в ссылках [4–7]). Другие фазы системы PbO–WO₃ изучены в значительно меньшей степени.

Исследования фазы Pb_5WO_8 ограничены только работой [2]. В ней методом твердофазных реакций смесей 5PbO–WO₃ при 650°С в вакуумированных кварцевых ампулах синтезированы поликристаллические образцы этой фазы [2]. Монокристаллы Pb_5WO_8 получены кристаллизацией путем охлаждения от 800°С до комнатной температуры со скоростью 300 град/ч расплава смеси Pb_2WO_5 –LiF в Al_2O_3 -тиглях. Выполнен рентгеноструктурный анализ кристаллов (*R*-фактор равен 3.8%). Установлено, что кристаллы описываются моноклинной пр. гр. $P2_1/n$ с пара-

Рис. 1. Фотография монокристалла Pb₅WO₈.

метрами элементарной ячейки $a = 7.4379(2), b = 12.1115(4), c = 10.6171(3) Å, \beta = 90.6847(8)^\circ$. Pb₅WO₈ имеет слоистую структуру, образованную неконденсированными октаэдрами [WO₆]^{6–} и олигомерами [O₄Pb₁₀]¹²⁺, структурная формула имеет вид Pb₅O₂[WO₆].

Порошкообразные образцы фазы Pb_5WO_8 исследованы с помощью инфракрасных и рамановских спектров, спектров ультрафиолетового и видимого излучения, а также квантово-химических и электростатических расчетов, определяющих ширину запрещенной зоны как 2.8–2.9 эВ.

Выполнен термогравиметрический анализ (**ТГА**) образцов Pb_5WO_8 при их нагреве от комнатной температуры в атмосфере азота до 1400°C в корундовых тиглях. В изученном температурном диапазоне зафиксирована одна ступень, соответствующая потере 56.1% массы начиная с ~890°C. Поскольку разложение фазы не было завершено вплоть до максимальной температуры, а образец после ТГА имел стеклообразный вид, информация о продуктах разложения фазы не была получена.

Следует отметить, что в работе [2] отсутствуют какие-либо сведения о габитусе и размерах выращенных монокристаллов, о возможности получения монокристаллов Pb₅WO₈ из расплавов смесей PbO-WO3, о температурной области стабильности фазы и температуре ее плавления в воздушной атмосфере, о диэлектрических свойствах кристаллов Pb₅WO₈, кристаллическая структура фазы была изучена только при комнатной температуре. В связи с этим в настоящей работе описаны монокристаллы Pb₅WO₈, выращенные из расплава PbO-WO₃, приведены результаты ТГА образцов Рb₅WO₈ в воздушной атмосфере, определения ее кристаллической структуры при 296 и 100 К, а также результаты изучения температурно-частотных зависимостей диэлектрической проницаемости и тангенса угла диэлектрических потерь.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез образцов. Образцы состава (1 - x)PbO · xWO₃ (x = 0.10, 0.15, 0.20, 0.25, 0.33) синтезировали методом твердофазных реакций с использованием оксидов PbO (ч. д. а.) и WO₃ (ос. ч.) в качестве исходных компонентов. Гомогенизацию смесей этих оксидов проводили путем перетирания в агатовой ступке в среде этилового спирта. Смесь для синтеза помещали в алундовый тигель и неплотно накрывали алундовой пластиной в качестве диффузионного барьера. Образцы отжигали в течение 2 ч при 710 и 820°С. Охлаждение образцов после обжига до комнатной температуры осуществляли со скоростью ~100 град/ч.

Используемые температуры обжига лежат ниже (710°С) и выше (820°С) эвтектической температуры (730°С) между фазами PbO и Pb_2WO_5 [1].

Все образцы, спеченные при 710°С, не имели признаков плавления и представляли собой плохо спеченную порошкообразную массу желтоватого цвета.

Образцы, спеченные при 820°С, имели признаки частичного (x = 0.10, 0.25) или полного (x = 0.15 и 0.20) плавления. Из закристаллизованных расплавов смесей (1 - x)PbO · xWO₃ (x == 0.15-0.20) можно выделить монокристаллические образцы фазы Pb₅WO₈. Эти монокристаллы прозрачны в видимом диапазоне, имеют желтую окраску, обладают пластинчатым габитусом, достигают размеров 0.5 × 2.0 × 4.0 мм (рис. 1). Наиболее развитыми формами роста кристаллов являются грани {010} (в моноклинной установке, см. ниже). Эти монокристаллы были использованы для проведения рентгеноструктурного анализа при 100 и 293 К и диэлектрических исследований. При изучении монокристаллов с помощью поляризационного микроскопа (Полам Л-213М) их полисинтетическое двойникование не обнаружено.

Рентгенофазовый анализ синтезированных образцов методом порошковой дифракции проводили на автоматическом дифрактометре ДРОН-4 с использованием CuK_{α} -излучения. Согласно фазовой диаграмме PbO–WO₃, образцы с x = 0.33 представляют фазу Pb₂WO₅ моноклинной симметрии [1, 8–10]. Образцы с 0.20 < x < 0.33 и 0.10 < x < 0.20 идентифицированы как смесь фазы Pb₅WO₈ с фазами Pb₂WO₅ и PbO соответственно [1, 2, 8–11].

