ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2023, том 68, № 1, с. 26–33

СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.815+546.221.1+544.344.015.22+544.72.05

ФОРМИРОВАНИЕ ТОНКОПЛЕНОЧНЫХ КОМПОЗИЦИОННЫХ СТРУКТУР Cd_xPb_{1 – x}S/Cd_yS ПРИ ХИМИЧЕСКОМ ОСАЖДЕНИИ

© 2023 г. А. Д. Селянина^{*a*, *}, Л. Н. Маскаева^{*a*, *b*}, В. И. Воронин^{*c*}, И. А. Анохина^{*d*}, В. Ф. Марков^{*a*, *b*}

^аУральский федеральный университет им. первого Президента России Б.Н. Ельцина, ул. Мира, 19, Екатеринбург, 620002 Россия ^bУральский институт Государственной противопожарной службы МЧС России, ул. Мира, 22, Екатеринбург, 620002 Россия ^cИнститут физики металлов им. М.Н. Михеева УрО РАН, ул. Софьи Ковалевской, 18, Екатеринбург, 620108 Россия ^dИнститут высокотемпературной электрохимии УрО РАН, ул. Академическая, 20, Екатеринбург, 620137 Россия *e-mail: n-kutyavina@mail.ru Поступила в редакцию 23.07.2022 г. После доработки 26.08.2022 г. Принята к публикации 31.08.2022 г.

Химическим осаждением получены тонкие пленки твердых растворов замещения Cd_xPb_{1-x}S

 $(0 \le x \le 0.094)$ кубической структуры B1 (пр. гр. $Fm\overline{3}m$) и исследованы с помощью рентгеновской дифракции, сканирующей электронной микроскопии, элементного EDX-анализа и KP-спектроскопии. Показано, что при достижении некоторой критической концентрации сульфата кадмия в реакционной смеси (0.1 моль/л) пленки формируются с участием двух самостоятельных фаз: твердого раствора замещения $Cd_xPb_{1-x}S$ и гексагонального сульфида кадмия Cd_yS со структурой B4 (пр. гр. $P6_3mc$). Предложенный метод и условия синтеза эффективны для получения гетероструктур в системе CdS–PbS при осаждении в одну стадию.

Ключевые слова: твердые растворы замещения $Cd_x Pb_{1-x}S$, сульфид кадмия, кристаллическая структура, топология, КР-спектроскопия

DOI: 10.31857/S0044457X22601213, EDN: GVQAAE

введение

Пленки твердых растворов замещения в системе PbS-CdS широко востребованы как фоточувствительные соединения в видимом и ближнем ИК-диапазоне [1, 2] с варьируемой шириной запрешенной зоны в пределах 0.4–2.42 эВ [3, 5]. благодаря чему они нашли применение в фотодетекторах [1, 2], солнечных и фотохимических элементах [4, 6, 7], в качестве химических сенсоров [8] и др. Метод химического осаждения из водных растворов за счет своей коллоидно-химической природы и неравновесных низкотемпературных условий проведения является одним из немногих, позволяющих получать сильно пересыщенные твердые растворы замещения Cd_xPb_{1 - x}S. Так, по данным [9, 10], содержание кадмия (х) в составе твердых растворов $Cd_xPb_{1-x}S$, полученных химическим осаждением при 353 K, по сравнению с фазовой диаграммой системы CdS-PbS [11] на три-четыре порядка превышает равновесную концентрацию.

Существует несколько возможных причин формирования неравновесных многокомпонентных структур в системе CdS-PbS при гидрохимическом синтезе, одной из которых является возникновение размерных эффектов вследствие возрастания вклада поверхностной энергии в свободную энергию системы [12, 13]. Несмотря на достаточно большое число исследований, посвященных синтезу и свойствам твердых растворов замещения $Cd_x Pb_{1-x}S$, а также кинетике их осаждения [14], некоторые аспекты формирования данных структур остаются неясными. Например, при некоторых концентрационных условиях по солям кадмия и свинца в реакционной смеси наряду с твердым раствором замещения происходит дополнительное осаждение фазы сульфида кадмия [6, 9, 10, 15]. Можно предположить, что существует некоторое критическое соотношение концентраций солей свинца и кадмия в системе, при котором создаются условия зарождения и формирования индивидуальной фазы CdS.

