СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.3/9

ИОДАТЫ $NaLn(IO_3)_4$ (Ln = Pr, Tb) — НОВЫЕ ПРЕДСТАВИТЕЛИ НЕЛИНЕЙНО-ОПТИЧЕСКИХ КРИСТАЛЛОВ СО СТРУКТУРОЙ ТИПА $NaY(IO_3)_4$

© 2023 г. О. П. Григорьева^{а, *}, С. Ю. Стефанович^а, Д. О. Чаркин^а, В. А. Долгих^а, К. А. Лысенко^а

^а Московский государственный университет им. М.В. Ломоносова, Химический факультет, Ленинские горы, 1, Москва, 119991 Россия

**e-mail: oksankagrigorevaa@mail.ru* Поступила в редакцию 06.04.2023 г.

После доработки 22.07.2023 г. Принята к публикации 25.07.2023 г.

Взаимодействием оксидных производных P39 (Pr, Tb, Er) с иодной кислотой или иодатом натрия в гидротермальных условиях в присутствии минерализатора $Na_2HPO_4\cdot 12H_2O$ синтезированы сложные иодаты состава $NaLn(IO_3)_4$. Указанные соединения для Ln=Pr, Tb получены впервые. Их кристаллические структуры, установленные на основе монокристальных рентгенодифракционных данных, изоморфны описанным ранее изоформульным фазам для других P39 и относятся к нецентросимметричной пр. гр. Cc. Поликристаллические образцы полученных соединений генерируют сигнал второй оптической гармоники, превышающий сигнал эталонного кристалла дигидрофосфата калия, характеризуются широкой областью оптической прозрачности и достаточно высокой термостабильностью.

Ключевые слова: иодаты РЗЭ, кристаллическая структура, генерация второй гармоники

DOI: 10.31857/S0044457X23600561, **EDN:** DJQAEK

ВВЕДЕНИЕ

Развитие квантовой электроники и лазерной оптики сопровождается расширением рабочего диапазона когерентного излучения как в коротковолновую, так и в длинноволновую области оптического спектра. В связи с тем, что многие широко используемые в настоящее время сложные оксиды металлов теряют прозрачность в важных для технического применения диапазонах прозрачности в ИК-области, актуальным является поиск и исследование новых лазерных и нелинейно-оптических материалов, пригодных для использования в окнах прозрачности атмосферы в средней (1.5— 3 мкм) и дальних областях ИК-спектра. С целью создания подходящих материалов в настоящее время ведутся интенсивные исследования по получению монокристаллов и стекол на основе особо чистых полупроводниковых соединений селена и теллура, сульфидов и фосфидов. Одновременно растет интерес к оксидным и оксигалогенидным материалам, включающим элементы неметаллического характера, а именно: к боратам, иодатам, ванадатам, фосфатам. В этих группах особенно востребованы нецентросимметричные монокристаллы, в которых возможна реализация различных нелинейно-оптических эффектов, в том числе генерация второй оптической гармоники (ГВГ). Разработка методик синтеза неорганических соединений с нецентросимметричной кристаллической структурой, пригодных в качестве конвертеров лазерного излучения, является одной из ключевых задач в решении проблемы получения когерентного излучения в УФ- и ИК-диапазонах [1—3].

Гамма существующих ныне материалов видимого и среднего ИК-диапазонов [4—9] за последнее десятилетие удачно дополнилась новыми — иодатами и галоген-иодатами. При этом области глубокого ультрафиолетового излучения ($\lambda < 0.2$ мкм) и дальнего ИК-диапазона (2.5 мкм $< \lambda < 25$ мкм) по-прежнему остро нуждаются в эффективных материалах, химическая природа которых, вероятно, будет различной.

В рассматриваемом аспекте наибольший научный и прикладной интерес вызывают нелинейнооптические кристаллы, обладающие оптической прозрачностью в среднем ИК-диапазоне, со значительно более высокими, чем у КDР, нелинейно-оптическими коэффициентами (d_{ij}), высоким порогом лазерного повреждения и достаточно большим двулучепреломлением ($\Delta n \sim 0.03-0.10$) для достижения фазового синхронизма в эффекте ГВГ. Отметим, что энергетический порог лазерного повреждения в значительной мере зависит от величины запрещенной зоны ($E_{\rm g}$) [2, 3] и обыч-