Все наблюдаемые пики на рентгенограмме порошка образцов с x = 0.15 (рис. 2) индицируются с высокой точностью на основе моноклинной элементарной ячейки с a = 7.433(2), b = 12.113(2), c = 10.625(3) Å, $\beta = 90.58(2)^{\circ}$ (в хорошем согласии с данными [2] и результатами наших рентгеноструктурных исследований монокристаллов, представленных ниже), что указывает на их одно-

Рис. 2. Дифрактограмма измельченных в порошок кристаллов Pb_5WO_8 (Си K_{α} -излучение).

фазную природу. Отсутствие существенной летучести компонентов при синтезе образцов в указанном диапазоне температур, установленное термогравиметрическим анализом (потери массы при нагреве до 750°C не превышали 0.13%), позволяет сделать вывод, что состав этой фазы близок к составу смеси, из которой она была получена. Этот состав подтверждается результатами выполненного нами и в работе [2] рентгеноструктурного анализа монокристаллов указанной фазы. При изменении состава исходной смеси (1 - x)PbO · xWO₃ в диапазоне x = 0.15 - 0.20 параметры элементарной ячейки Pb₅WO₈ сохраняют свои значения в пределах точности их определения, что указывает на отсутствие заметной области гомогенности фазы Pb₅WO₈ на фазовой диаграмме системы PbO-WO₃.

Термогравиметрический анализ проводили в воздушной атмосфере с использованием автоматизированной термогравиметрической установки Q-1500D системы F. Paulik, J. Paulik, L. Erdey. Исследуемый и эталонный порошковые образцы помещали в Pt-тигли, в качестве стандартного образца использовали прокаленный при 1200°С порошок Al₂O₃. Результаты ТГА порошка, синтезированного при 710°С, приведены на рис. 3. Наличие двойного пика на кривой дифференциального термического анализа в области плавления образца, а также данные РФА образца после проведенного ТГА позволяют заключить, что фаза плавится с разложением на PbO и жидкость при 712°C, полное плавление происходит при 714.4°С. Нагрев образца выше 560°C сопровождается слабым необратимым уменьшением его массы, не превосходящим 0.1%, которое, вероятно, вызвано испарением РbО из образца.

Рис. 3. Результаты термогравиметрического анализа синтезированного при 710°С порошка фазы Pb₅WO₈.

Рентгеноструктурные исследования монокристаллов Pb_5WO_8 . Рентгеноструктурный анализ проводили на монокристалле, имеющем форму параллелепипеда с размерами $0.103 \times 0.064 \times 0.048$ мм, выделенном из кристаллизованного расплава смеси 5PbO–WO₃.

Экспериментальные наборы рентгенодифракционных данных для монокристаллов исследуемого соединения были собраны на автоматическом дифрактометре Bruker D8 QUEST при 100 К и Bruker APEX II с детектором Photon II при 293 К (монохроматизированное графитом Mo K_{α} -излучение, $\lambda = 0.71073$ Å, ω -сканирование).

Для интегрирования дифракционных отражений использовали программу SAINT v.8.38A. Численная поправка на поглощение рентгеновских лучей по габитусу кристалла и приведение к единой шкале интегральных интенсивностей были выполнены с помощью программы SADABS v.2016/2 из программного обеспечения APEX3 [12]. Расшифровку кристаллической структуры проводили с использованием программного пакета

Температура, К	100(2)	293(2)			
Молекулярная масса	1347.80				
Кристаллографическая система,	Моноклинная, <i>Р</i> 2 ₁ / <i>n</i>				
пр. гр.					
Число формульных единиц	4				
в элементарной ячейке Z					
a, Å	7.4232(1)	7.4430(1)			
b, Å	12.0882(2)	12.1156(2)			
<i>c</i> , Å	10.6013(2)	10.6284(2)			
β, град	90.7546(7)	90.658(1)			
Объем элементарной ячейки V , Å ³	951.21(3)	958.37(3)			
Дифрактометр	Bruker QUEST D8	Bruker APEXII			
	with Photon III detector	with Photon II detector			
Тип излучения	$MoK_{\alpha}, \lambda = 0.71073 \text{ Å}$				
Число измеренных, независимых и наблюдаемых $[I > 2\sigma(I)]$ рефлексов	71569, 7939, 7318	51455, 7798, 4688			
Фактор надежности $R_{\rm int}$	0.067	0.098			
Диапазон θ для сбора данных, град	2.55-45.30				
Коэффициент поглощения µ, мм ⁻¹	100.23	99.49			
Размер кристалла, мм	$0.103 \times 0.064 \times 0.048$				
Учет поглощения	Численное				
Коэффициенты пропускания T_{\min}, T_{\max}	0.017, 0.113				
Факторы надежности	0.0235, 0.0535, 1.103	0.0498, 0.1048, 0.935			
$R[F^2 > 2\sigma(F^2)], wR(F^2), GOF$					
Число рефлексов	7939	7798			
Число параметров	128	128			
Разностная электронная плотность,	5.185/-4.250	6.426/-3.598			
$\Delta \rho_{max} / \Delta \rho_{min} (e / Å^{-3})$					
Номер CSD	2156504	2156503			