Цель настоящей работы — исследование условий фазообразования в системе CdS—PbS при химическом осаждении пленок твердых растворов $Cd_xPb_{1-x}S$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Тонкие пленки в системе CdS—PbS синтезировали химическим осаждением на кварцевых подложках из водных растворов, содержащих 0.04 моль/л ацетата свинца (Pb(CH₃COO)₂)), 0.30 моль/л цитрата натрия (Na₃C₆H₅O₇), 4.5 моль/лгидроксида аммония (NH₄OH) и 0.58 моль/л тиомочевины ((NH₂)₂CS). Концентрацию сульфата кадмия (CdSO₄) в реакционной смеси варьировали в интервале от 0.02 до 0.10 моль/л. Продолжительность синтеза составляла 120 мин при температуре 353 К.

Кристаллическую структуру синтезированных пленок изучали на рентгеновском дифрактометре PANalytical Empyrean Series 2 с детектором PIXcel^{3D} в Cu K_{α} -излучении в интервале углов 2 θ = = 20°–90° с шагом 0.01° и экспозицией 10 с в точке. Уточнение структурных характеристик пленок Cd_xPb_{1-x}S проводили методом полнопрофильного анализа Ритвельда [16, 17] с использованием программы Fullprof [18]. Были также проведены расчеты внутренних микродеформаций, размеров областей когерентного рассеяния (**OKP**) в изотропном и анизотропном вариантах, основанные на экстраполяционном уравнении Уильямсона–Холла [19]:

$$\beta \times \cos \theta = 0.9\lambda/D + 4\varepsilon \sin \theta, \qquad (1)$$

где D – средний размер ОКР, принимаемый за средний размер частиц, β – полуширина рефлекса в радианах, λ – длина волны используемого рентгеновского излучения, $\varepsilon = \Delta d/d$ – деформация, d – межплоскостное расстояние.

Морфологию и элементный состав пленок изучали с помощью растровых электронных микроскопов FEI Helios G4 CX при энергии электронного пучка 5 кэВ и JEOL JSM-5900 LV с энергодисперсионным рентгеновским анализатором EDS Inca Energy 250.

Для получения ACM-изображений поверхности использовали сканирующий зондовый микроскоп Ntegra Aura (HT-МДТ, Россия) с зондом NSG01 (HT-МДТ, Россия), радиус закругления которого не более 20 нм. Сканирование поверхности производили с разрешением не менее 512 × × 512 точек при строчной частоте развертки 1 Гц. Количественную обработку ACM-изображений поверхности пленок выполняли с помощью программного продукта Gwyddion-2.55.