Фаза РЗЭ		Иодсодерж	ащий компонент	Минерализатор		
состав	количество, ммоль	состав	количество, ммоль	состав	количество, ммоль	
Pr ₂ O ₃	0.25	H ₅ IO ₆	2.5	Na ₂ HPO ₄ ·12H ₂ O	0.25	
Er_2O_3	0.25	H_5IO_6	5	Na ₂ HPO ₄ ·12H ₂ O	0.25	
$Tb(NO_3)_3 \cdot 5H_2O$	1	$NaIO_3$	4	_	_	
$Tb(NO_3)_3 \cdot 5H_2O$	1	$NaIO_3$	4	Na ₂ HPO ₄ ·12H ₂ O	0.25	
		H_5IO_6	2.5			
Tb_2O_3	0.25	H_5IO_6	2.5	Na ₂ HPO ₄ ·12H ₂ O	0.25	

Таблица 1. Состав исходной шихты при проведении гидротермального синтеза

но возрастает с увеличением $E_{\rm g}$. Учитывая то обстоятельство, что увеличение значения $E_{\rm g}$ приводит к уменьшению нелинейно-оптических коэффициентов [10], сбалансированность этих параметров является одним из определяющих факторов эффективности материала, при этом очевидна сложность совмещения всех указанных характеристик в одном кристалле. Так, наиболее привлекательные для этих целей $AgGaS_2$, $AgGaSe_2$ и $ZnGeP_2$ [10] демонстрируют генерацию второй оптической гармоники высокой интенсивности, однако некоторые их принципиальные недостатки, например малая устойчивость к лазерному воздействию, накладывают существенное ограничение на область их функционирования [11].

Вызывающие в последнее время повышенный интерес иодаты [12-14] термостабильны и прозрачны (для бесцветных соединений) от видимой части спектра до начала дальнего инфракрасного диапазона (12 мкм), включая три окна атмосферной прозрачности. В основном они повторяют свойства широко известного нелинейного кристалла LiIO₃ [15], и среди них пока не обнаружен материал с оптимальным набором параметров. Как новую тенденцию можно рассматривать осуществленный недавно синтез α -AgI₃O₈ и β -AgI₃O₈ [16]. Кристаллографические и нелинейно-оптические особенности этих и родственных им иодатов во многом определяются стереохимическим эффектом неподеленной электронной пары I^{5+} , входящей в анионную группировку (ІО₃)- или $(IO_4)^{3-}$. Такие группировки действуют как важнейшие структурные блоки полярного (IO₃)- или нецентросимметричного $(IO_4)^{3-}$ строения, которые обеспечивают нецентросимметричность кристалла в целом и его интенсивный нелинейно-оптический отклик (НЛО) на частоте второй гармоники под действием лазерного излучения. Группировки IO_x (x = 3, 4) способны конденсироваться в более сложные ансамбли [1, 17], что может серьезно сказаться на НЛО-характеристиках кристаллов. Виды таких полимерных единиц сейчас ограничены набором $[I_3O_8]^-$, $[I_4O_{11}]^{2-}$, $(I_5O_{14})^{3-}$ [1].

Вместе с тем пока отсутствуют четкие представления о возможном составе этих соединений и условиях их получения. Все известные полииодатные фазы синтезированы гидротермальным методом. Замечено, что образованию полииодатных группировок способствует введение в реакционную среду фосфорной кислоты [17, 18]. В связи с этим целью настоящей работы было более детальное изучение фазообразования при гидротермальном взаимодействии оксидов РЗЭ с иодноватой или иодной кислотой при использовании в качестве минерализатора Na₂HPO₄·12H₂O.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных веществ использовали коммерческие Er_2O_3 , Pr_6O_{11} , Tb_4O_7 (все не менее 99.9%), $Tb(NO_3)_3 \cdot 5H_2O$, HIO_3 (х. ч.), H_5IO_6 (ос. ч.), $Na_2HPO_4 \cdot 12H_2O$ (х. ч.), 85% H_3PO_4 . Оксиды празеодима (III, IV) и тербия (III, IV) предварительно восстанавливали до Ln_2O_3 в потоке водорода при температуре 500° C. Остальные реактивы применяли без дополнительной обработки.