Таблица	1.	Кристаллографические	данные 1	И	экспериментальные	детали	для	кристаллической	структуры
Pb_5WO_8									

Bruker Shelxtl Арех3 [12, 13], применяя программу XPREP для определения пространственной группы, а также программы XT и XL для решения и уточнения структуры соответственно. Уточнение кристаллической структуры было проведено полноматричным методом наименьших квадратов на $F^2(hkl)$ с анизотропными тепловыми параметрами для всех атомов.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Структурное описание. В соответствии с работой [2] было обнаружено, что симметрия кристаллической структуры изученной фазы описывается при комнатной температуре пр. гр. *P*2₁/*n*, которая сохраняется при охлаждении кристалла вплоть до 100 К. В рентгенодифракционных экспериментах, проведенных при 100 К, не обнаружено дополнительных брэгговских отражений, которые не вписываются в пр. гр. $P2_1/n$. Подробная информация о выполненных рентгенодифракционных экспериментах при 100 и 293 К, а также результаты уточнения кристаллической структуры Pb_5WO_8 представлены в табл. 1. Координаты, заселенности позиций и параметры изотропного смещения структурно-независимых атомов приведены в табл. 2.

На промежуточном этапе уточнения заселенностей позиций всех атомов было установлено, что в пределах трех стандартных отклонений они практически не отличаются от стехиометрических значений. Поэтому при окончательном уточнении структуры заселенности всех атомов были приняты равными единице.

Атом	Атом х		ζ	$U_{ m _{3KB}}$	Заселенность позиций				
Температура 100 К									
Pb(1)	0.38705(2)	0.60802(2)	0.58935(2)	0.00573(2)	0.978(7)				
Pb(2)	0.86853(2)	0.15311(2)	0.58682(2)	0.00593(2)	0.977(7)				
Pb(3)	0.38094(2)	0.12578(2)	0.55566(2)	0.00635(2)	0.978(7)				
Pb(4)	0.16796(2)	0.37570(2)	0.75973(2)	0.00640(2)	0.981(7)				
Pb(5)	0.89858(2)	0.60771(2)	0.60141(2)	0.00659(2)	0.976(7)				
W(1)	0.65207(2)	0.38898(2)	0.72464(2)	0.00484(2)	0.980(7)				
O(1)	0.4494(4)	0.4296(2)	0.6019(2)	0.0067(4)	1.011(15)				
O(2)	0.1228(4)	0.5537(2)	0.7304(2)	0.0077(4)	1.006(15)				
O(3)	0.6504(4)	0.0713(2)	0.4733(2)	0.0075(4)	1.014(15)				
O(4)	0.8222(4)	0.4269(2)	0.5644(3)	0.0080(4)	0.983(15)				
O(5)	0.6882(4)	0.5468(2)	0.7452(3)	0.0096(4)	0.983(15)				
O(6)	0.8554(4)	0.3463(3)	0.8095(3)	0.0101(4)	0.974(16)				
O(7)	0.6217(4)	0.2467(2)	0.6498(3)	0.0098(4)	1.004(16)				
O(8)	0.4967(4)	0.3802(3)	0.8524(3)	0.0117(5)	1.028(17)				
		Температ	ypa 293 K	I					
Pb(1)	0.38738(4)	0.60790(2)	0.58960(3)	0.01495(6)	0.979(12)				
Pb(2)	0.86838(4)	0.15218(3)	0.58616(3)	0.01550(7)	0.977(12)				
Pb(3)	0.11851(4)	0.62558(3)	0.94453(3)	0.01702(7)	0.977(12)				
Pb(4)	0.16808(5)	0.37596(3)	0.75881(3)	0.01738(7)	0.981(12)				
Pb(5)	0.89846(5)	0.60759(3)	0.60213(3)	0.01773(7)	0.975(12)				
W(1)	0.65243(4)	0.38830(3)	0.72436(3)	0.01237(6)	0.979(12)				
O(1)	0.4478(8)	0.4293(5)	0.6014(5)	0.0150(11)	1.06(2)				
O(2)	0.1227(8)	0.5528(5)	0.7312(6)	0.0173(11)	0.97(2)				
O(3)	0.6480(7)	0.0707(5)	0.4739(5)	0.0178(12	1.09(2)				
O(4)	0.8229(8)	0.4273(5)	0.5656(5)	0.0164(11	1.02(2)				
O(5)	0.6897(9)	0.5451(5)	0.7458(6)	0.0236(14)	0.98(2)				
O(6)	0.8525(8)	0.3473(5)	0.8085(6)	0.0201(13)	1.00(2)				
O(7)	0.6245(8)	0.2477(5)	0.6504(6)	0.0195(12)	1.01(2)				
O(8)	0.4960(9)	0.3781(6)	0.8485(6)	0.0278(16)	0.97(2)				

Таблица 2. Координаты атомов, эквивалентные параметры их изотропного смещения и заселенности позиций в структуре Pb₅WO₈ (позиция Вайкоффа для всех атомов в структуре соответствует 4*e*)

Основные длины связей в структуре Pb_5WO_8 приведены в табл. 3. Представление структуры в виде катионных полиэдров выполнено с использованием программы VESTA [14]. Полученные кристаллические структуры (рис. 4—6) депонированы через специальную службу депонирования CCDC/FIZ Karlsruhe: CSD 2156503-2156504.