Спектры комбинационного рассеяния пленочных образцов PbS и твердых растворов Cd_xPb_{1-x}S записывали при комнатной температуре на Рамановском спектрометре Renishaw-1000 ($\lambda =$ = 514.5 нм) в области частот колебаний кристаллической решетки исследуемых соединений от 100 до 1000 см⁻¹.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Набор дифракционных отражений, присутствующих на рентгенограммах пленок, полученных на основе сульфидов свинца и кадмия (рис. 1а), соответствует кубической гранецентрированной решетке B1 (пр. гр. $Fm\overline{3}m$). Доказательством образования твердых растворов Cd_xPb_{1-x}S служит смещение дифракционных отражений в область бо́льших углов 20, показанное на примере фрагмента рентгенограмм с рефлексом $(111)_{B1}$ (рис. 1б). Стоит обратить внимание, что на рентгенограмме пленочного образца, синтезированного из реактора с 0.10 моль/л CdSO₄, обнаружены рефлексы при $2\theta = \sim 25^{\circ}$ и 26.8° (обозначены символом *), которые соответствуют гексагональной фазе B4 CdS (пр. гр. *P*6₃*mc*). Количественный анализ рентгенограмм позволил обнаружить уменьшение периода кристаллической решетки *а*_{*B*1} от 0.59353 нм (пленка PbS, полученная без добавки соли кадмия) до 0.59080, 0.58902, 0.58913 и 0.58986 нм (табл. 1). Согласно оценкам, сделанным с помощью минимизации рентгенограмм с учетом периодов кубических решеток B1 сульфидов PbS (a = 0.59353 нм) и CdS (a = 0.546 нм) [20–22], с использованием правила Вегарда был рассчитан состав синтезированных пленок твердых растворов Cd_{0.061}Pb_{0.939}S, Cd_{0.094}Pb_{0.906}S, Cd_{0.092}Pb_{0.908}S, Cd_{0.076}Pb_{0.924}S. Cpabнивая состав обсуждаемых пленок с фазовой диаграммой системы CdS–PbS, можно говорить об их пересыщенном состоянии. Параметры элементарной ячейки гексагонального сульфида кадмия Cd_vS, входящего в состав пленки, полученной при содержании 0.10 моль/л CdSO₄, составили: *a* = 0.4048 нм, *c* = 0.6581 нм.

Еще одной особенностью полученных рентгенограмм является преимущественная ориентация кристаллитов твердых растворах $Cd_xPb_{1-x}S$ в направлении (200)_{*B*1}, сохраняемая для пленок, синтезированных из реакционной ванны при содержании соли кадмия от 0.02 до 0.08 моль/л. Их текстурированность $T_{(200)}$ растет от 46.5 до 61.3% с повышением концентрации соли кадмия в реакторе. При концентрации соли кадмия в реакционной ванне 0.10 моль/л создаются условия роста частично упорядоченных зерен (~36%) в пленке твердого раствора $Cd_{0.076}Pb_{0.924}S$ с преимущественной ориентацией (111)_{*B*1} и происходит образование дополнительной фазы Cd_vS .

На рис. 16 показаны профили рефлекса $(111)_{B1}$ обсуждаемых слоев. На них отчетливо наблюда-

Рис. 1. Рентгенограммы пленок PbS (1) и твердых растворов $Cd_xPb_{1-x}S$, полученных из реакционных ванн, содержащих 0.02 (2), 0.06 (3), 0.08 (4) и 0.10 моль/л $CdSO_4$ (5). Символом (*) отмечены рефлексы гексагональной фазы CdS (a). Приведено также смещение рефлексов грани (111)_{*R*1} в область больших углов 20 (6).

ется уширение дифракционных отражений, причиной которого могут являться малый размер зерен и наличие микронапряжений. Разделение размерного и деформационного вклада в уширение рефлексов, включающего оценку среднего размера ОКР, принимаемого в первом приближении как средний размер зерен (D), и внутренних микронапряжений, выполнено экстраполяционным методом Уильямсона-Холла [19] по зависимости $\beta(2\theta) \cos\theta = f(\sin\theta)$, приведенной на вставках к рис. 2. Средний размер зерен D получен экстраполяцией этой зависимости на значение $\sin\theta = 0$, ее наклон свидетельствует о внутренних микронапряжениях, а разброс от средней линии связан с анизотропией микронапряжений вдоль различных кристаллографических плоскостей.