Исходной шихтой являлись смеси составов, представленных в табл. 1. Навески компонентов соответствующих смесей тщательно перетирали в агатовых ступках и переносили в автоклавы объемом 18 мл с тефлоновым или napa-полифеноловым вкладышем. Во все автоклавы вносили по 1 мл H_2O . Синтез проводили при температуре $215^{\circ}C$ в течение 72 ч с последующим охлаждением до $40^{\circ}C$ за 50 ч. Конечные твердые продукты отфильтровывали на воронке Бюхнера, промывали дистиллированной водой и сушили на воздухе при температуре $\sim 40^{\circ}C$.

Полученные порошкообразные препараты изучали методом РФА, а при осаждении кристаллов проводили их элементный анализ методом энергодисперсионной рентгеновской спектроскопии на электронном микроскопе LeoSupra 50 VP с ускоряющим напряжением 15 кВ, оснащенном энергодисперсионным анализатором INCA.

Таблица 2. Кристаллографические характеристики полученных иодатов $NaLn(IO_3)_4$ и параметры рентгенодифракционного эксперимента

Параметр	Значение				
Брутто-формула	I ₄ NaO ₁₂ Pr	I ₄ NaO ₁₂ Tb	I ₄ NaO ₁₂ Er		
M, г/моль	863.50	881.51	889.85		
Кристаллическая система	Моноклинная				
Пр. гр.	<i>Cc</i> (№ 9)				
Z(Z)	8 (2)				
$a, m \AA$	31.4771(13)	31.1633(10)	31.033(4)		
b, Å	5.6272(2)	5.5531(2)	5.5287(7)		
c, Å	12.7656(5)	12.5470(4)	12.4756(17)		
β, град	90.7322(15)	91.0132(10)	91.126(6)		
V, Å ³	2260.96(15)	2170.96(13)	2140.1(5)		
$d_{\text{выч}}, \text{г/cm}^3$	5.074	5.394	5.24		
μ , cm ⁻¹	153.3	179.92	194.86		
F(000)	3024	3072	3096		
$2 heta_{ m max}$, град (полнота, %)	58 (99.6)	58 (99.5)	55 (99.6)		
Число измеренных отражений	15954	15052	8824		
Число независимых отражений (R_{int})	5952 (0.0730)	5704 (0.0711)	4663 (0.0747)		
Число отражений с $I > 2\sigma(I)$	5493	5542	4108		
Количество уточняемых параметров	326	327	326		
Параметр Флэка	0.54(4)	0.34(2)	0.56(3)		
R_1	0.0368	0.0302	0.0521		
wR_2	0.0819	0.0695	0.1249		
GOF	1.025	0.939	1.020		
Остаточная электронная плотность, $\Delta \rho_{\text{max}}/\Delta \rho_{\text{min}}, e~\mathring{\mathrm{A}}^{-3}$	1.298/—1.252	1.475/—1.566	1.663/—1.879		

Рентгеновскую съемку образцов осуществляли на дифрактометре типа STOE в $CuK_{\alpha 1}$ -излучении. Обработку рентгенограмм осуществляли с использованием программы WinXPow фирмы STOE & Cie.

Съемку монокристаллов, пригодных для рентгеноструктурного анализа (РСА), выполняли при 100 K на дифрактометре Bruker Quest D8, оснащенном детектором Photon-III (ф- и ω-сканирование), при использовании Мо K_{α} -излучения (оптика Монтеля). Учет поглощения проводили полуэмпирически по программе SADABS [19]. Структуры были решены прямым методом по программе SHELXT [20] и уточнены по F² при помощи SHELXL-2018 [21]. При уточнении параметра Флэка (X) [22] определении абсолютной конфигурации, несмотря на значительную величину аномального рассеяния для редкоземельных ионов и атомов иода, полученные значения указывали на рацемическое двойникование. Подобная величина может быть обусловлена как псевдоцентросимметричным расположением редкоземельных ионов, так и ламинарным двойникованием [23].

Основные кристаллографические постоянные и параметры уточнения приведены в табл. 2. Полный набор кристаллографических данных депонирован в Кембриджском банке кристаллографических данных (ССDC 2238910, 2238911 и 2250590).

Дифференциальный термогравиметрический анализ образцов проводили на приборе NETZSCH STA 409PC/PG в кварцевых контейнерах на воздухе в интервале температур от комнатной до $900^{\circ}C$. Масса образцов составляла не менее 10 мг, скорость нагрева -10 град/мин.

ИК-спектр полученных фаз снимали на спектрометре Perkin—Elmer Spectrum One Fourier в интервале $8000-400~{\rm cm}^{-1}$. Образцами служили таблетки исследуемых фаз, спрессованные с оптически чистым КВг.