При сравнении параметров ячейки кристаллической структуры Pb_5WO_8 при 100 и 293 К (табл. 1) обращает на себя внимание величина коэффициента теплового расширения ($\alpha = 3.9 \times 10^{-5} \text{ K}^{-1}$), близкая к значению для β-PbO ($\alpha = 4.1 \times 10^{-5} \text{ K}^{-1}$ [15, 16]), что, по-видимому, можно объяснить наличием значительных пустот в структурном каркасе обоих соединений.

Все атомы в структуре Pb_5WO_8 расположены в общих позициях 4*e* пр. гр. $P2_1/n$, что хорошо согласуется с моделью, предложенной в [2]. Наблюдаемое незначительное различие в структурных параметрах можно связать с особенностями методов роста исследуемых кристаллов и точностью проведенных рентгенодифракционных экспериментов.

Структура содержит пять симметрийно независимых катионов Pb с координационными многогранниками PbO_n, где n = 4 или 5, искаженными из-за стереохимической активности неподе-

Varuou	Длина свя	зи М–О, Å	Kamuou	Длина связи М–О, Å		
Катион	100 K	293 K	Катион	100 K	293 K	
Pb(1)	2.209(3)	2.214(6)	Pb(4)	2.199(3)	2.188(6)	
	2.276(3)	2.300(6)		2.358(3)	2.382(6)	
	2.421(3)	2.426(5)		2.412(3)	2.438(6)	
	2.568(3)	2.581(6)		2.619(3)	2.610(7)	
	2.860(3)	2.883(7)		2.771(3)	2.762(6)	
	3.084(3)	3.093(6)		3.335(3)	3.329(6)	
	3.612(3)	3.645(6)				
Pb(2)	2.236(3)	2.246(6)	Pb(5)	2.238(3)	2.249(6)	
	2.240(3)	2.253(6)		2.291(3)	2.288(5)	
	2.261(3)	2.265(6)		2.317(3)	2.318(6)	
	2.703(3)	2.733(6)		2.767(3)	2.783(6)	
	3.323(3)	3.346(6)		3.132(3)	3.137(6)	
	3.335(3)	3.357(6)		3.373(3)	3.375(6)	
	3.505(3)	3.538(7)		3.418(3)	3.409(7)	
				3.580(3)	3.587(6)	
Pb(3)	2.290(3)	2.273(6)	W(1)	1.793(3)	1.774(7)	
	2.413(3)	2.408(6)	. ,	1.822(3)	1.798(6)	
	2.430(3)	2.433(6)		1.906(3)	1.887(6)	
	2.506(3)	2.537(6)		1.939(3)	1.933(6)	
	2.635(3)	2.652(6)		2.036(3)	2.057(6)	
	3.553(3)	3.595(7)		2.179(3)	2.175(6)	

Таблица 3. Длины связей М–О в многогранниках Pb₅WO₈ (выделены длины связей за пределами первой координационной сферы 3.0 Å)

ленных пар электронов на катионах Pb²⁺, что, повидимому, оказывает существенное влияние на особенности кристаллической структуры Рb₅WO₈. Интересной особенностью кристаллической структуры Pb₅WO₈ является тенденция к образованию набора структурных полостей, в которых связываются неподеленные пары электронов. Кристаллическая структура образуется в результате конкуренции между требованиями к катионам Pb²⁺ с неподеленной парой электронов и октаэдрам W⁶⁺. В кристаллической структуре октаэдры WO₆ и сильно искаженные многогранники PbO_n объединены вдоль общих вершин и ребер, образуя сложные слои (010) (рис. 4). Слои образуются всеми полиэдрами атомов свинца и вольфрама, и их укладка в структуре происходит вдоль направления [010].

Катионы W⁶⁺ расположены между цепочками многогранников Pb, обеспечивая соединение структуры в трехмерный каркас.

Изолированные октаэдры WO₆ в рассматриваемой структуре заметно искажены от идеальной октаэдрической геометрии. Длины связей W⁶⁺–О варьируются от 1.774(7) до 2.17(6) Å (теоретическая величина, рассчитанная из ионных радиусов, равна 2.00 Å [17]). При этом межатомные расстояния W–O и валентные углы OWO находятся в удовлетворительном согласии с ранее найденными в структурах WO₃ [18, 19] и Pb₂WO₅ [9].

Для предложенной структурной модели были выполнены расчеты сумм валентностей связей [20, 21]. Установлено, что существует значительный вклад более длинных связей Pb–O вне первой координационной сферы (до 3.6 Å) в общую сумму валентностей каждого отдельного катиона Pb. Включение этих связей в расчеты дало более разумные значения, близкие к номинальным валентностям пяти катионов свинца и вольфрама (1.85–2.14 для Pb²⁺ и 6.18 для W⁶⁺).

Если разбить структуру на отдельные фрагменты, наибольшее значение часто придают ближайшему координационному окружению каждого катиона. Этот подход использует два основных понятия: координационный полиэдр и координационное число. Несмотря на активное использование этих понятий в современной кристаллохимии, они не нашли должного отражения применительно к катионам с неподеленной парой электронов, к которым относится катион Pb²⁺ [22–25].