Оцененная величина внутренних микронапряжений ($\Delta d/d$) и размер областей когерентного рассеяния (D) в пленках, полученных из реакционных смесей, содержащих 0.02-0.08 моль/л соли кадмия, имеют асимбатный характер. Минимальным микронапряжениям (34.0 × 10⁻⁴) в пленке Cd_{0.094}Pb_{0.906}S, осажденной при концентрации 0.06 моль/л CdSO₄, соответствует максимальный средний размер зерен (813 нм). Далее система, стремясь сохранить линейный характер образования и роста тонкопленочного слоя с повышением концентрации сульфата кадмия в реакторе до 0.08 моль/л, выступила кооперативно. В частности, в пленке твердого раствора Cd_{0.092}Pb_{0.908}S, с одной стороны, произошло уменьшение среднего размера зерен до 690 нм, а с другой повышение микронапряжений до 41.4 × 10⁻⁴. Эти

[CdSO ₄], моль/л	0.02	0.06	0.08	0.10*	
				<i>B</i> 1	<i>B</i> 4
Параметры решетки, нм	0.59080	0.58902	0.58913	0.58986	a = 0.4048 c = 0.6581
$T_{(200)}, \%$ $T_{(111)}, \%$	46.5	59.9 —	61.3	36.6	_
$\langle \Delta d/d \rangle \times 10^{-4}$	41.0	34.0	41.4	27.8	—
<i>D</i> , нм	375	813	690	312	7.5

Таблица 1. Параметры кристаллической решетки, текстурированность ($T_{(200)}$ и $T_{(111)}$), величина микродеформаций ($\Delta d/d$), размер OKP (*D*) пленок в системе CdS–PbS, полученных при различном содержании соли кадмия в реакционной смеси

*Двухфазная пленка, содержащая Cd_{0.076}Pb_{0.924}S (B1) и Cd_vS (B4).

Рис. 2. Экспериментальные (кружки) и расчетные (огибающие линии) рентгенограммы пленок Cd_{0.094}Pb_{0.906}S (a), Cd_{0.092}Pb_{0.908}S (б) И $Cd_{0.076}Pb_{0.924}S/Cd_{v}S$ (в), осажденных на кварцевые подложки из реакционных смесей, содержащих 0.06, 0.08 и 0.10 моль/л CdSO₄ соответственно. Нижняя линия - разность между экспериментом и расчетом. Штрихами показаны угловые положения рефлексов фазы B1 (а, б, верхние на в) и гексагональной фазы B4 (нижние на в). На вставках приведена зависимость $\beta(2\theta)\cos\theta$ ot $\sin\theta$.

условия в процессе фазообразования можно назвать предкритическими, а концентрацию соли кадмия предельной. При превышении этой концентрации CdSO₄ в реакционной смеси характер изменения содержания кадмия (x) в структуре $Cd_{x}Pb_{1-x}S$ качественно меняется, не позволяя системе развиваться линейно. Об этом свидетельствует снижение содержания кадмия в составе твердого раствора замещения до x = 0.076, уменьшение микронапряжений в кристаллической решетке до 27.8 × 10⁻⁴ и образование собственной фазы гексагонального Cd_yS при дальнейшем повышении концентрации соли кадмия в растворе до 0.10 моль/л, т.е. происходит формирование нового динамического состояния - диссипативной структуры [23]. Это обусловлено, учитывая конкурентный характер взаимодействия ионов свинца и кадмия с серой S²⁻, стремлением системы к наиболее термодинамически выгодному состоянию, т.е. к минимуму свободной энергии Гиббса.

Теория диссипативной самоорганизации основывается на случайном поведении системы в критической точке и, следовательно, предполагает эволюцию морфологии и топологии как тонкопленочных слоев, так и возникающих структур. Эволюцию микроизображений пленок $Cd_{0.094}Pb_{0.906}S$ (а), $Cd_{0.092}Pb_{0.908}S$ (б), $Cd_{0.076}Pb_{0.924}S/Cd_yS$ (в) иллюстрирует рис. 3.