Измерения генерации второй гармоники выполняли на кристаллических образцах в соответствии со схемой Куртца и Перри [24]. В качестве источника излучения использовали YAG: Nd-лазер Minilite-I ($\lambda=1064$ нм, частота повторения 10 имп/с, длительность импульса 3 нс, регистрация излучения второй гармоники по схеме на от-

Связь	Длина связи, Å	Связь	Длина связи, Å	Связь	Длина связи, Å	Связь	Длина связи, Å
Pr(1)-O(6)	2.362	Pr(2)-O(8)	2.362	Na(1)-O(22)	2.340	Na(2)-O(8)	2.377
Pr(1) - O(5)	2.370	Pr(2)-O(7)	2.403	Na(1)-O(20)	2.476	Na(2)-O(20)	2.470
Pr(1) - O(2	2.432	Pr(2)-O(21)	2.444	Na(1)-O(4)	2.482	Na(2)-O(22)	2.476
Pr(1) - O(1)	2.441	Pr(2)-O(12)	2.471	Na(1)-O(19)	2.518	Na(2)-O(12)	2.603
Pr(1) - O(19)	2.459	Pr(2)-O(9)	2.476	Na(1)-O(2)	2.544	Na(2) - O(23)	2.667
Pr(1) - O(4)	2.462	Pr(2)-O(15)	2.484	Na(1)-O(24)	2.629	Na(2)-O(7)	2.750
Pr(1) - O(1)	2.542	Pr(2)-O(11_	2.501	Na(1)-O(23)	3.008	Na(2)-O(21)	2.855
Pr(1) - O(24)	2.636	Pr(2) - O(20)	2.508	Na(1)-O(5)	3.234	Na(2)-O(9)	2.919

Таблица 3. Ближайшие межатомные расстояния M-O (M=Pr, Na) в структуре $NaPr(IO_3)_4$

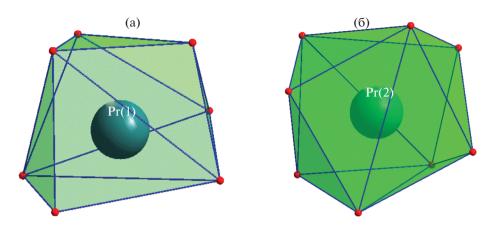
ражение. Последнее позволило исключить зависимость величины регистрируемого сигнала от толщины слоя порошка, который рассматривался как полубесконечный.

Порошкообразные образцы для измерений ГВГ получали с различным размером кристаллических зерен. Эти образцы готовили измельчением в ступке кристаллов, отобранных в соответствии с характерным для них габитусом из обшей массы продукта гидротермального синтеза. После измельчения порошки разделяли с помощью сит на фракции с размером зерен от 10 до 200 мкм. Тончайший порошок размером 3-5 мкм был получен путем длительного измельчения кристаллов в спирте до образования суспензии, которую затем высушивали. Эту фракцию использовали для сравнения нелинейно-оптической активности образцов с эталонным порошком α-кварца с тем же размером зерна для исключения размерного фактора. Интенсивность оптического сигнала на частоте второй гармоники $I_{2\omega}$ измеряли в долях интенсивности ГВГ от мелкодисперсного порошка кварца, которая была принята за единицу.

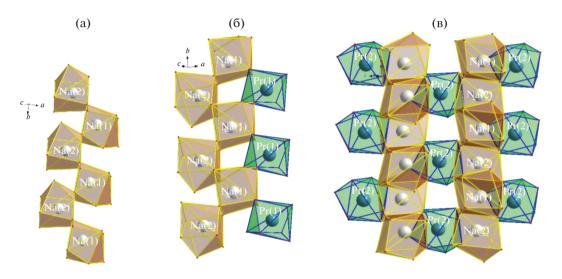
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В результате гидротермального взаимодействия компонентов шихты, представленной в табл. 1, наблюдали интенсивное формирование монокристаллов, которые, по данным энергодисперсионной рентгеновской спектроскопии, содержали в своем составе Na, O, I и соответствующий Ln. Во всех партиях кристаллов удалось найти образцы, пригодные для PCA, который выявил изоструктурность полученных соединений (табл. 2) и принадлежность их к структурному типу NaY(IO_3)₄. [25]. Их строение рассмотрим на примере NaPr(IO_3)₄.