Для этих катионов характерно наличие открытых (зонтичных) анионных координаций, затрудняющих однозначный выбор координационных полиэдров. Под координационным полиэдром катиона Pb²⁺ в данном случае следует понимать

Рис. 4. Полиэдрическое представление кристаллической структуры Pb₅WO₈ вдоль направления [100].

воображаемый многогранник, вершинами которого являются ближайшие к центральному атому соседние анионы. Полиэдр представляет собой часть пространства, ограниченную четырьмя или более многоугольниками, которые представляют собой плоскости, ограниченные тремя или более прямыми линиями [26, 27]. Координационным числом катиона свинца считается количество ближайших к данному атому ионов кислорода.

Часто остается неясным, какое же именно координационное число катиона свинца следует считать более обоснованным. Если учесть, что для катионов свинца возможны несколько вариантов описания координационного полиэдра с учетом неподеленной пары электронов [28–31], то ситуация с корректным определением координационного числа открывает широкие возможности для противоречивых оценок.

Вопрос включения катиона Pb в его координационный полиэдр можно рассматривать с различных точек в зависимости от того, какую именно его особенность мы хотим подчеркнуть. Например, структуру данного кристалла можно изобразить несколькими способами, каждый из которых позволит сконцентрировать внимание на определенном аспекте и сделать выводы, зависящие от поставленной задачи. Следуя рекомендациям, предложенным в [2, 22–25], координационный полиэдр, характеризующий взаимную пространственную ориентацию межатомных связей, содержит в себе катион Pb.

Принимая во внимание только связи внутри первой координационной сферы (до 3 Å), наиболее распространенной координацией катионов Pb²⁺ в этом соединении является либо тетрагонально-пирамидальная, либо пентагонально-пирамидальная с Pb, расположенным в вершине пирамиды (рис. 6). Альтернативным описанием последней может также служить T-образная координация [28–31].

Анионная координация катионов Pb²⁺ характеризуется наличием нескольких коротких связей в одной координационной полусфере и дополнительных длинных связей в другой. При этом стереохимически активная неподеленная пара электронов катионов Pb²⁺ играет роль дополнительного лиганда и занимает объем, приблизительно равный объему аниона О²⁻ [32]. Относительное искажение всех имеющихся в структуре координационных многогранников PbO_n обусловлено стереохимической активностью неподеленных пар $6s^2$ -электронов катионов Pb^{2+} , что объясняет большие различия в длинах связей Рb–О внутри одного и того же многогранника. Набор коротких связей Рb-О расположен, как правило, с одной стороны от катионов Pb²⁺, а слабые связи Pb-O

Рис. 5. Расположение тетраэдров $O(2)Pb_4$ и $O(7)Pb_4$ в кристаллической структуре Pb_5WO_8 в проекции вдоль [100] (а) и [001] (б).

оказываются на другой стороне координационной сферы Pb^{2+} . Результаты полиэдрического анализа различных катионов в Pb_5WO_8 при 293 K, выполненного с помощью программы IVTON [33], представлены в табл. 4. Обнаружены различные пределы изменений расстояний Pb–O в пределах первой координационной сферы (до 3 Å). Показано, что расстояния Pb–O флуктуируют вокруг суммы ионных радиусов 2.55 Å [17].

Длины этих связей находятся в удовлетворительном согласии с величиной 2.680 Å, найденной для 275 исследованных полиэдров Pb²⁺ [34].

Рис. 6. Кислородное окружение независимых катионов свинца в кристаллической структуре Pb₅WO₈ в проекции вдоль [001] (значение первой координационной сферы рассматривалось как 3 Å). Атомы на рисунках показаны в эллипсоидах тепловых колебаний с вероятностью 99%.

Пять различных подрешеток Pb, не являющихся кристаллографически эквивалентными, отличаются значениями объема координационных многогранников и их искажениями. Установлено, что объем многогранников всех катионов Pb систематически меньше, чем октаэдров W.

Катионы W^{6+} смещаются из центров октаэдров, но эти смещения значительно меньше, чем сдвиги катионов Pb^{2+} из центра их координаци-

онных многогранников. Как следствие, различия в расстояниях W–O в октаэдрах не столь велики по сравнению с длинами связей Pb–O (табл. 3).

Следует дополнительно рассмотреть концепцию тетраэдров OPb_4 для описания и структурной классификации комплексных оксидов металлов Pb^{2+} , предложенную в [35], где анионы тетраэдрически координированы атомами свинца. Этот подход оксоцентрированных тетраэдров OPb_4

Таблица 4. Результаты полиэдрического анализа моноклинной кристаллической структуры Pb_5WO_8 при 293 К (сп – координационное число, ξ – средняя длина связи и пределы ее изменения (учитывались лишь предельные взаимодействия Pb–O с длиной связи не более 3 Å), V – объем координационного многогранника, ω – искажение координационного многогранника

Катион	cn	ξ, Å	$V, Å^3$	ω	
Pb(1)	5	2.483 ± 0.261	6.29(1)	0.6691	
Pb(2)	4	2.377 ± 0.242	3.87(1)	0.5410	
Pb(3)	5	2.464 ± 0.142	8.22(1)	0.4626	
Pb(4)	5	2.480 ± 0.220	7.90(1)	0.4966	
Pb(5)	4	2.412 ± 0.249	2.67(1)	0.7541	
W	6	1.935 ± 0.156	9.47(1)	0.0039	

значительно упрощает описание кристаллической структуры и повышает наглядность ее визуализации. Сформулированные в [35] критерии выделения анион-центрированных группировок в качестве структурных элементов справедливо обоснованы их малым размером, поляризуемостью и высокой электроотрицательностью центрального аниона, тетраэдрической координацией катионными лигандами, удовлетворительной величиной суммы валентных усилий на центральном атоме.