Синтезированная с использованием 0.06 моль/л CdSO₄ пленка состоит из плотно прилегающих друг к другу кристаллитов размерами 400-800 нм различной формы с нарушенной огранкой. С увеличением концентрации соли кадмия в реакторе до 0.08 моль/л происходит восстановление кубической формы кристаллитов, характерной для PbS. Они становятся более однородными по размерам (средняя длина ребра ~500 нм) и приобретают четкую огранку. На микроизображении пленки, полученной из ванны с исходной концентрацией соли кадмия 0.10 моль/л, обнаружены две фазы: глобульные образования размерами 300-500 нм, характерные для CdS [24], и полиэдрические кристаллиты (500-900 нм) твердого раствора Cd_{0.076}Pb_{0.924}S с преимущественной ориентацией плоскостью (111)_{в1}. Рис. 3г демонстрирует микроизображение этой пленки в разрезе. Как видно из рисунка, на подложке из кварцевого стекла расположены глобульные образования, на которых наблюдаются хорошо ограненные микрокристаллиты.

Данные локального EDX-анализа подтверждают наличие двух фаз, состоящих из кристаллитов, содержащих в среднем 41.8 ат. % Pb, 7.5 ат. % Cd и 50.7 ат. % S, а в межкристаллитном пространстве свинец не обнаружен, присутствуют лишь Cd (49.3 ат. %) и S (50.7 ат. %). Превышение кадмия в кристаллитах связано с их расположением на слое сульфида кадмия.

Рис. 3. Электронно-микроскопические изображения пленок, полученных на кварцевых подложках из реакционных ванн, содержащих 0.06 (а), 0.08 (б), 0.10 моль/л CdSO₄ (в, г). Пленки отвечают соответственно составам $Cd_{0.094}Pb_{0.906}S$, $Cd_{0.092}Pb_{0.908}S$, $Cd_{0.076}Pb_{0.924}S/Cd_yS$. На рис. г показано микроизображение интерфейса пленки $Cd_{0.076}Pb_{0.924}S/Cd_yS$ – кварцевая подложка.

Информация о микрорельефе поверхности обсуждаемых слоев и количественной оценке их параметров была получена анализом трехмерных топографических изображений размерами 5 × 5 мкм с помощью атомно-силовой микроскопии (АСМ) (рис. 4). Особенности АСМ-изображений пленок согласуются с данными рентгеноструктурного анализа и электронной микроскопии изучаемых пленок: разновысокие "лепестки" с острыми краями (0.06 моль/л) → "лепестки" и кристаллиты кубической формы (0.08 моль/л) \rightarrow зерна тетраэдрической формы, частично утопленные в слое сульфида кадмия (0.1 моль/л). Обработка АСМизображений с помощью программного продукта Gwyddion-2.55 показала резкое увеличение среднеквадратичной шероховатости R_q от 45 нм (0.08 моль/л CdSO₄) до 123 нм (0.1 моль/л CdSO₄), что связано с возникновением критического перехода и разрушением твердого раствора при повышении содержания сульфата кадмия в реакторе. О существенной неоднородности рельефа поверхности пленки Cd_{0.076}Pb_{0.924}S/Cd_vS свидетельствует значительная разница между величинами максимальной ($R_Z = 745$ нм) и средней ($R_t = 292$ нм) высотами профиля.

Как известно, положение и форма линий в спектрах комбинационного рассеяния зависят от молекулярной структуры соединения. Эволюцию КР-спектров пленок в системе CdS-PbS иллюстрирует рис. 5. Спектр пленки сульфида свинца содержит пять активных рамановских мод с центрами около 134, 179, 433, 603, 964 см⁻¹, характерных для кубической B1 структуры PbS [25-27]. Линия при ~134 см⁻¹ отвечает за комбинацию продольных и поперечных акустических мод кубической структуры PbS (LA + TA) [26, 28]. Наблюдаемая слабая линия рамановского рассеяния в структуре PbS на частоте 179 см $^{-1}$ относится к продольной оптической моде (LO), а линии около 430 и 600 см⁻¹ происходят из первого и второго обертонов основных продольных оптических (LO) фононных мод PbS 2LO и 3LO соответственно [27]. Мода 964 см⁻¹ отвечает за валентные симметричные колебания v_1 ионов SO₄²⁻ (PbSO₄) [29]. Кроме того, рамановские спектры твердых растворов $Cd_{x}Pb_{1-x}S$ содержат пики вблизи 290 см⁻¹, принадлежащие продольной оптической моде сульфида кадмия (LO), а линии около 590 см $^{-1}$ являются ее обертоном (2LO) [30-32], эти линии