Благодаря значительному содержанию PbO (соотношение [Pb] : [W] = 5 : 1) структура Pb₅WO₈ содержит искаженные тетраэдрические единицы $O(2)Pb_4$ и $O(7)Pb_4$ с O(2) и O(7) в качестве центральных атомов кислорода (рис. 5). Цепочки тетраэдров $O(2)Pb_4$ и $O(7)Pb_4$ ориентированы вдоль направлений [010] и [100] соответственно. Основываясь на образовании центросимметричных структурных единиц O_4Pb_{10} и присутствии октаэдров WO_6 , кристаллическая структура Pb_5WO_8 может быть представлена в виде кристаллохимической формулы (Pb₅O₂)(WO₆).

Следует отметить, что структурная модель Рb₅WO₈ частично воспроизводит расположение катионов в желтом β-РbО полиморфе массикоте [26]. В этой структуре катион Pb²⁺ имеет кислородную квадратно-пирамидальную координацию, в которой две связи свинец-кислород короче, а две другие длиннее среднего значения. Полученная в результате структурная модель Pb_5WO_8 в основных деталях совпадает со структурой Pb₅TeO₈ [3]. Это неудивительно, учитывая одинаковое координационное число и валентное состояние катиона Te6+ и его близкий ионный радиус (0.56 Å для Te⁶⁺ и 0.60 Å для W⁶⁺ [17]). В то же время моноклинная структура Pb₅MoO₈ (пр. гр. P2/c, a = 15.316; b = 11.827; c = 11.639 Å; $\beta = 90.20^{\circ}$; Z = 8) [36] заметно отличается от структуры Рь₅WO₈ несмотря на близкий ионный радиус (0.59 Å для Мо⁶⁺ и 0.60 Å для W⁶⁺ [17]). При этом структурная модель Pb5MoO8 в общих чертах повторяет расположение катионов в желтом α-РbO полиморфе.

43

Диэлектрические измерения. Наличие в структуре заметного количества катионов свинца с неподеленной парой электронов удовлетворяет кристаллохимическому критерию возникновения в ней спонтанно-поляризованного состояния [37]. Поэтому проведение диэлектрических и пироэлектрических измерений в широком температурном интервале представлялось вполне оправданным.

Исследования температурно-частотных зависимостей диэлектрической проницаемости $\varepsilon(T, f)$ и тангенса угла диэлектрических потерь tg $\delta(T, f)$ кристаллов проводили в интервале температур 80—840 К в диапазоне частот f = 1 кГц–1 МГц с использованием измерителя иммитанса E7-30 (МНИПИ, Минск, Белоруссия). Амплитуда измерительного напряжения составляла при этом 1 В. Полученные зависимости $\varepsilon(T, f)$ и tg $\delta(T, f)$ представлены на рис. 7.

Рост температуры в области 80-475 К вызывает монотонное возрастание значений є и tgδ от 34 и ~ 10^{-3} до 37 и ~0.2 без характерных для фазовых переходов особенностей. Дальнейшее увеличение температуры вызывает заметное ускорение возрастания є и tgδ, при этом в интервале 640–680 К на зависимости ε(*T*) наблюдаются довольно выраженные максимумы, сопровождаемые максимумами на зависимости tg $\delta(T)$, лежащими на ~50 К ниже максимумов є (рис. 7). Положение указанных максимумов є и tgδ смещается с ростом частоты в сторону высоких температур, что указывает на их релаксационный характер.

Зависимость $f(T_m)$, где T_m — температура максимума tgδ, в координатах lgf—1/T аппроксимируется прямой линией, что свидетельствует о подчинении времени релаксации τ активационному закону Аррениуса [38]: $\tau = 1/2\pi f =$ $= \tau_0 \exp(E_a/kT)$ с $f_0 = 1/2\pi\tau_0 = 5.2 \times 10^{10}$ Гц, $E_a =$ = 0.85 эВ (τ_0 — время релаксации при бесконечно высокой температуре, E_a — энергия активации ре-

Puc. 7. Температурные зависимости диэлектрической проницаемости ε и тангенса угла диэлектрических потерь tgδ, измеренные вдоль оси *b* кристалла Pb₅WO₈ на частотах f = 1 (1), 5 (2), 10 (3), 50 (4), 100 (5) и 1000 кГц (6).

лаксационного процесса, *k* – константа Больцмана). Возникновение наблюдаемого диэлектрического релаксационного процесса вызвано, по-видимому, наличием в кристаллической структуре некоторого количества вакансий свинца и кислорода, что характерно для Pb-содержащих оксидов [39, 40].

Тестирование кристаллов на наличие пироэлектрического эффекта, выполненное в области температур 80–350 К квазистатическим методом в соответствии с установленной при структурном анализе центросимметричности кристаллической структуры этой фазы, дало отрицательный результат.

ЗАКЛЮЧЕНИЕ

Две серии образцов разного состава (1 - x)PbO · WO₃ (x = 0.10, 0.15, 0.20, 0.25, 0.33) синтезированы обжигом гомогенизированных смесей оксидов PbO и WO₃ при 710 и 820°С соответственно. При 710°С синтез всех образцов проходил в твердофазном состоянии, а при 820°С – в условиях

частичного плавления (x = 0.10, 0.15 и 0.25), полного плавления (x = 0.20) и твердофазного состояния (x = 0.33).

Из закристаллизованных расплавов состава (1 - x)PbO · WO₃ (x = 0.15 и 0.20) были выделены прозрачные с желтой окраской пластинчатые монокристаллы фазы Pb₅WO₈, размеры которых достигали 0.5 × 2.0 × 4.0 мм. Установлено, что дифрактограмма измельченных в порошок кристаллов индицируется на основе моноклинной элементарной ячейки с параметрами a = 7.4430(1), b = 12.1156(2), c = 10.6284(2) Å, $\beta = 90.658(1)^{\circ}$. Проведенный термогравиметрический анализ образцов фазы Pb₅WO₈ показывает, что она плавится с разложением на PbO и жидкость при 712°C.

Рентгеноструктурный анализ кристаллов Pb_5WO_8 выполнен при 100 и 293 К. Установлено, что кристаллическая структура Pb_5WO_8 имеет слоистый характер, где октаэдры WO_6 и сильно искаженные многогранники PbO_n (n = 4, 5) объединены вдоль общих вершин и ребер, образуя

сложные слои (010). Слои образуются с участием всех полиэдров атомов свинца и вольфрама, и их укладка в структуре происходит вдоль направления [010]. Катионы W располагаются между цепочками многогранников Pb, обеспечивая соединение структуры в трехмерный каркас. Октаэдры WO₆ в структуре изолированы друг от друга, их можно рассматривать как жесткие блоки, которые заметно искажены от идеальной октаэдрической геометрии. Интересной особенностью кристаллической структуры Pb₅WO₈ является тенденция к образованию характерных структурных полостей, в которых связаны одиночные электронные пары Pb²⁺.

В структуре Pb_5WO_8 структурная роль неподеленной пары электронов заключается в асимметричном искажении координации катионов Pb^{2+} .

Рассмотрение данной кристаллической структуры в анион-центрированном аспекте позволяет получить дополнительную иллюстративную базу соединений, содержащих анион-центрированные постройки различной топологии.

В интервале температур T = 80-840 К в диапазоне частот f = 1 кГц-1 МГц изучены температурные зависимости диэлектрической проницаемости ε и тангенса угла диэлектрических потерь tg δ монокристаллов Pb₅WO₈ вдоль их оси *b*. На зависимостях в области 640-680 К обнаруживаются максимумы релаксационного характера, связанные с наличием в кристаллической структуре некоторого количества вакансий свинца и кислорода.

БЛАГОДАРНОСТЬ

А.И. Сташ благодарит Министерство науки и высшего образования Российской Федерации за поддержку в проведении рентгенодифракционных исследований с использованием оборудования ИНЭОС РАН (госзадание № 075-00697-22-00).

ФИНАНСИРОВАНИЕ РАБОТЫ

В РТУ МИРЭА работа выполнена при поддержке Министерства науки и высшего образования России в рамках государственного задания по созданию молодежных лабораторий FSFZ-2022-0007, использовалось оборудование Центра коллективного пользования РТУ МИРЭА, получившего поддержку Минобрнауки РФ в рамках Соглашения от 01.09.2021 № 075-15-2021-689.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет известных конкурирующих финансовых интересов или личных отношений, которые могли бы повлиять на работу, описанную в статье.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Дополнительную кристаллографическую информацию о рассматриваемой структуре можно получить в Информационном центре Карлсруэ, 76344 Эггенштайн-Леопольдсхафен, Германия (факс:(+49)7247-808-666 еmail: crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de/ по именам авторов и номерам депозитарных CSD, указанным в табл. 1.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Chang L.L.Y.* // J. Am. Ceram. Soc. 1971. V. 54. № 7. P. 357. https://doi.org/10.1111/j.1151-2916.1971.tb12316.x
- Jantz S.G., Pielnhofer F., Höppe H.A. // Z. Kristallogr. 2020. V. 235. № 8–9. P. 311. https://doi.org/10.1515/zkri-2020-0041
- Artner C., Weil M.J. // Solid State Chem. 2013. V. 199. P. 240. https://doi.org/10.1016/j.jssc.2012.12.007
- Annenkov A.A., Korzhik M.V., Lecoq P. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2002. V. A490. P. 30. https://doi.org/10.1016/S0168-9002(02)00916-6
- Huhtinen M., Lecomte P., Luckey D. et al. Nuclear Instruments and Methods in Physics Research: Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2006. V. A545. P. 63. https://doi.org/10.1016/j.nima.2005.01.304
- Auffray E. // IEEE Transactions on Nuclear Science. 2008. V. 55. P. 1314. https://doi.org/10.1109/TNS.2007.913935
- Adzic P., Almeida N., Andelin D. et al. // J. Instrumentation. 2020. V. 5. P. 03010. https://doi.org/10.1088/1748-0221/5/03/P03010
- 8. *Fujita T., Muramatsu K. //* Mater. Res. Bull. 1979. V. 14. P. 5.