Рис. 4. Трехмерные ACM-изображения пленок $Cd_{0.094}Pb_{0.906}S$ (а), $Cd_{0.092}Pb_{0.908}S$ (б) и $Cd_{0.076}Pb_{0.924}S/Cd_{\nu}S$ (в), осажденных на кварцевые подложки из реакционных смесей, содержащих 0.06 (а), 0.08 (б) и 0.10 моль/л $CdSO_4$ (в). Размер скана 5 × 5 мкм.

также наблюдаются в спектре индивидуального CdS ($302 \text{ и } 602 \text{ см}^{-1}$).

Анализ спектров KP твердых растворов $Cd_xPb_{1-x}S$ выявил изменение относительной интенсивности и смещение пиков с увеличением содержания кадмия в составе твердого раствора $Cd_xPb_{1-x}S$ за счет напряжений, вызванных различными значениями постоянных кристаллических решеток PbS и CdS [33]. Низкочастотные линии при 134 см⁻¹ в пленках $Cd_xPb_{1-x}S$ смещаются в высо-

Рис. 5. Спектры КР пленок PbS, CdS и слоев $Cd_{0.061}Pb_{0.939}S$, $Cd_{0.092}Pb_{0.908}S$, полученных при концентрации соли кадмия 0.02, 0.08 моль/л в реакционной смеси. Цифрами обозначены спектры тонкопленочной композиционной структуры, осажденной из раствора с концентрацией сульфата кадмия, равной 0.10 моль/л: кристаллиты $Cd_{0.076}Pb_{0.924}S$ (*1*) и Cd_vS (*2*).

кочастотную область до 138 см⁻¹ с увеличением концентрации сульфата кадмия в реакционной ванне, что указывает на замещение атомов свинца более легкими атомами кадмия и подтверждает образование твердых растворов замещения $(Cd_{0.061}Pb_{0.939}S \rightarrow Cd_{0.092}Pb_{0.908}S)$.

Спектры пленки, полученной при концентрации CdSO₄ в реакторе 0.10 моль/л, содержат линии, характерные для пленки PbS (спектр *1*). Они немного смещены, что соответствует образованию твердого раствора замещения $Cd_{0.076}Pb_{0.924}S$ [33]. С другой стороны, в спектре 2 наблюдается небольшое увеличение интенсивности линий при 298 и 603 см⁻¹. Это объясняется включениями фазы CdS, которая была установлена методом рентгеновской дифракции. Таким образом, эта пленка состоит из двух фаз: твердого раствора $Cd_{0.076}Pb_{0.924}S$ и гексагонального сульфида кадмия $Cd_{v}S$ со структурой *B*4 (пр. гр. *P*6₃*mc*).

ЗАКЛЮЧЕНИЕ

На кварцевых положках при варьировании концентрации от 0.02 до 0.10 моль/л сульфата

кадмия в реакционной смеси синтезирован и исследован ряд тонкопленочных твердых растворов $Cd_{y}Pb_{1} = xS$ с кубической структурой B1 (пр. гр. $Fm\overline{3}m$) имеющих, по данным рентгеновской дифракции, максимальное содержание замешаюшего компонента (9.4 ат. %). Результаты комплексных исследований показали, что при достижении в реакционной ванне критической концентрации соли кадмия 0.10 моль/л помимо кубической фазы твердого раствора образуется самостоятельная фаза гексагонального Cd_vS со структурой В4 (пр. гр. Р6₃mc), что приводит к формированию тонкопленочной композиционной структуры $Cd_xPb_{1-x}S/Cd_yS$. Можно предположить, что при задаваемых в настоящей работе условиях синтеза добавка 0.08 моль/л CdSO₄ создает за счет изменения концентрационного соотношения в пользу кадмия предкритические условия для зарождения индивидуальной фазы CdS. Выявленные закономерности можно использовать в качестве основной стратегии одностадийного синтеза тонкопленочных гетероструктур, востребованных для создания преобразователей солнечного излучения и функциональных элементов микроэлектроники.