https://doi.org/10.1016/0025-5408(79)90224-1

- 9. Jantz S.G., Pielnhofer F., Dialer M., Höppe H.A. // Z. Anorg. Allg. Chem. 2017. V. 643. P. 2031. https://doi.org/10.1002/zaac.201700335
- 10. Powder Diffraction files of the International Centre for Diffraction Data (ICDD). 1999.
- 11. *Perry D.L., Wilkinson T.J.* // Appl. Phys. A: Materials Science & Processing. 2007. V. 89. № 1. P. 77. https://doi.org/10.1007/s00339-007-4073-y
- 12. APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 2019.
- Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 14. *Momma K., Izumi F. //* J. Appl. Crystallogr. 2011. V. 44. P. 1272.

https://doi.org/10.1107/S0021889811038970

- Razzazi V., Alaei S. // Chinese Phys. 2017. V. B26. P. 116501. https://doi.org/10.1088/1674-1056/26/11/116501
- 16. *Sorrell C.A.* // J. Am. Ceram. Soc. 1970. V. 53. P. 55. https://doi.org/10.1111/j.1151-2916.1970.tb15964.x

- Shannon R.D. // Acta Crystallogr., Sect. B. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- 18. *Salje E.* // Acta Crystallogr. 1977. V. B33. P. 574. https://doi.org/10.1107/S0567740877004130
- Diehl R., Brandt G., Salje E. // Acta Crystallogr. 1978.
 V. B34. P. 1105. https://doi.org/10.1107/S0567740878005014
- Brese N., O'Keeffe M. // Acta Crystallogr. 1991. V. B47. P. 192.
- https://doi.org/10.1107/S0108768190011041
- 21. *Brown I.D.* Structure and Bonding in Crystals. V. 2. N.Y.: Academic Press, 1981. P. 49.
- Сийдра О.И. Кристаллохимия кислородсодержащих минералов и неорганических соединений низковалентных катионов таллия, свинца и висмута. Автореф. дис. ... докт. геол.-мин. наук. СПб., 2016. 25 с.
- Кривовичев С.В. Кристаллохимия минералов и неорганических соединений с комплексами анионоцентрированных тетраэдров. СПб.: Изд-во СПб. ун-та 2001, 198 с.
- 24. *Krivovichev S.V.* Structural Mineralogy and Inorganic Crystal Chemistry. St. Petersburg University Press, 2009. 398 p.
- Müller U. Inorganic Structural Chemistry. John Wiley & Sons Ltd, 2006. https://doi.org/10.1002/9780470057278
- 26. *Уэллс А*. Структурная неорганическая химия: В 3-х т. Перевод с англ. М.: Мир, 1987.
- 27. Бокий Г.Б. Кристаллохимия. М.: Наука, 1971. 400 с.
- 28. *Gillespie R.J.* Molecular Geometry. London: Van Nostrand Reinhold, 1972.

- 29. Гиллеспи Р., Харгиттаи И. Модель отталкивания электронных пар валентной оболочки и строение молекул. М.: Мир, 1992. 296 с.
- 30. *Партэ Э.* Некоторые главы структурной неорганической химии. Пер. с англ. М.: Мир, 1993. 144 с.
- 31. *Асланов Л.А.* Структуры веществ. М.: Изд-во Моск. ун-та, 1989. 161 с.
- Matar S.F., Galy J. // Prog. Solid State Chem. 2015. V. 43. P. 82. https://doi.org/10.1016/j.progsolidstchem.2015.05.001
- Balic Zunic T., Vickovic I. // J. Appl. Crystallogr. 1996. V. 29. P. 305.
- https://doi.org/10.1107/S0021889895015081
 34. *Gagné O.C., Hawthorne F.C.* // Acta Crystallogr. 2018. V. B74. P. 63.

https://doi.org/10.1107/S2052520617017437

- Siidra O.I., Krivovichev S.V., Filatov S.K. // Z. Kristallogr. 2008. V. 223. P. 114. https://doi.org/10.1524/zkri.2008.0009
- Nihtianova D.D., Ivanov V.T., Yamakov V.I. // Z. Kristallogr. 1997. V. 212. P. 191. https://doi.org/10.1524/zkri.1997.212.3.191
- 37. Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. М.: Химия, 1985. 256 с.
- 38. *Jonscher A.K.* Dielectric Relaxation in Solids. London: Chelsea Dielectric Press, 1983. 380 p.
- 39. Bidault O., Goux P., Kchikech M. et al. // Phys. Rev. 1994. V. 49B. № 12. P. 7868. https://doi.org/10.1103/PhysRevB.49.7868
- 40. *Kang B.S., Choi S.K., Park C.H.* // J. Appl. Phys. 2003. V. 94. № 3. P. 1904. https://doi.org/10.1063/1.1589595