БЛАГОДАРНОСТЬ

Авторы выражают признательность за оказанную помощь в проведении КР-спектроскопии к. т. н. старшему научному сотруднику Института высокотемпературной электрохимии УрО РАН Э.Г. Вовкотруб.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Маскаева Л.Н., Марков В.Ф., Порхачев М.Ю. и др. //* Пожаровзрывобезопасность. 2013. Т. 24. № 9. С. 67.
- 2. *Pentia E., Draghici V., Sarau G. et al.* // J. Electrochem. Soc. 2004. V. 151. № 11. P. G729. https://doi.org/10.1149/1.1800673
- 3. *Thangavel S., Ganesan S., Saravanan K.* // Thin Solid Films. 2012. V. 520. № 16. P. 5206. https://doi.org/10.1016/j.tsf.2012.03.114
- Touati B., Gassoumi A., Guasch C. et al. // Mater. Sci. Semicond. Process. 2017. V. 67. P. 20. https://doi.org/10.1016/j.mssp.2017.05.004
- Ounissi A., Ouddai N., Achour S. // EPJ. Appl. Phys. 2007. V. 37. № 3. P. 241. https://doi.org/10.1051/epjap:2007034
- Suryavanshi K.E., Dhake R.B., Patil A.M. et al. // Optik. 2020. P. 165008. https://doi.org/10.1016/j.ijleo.2020.165008

- 7. Sharma S., Venkata D.R.A., Jayarambabu N. et al. // Mater. Today: Proceedings. 2019. V. 26. № 1. P. 162. https://doi.org/10.1016/j.matpr.2019.10.155
- Bezdetnova A.E., Markov V.F., Maskaeva L.N. et al. // J. Anal. Chem. 2019. V. 74. № 12. Р. 1256. [Бездетнова А.Е., Марков В.Ф., Маскаева Л.Н. и др. // Журн. аналит. химии. 2019. Т. 74. № 12. С. 953.] https://doi.org/10.1134/S1061934819120025
- 9. Maskaeva L.N., Pozdin A.V., Markov V.F. et al. // Semiconductors. 2020. V. 54. Р. 1567. [Маскаева Л.Н., Поздин А.В., Марков В.Ф. и др. // Физика и техника полупроводников. 2020. Т. 54. № 12. С. 1309.] https://doi.org/10.1134/S1063782620120209
- Kutyavina A.D., Maskaeva L.N., Voronin V.I. et al. // CTA. V. 8. № 2. P. 20218210. https://doi.org/10.15826/chimtech.2021.8.2.10
- Шелимова Л.Е. Диаграммы состояния в полупроводниковом материаловедении (системы на основе халькогенидов Si, Ge, Sn, Pb). М.: Наука, 1991. 256 с.
- Maskaeva L.N., Kutyavina A.D., Markov V.F. et al. // Russ. J. Gen. Chem. T. 88. № 2. Р. 295. [Маскаева Л.Н., Кутявина А.Д., Марков В.Ф. и др. // Журн. общ. химии. 2018. Т. 88. № 2. С. 319.] https://doi.org/10.1134/S1070363218020172
- 13. *Марков В.Ф., Маскаева Л.Н., Иванов П.Н.* Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Екатеринбург: УрО РАН, 2006. 218 с.
- 14. *Маскаева Л.Н., Марков В.Ф., Ваганова И.В. и др. //* Бутлеровские сообщения. 2017. Т. 49. № 3. С. 50.
- 15. *Rabinovich E., Wachtel E., Hodes G.* // Thin Solid Films. 2008. V. 517. № 2. P. 737. https://doi.org/10.1016/i.tsf.2008.08.162
- 16. *Rietveld H.M.* // J. Appl. Crystallogr. 1969. V. 2. № 2. P. 65.
 - https://doi.org/10.1107/S0021889869006558
- 17. Bush D.L., Post J.E. // Rev. Miner. 1990. V. 20. P. 369. https://doi.org/10.1180/claymin.1990.025.4.12
- Rodrigues-Carvajal J. // Physica B. 1993. V. 192. P. 55. https://doi.org/doi:10.1016/0921-4526(93)90108-I
- Williamson G.K., Hall W.H. // Acta Metallurgica. 1953.
 V. 1. № 1. P. 22. https://doi.org/10.1016/0001-6160(53)90006-6

- 20. Corll J.A. // J. Appl. Phys. 1964. V. 35. P. 3032. https://doi.org/10.1063/1.1713151
- Kobayashi T., Susa K., Taniguchi S. // J. Phys. Chem. Solids. 1979. V. 40. P. 781. https://doi.org/10.1016/0022-3697(79)90160-4
- 22. Susa K., Kobayashi T., Taniguchi S. // J. Solid State Chem. 1980. V. 33. № 2. P. 197. https://doi.org/10.1016/0022-4596(80)90120-6
- 23. *Guglielmi M., Martucci A., Fick J. et al.* // J. Sol-Gel Sci. Technol. 1998. V. 11. № 3. P. 229. https://doi.org/10.1023/A:1008650027769
- 24. Forostyanaya N.A., Maskaeva L.N., Markov V.F. // Russ. J. Gen. Chem. 2015. V. 85. № 11. Р. 2513. [Форостяная Н.А., Маскаева Л.Н., Марков В.Ф. // Журн. общ. химии. 2015. Т. 85. № 11. С. 1769.] https://doi.org/10.1134/S1070363215110031
- 25. Kul M. // Anadolu Univ. J. Sci. Technol. 2019. V. 7. P. 46. https://doi.org/10.20290/aubtdb.465445
- 26. Abu-Hariri A., Budniak A.K., Horani F. et al. // RSC Advances. 2021. V. 11. P. 30560. https://doi.org/10.1039/D1RA04402H
- 27. Ovsyannikov S.V., Shchennikov V.V., Cantarero A. et al. // Mater. Sci. Eng. A. 2007. V. 462. № 1–2. P. 422. https://doi.org/10.1016/j.msea.2006.05.175
- 28. Perez R.G., Tellez G.H., Rosas U.P. et al. // JMSE-A. 2013. № 1. P. 1. https://doi.org/10.17265/2161-6213/2013.01.001
- 29. Batonneau Y., Bremard C., Laureyns J. et al. // J. Raman Spectrosc. 2000. V. 31. № 12. P. 1113. https://doi.org/10.1002/1097-4555(200012)31:12<1113:: AID-JRS653>3.0.CO;2-E
- Abdi A., Titova L.V., Smith L.M. et al. // Appl. Phys. Lett. 2006. V. 88. P. 043118. https://doi.org/10.1063/1.2168507
- 31. *Oladeji I.O., Chow L., Liu J.R. et al.* // Thin Solid Films. 2000. V. 359. № 2. P. 154. https://doi.org/10.1016/S0040-6090(99)00747-6
- 32. *Milekhina A.G., Sveshnikova L.L., Repinsky S.M. et al.* // Thin Solid Films. 2002. V. 422. № 1–2. P. 200. https://doi.org/10.1016/S0040-6090(02)00991-4
- 33. *Maskaeva L.N., Markov V.F., Voronin V.I. et al.* // Thin Solid Films. 2004. V. 461. № 2. P. 325. https://doi.org/10.1016/j.tsf.2004.02.035