Эта структура относится к нецентросимметричной пр. гр. *Сс* и включает в себя два кристаллографически независимых атома празеодима, два атома натрия и восемь атомов иода. Все атомы


иода координированы тремя атомами кислорода

с образованием группировок IQ_3^- , в которых связи I-O имеют длину 1.769-1.836 Å. Непосредственно между собой эти группировки не связаны. Они служат поставщиками кислородных лигандов для полиэдров металлических ионов, ближайшие кислородные соседи которых расположены на расстояниях, приведенных в табл. 3. Сумма валентных усилий для атомов празеодима, рассчитанная по методике [26], для указанных восьми лигандов составляет 3.4 в. ед. Поэтому для Pr(1) в качестве координационного полиэдра следует выбрать семивершинник (рис. 1а), а для Pr(2), у которого два наиболее удаленных соседа находятся практически на эквивалентном расстоянии (табл. 3), логично выбрать восьмивершинник - сильно искаженную квадратную антипризму (рис. 16).


Выбранные празеодимовые полиэдры сформированы семью и восемью монодентатными группами IO_3 соответственно.

Катионы натрия находятся в двух неэквивалентных позициях Na(1) и Na(2). Сумма валентных усилий для обоих натриевых катионов восьми ближайших кислородных соседей (табл. 3) близка к единице (0.99 и 0.93 в. ед. соответственно), и координационные полиэдры в обоих случаях представляют собой искаженные квадратные антипризмы. В случае Na(1) антипризма сформирована двумя бидентатными и четырьмя монодентатными группами IO_3 , в другом случае — тремя бидентатными и двумя монодентатными группами IO_3 . В кристаллической структуре эти два полиэдра связаны общими ребрами так, что возникает зигзагообразная цепь вдоль оси b (рис. 2a).

Семивершинник $Pr(1)O_7$ обобщает одно ребро и одну вершину с бипирамидами $Na(1)O_8$ соседних "ступенек" натрий-оксидной цепи (рис. 26), а бипирамида $Pr(2)O_8$ сочленяет вдоль направления c соседние цепи (рис. 2в). В итоге возникает слой из полиэдров металлов, параллельный плоскости (bc) (рис. 3).

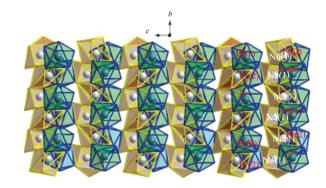
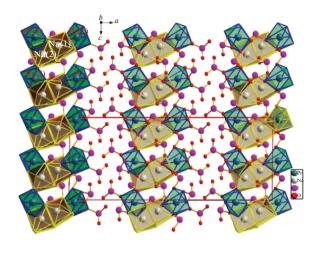
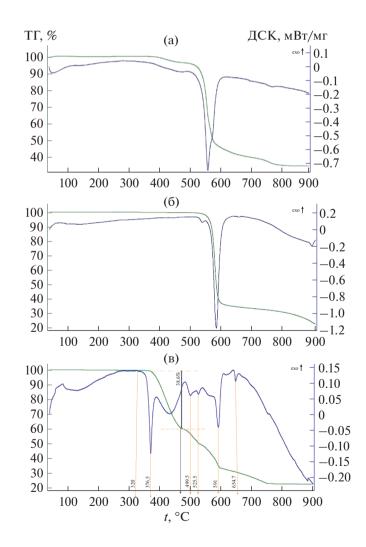

Рис. 1. Координационные полиэдры $Pr(1)O_7$ (a) и $Pr(2)O_8$ (б).

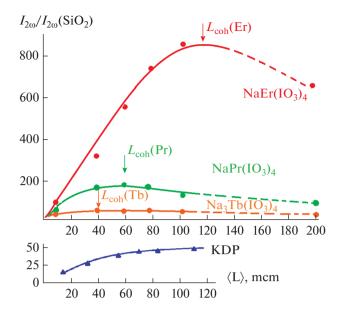
Рис. 2. Зигзагообразная цепь полиэдров NaO_8 (а); колонна из полиэдров NaO_8 (выделены коричневым цветом) и PrO_8 (выделены зеленым цветом) (б); сочленение антипризмами $Pr(2)O_8$ натрий-оксидных цепей (в).


Таким образом, кристаллическую структуру рассматриваемого соединения можно описать как слоистую, построенную из празеодим-натрий-оксидных слоев, декорированных группировками IO_3^- (рис. 4). Последовательное укладывание идентичных слоев формирует колонки вдоль оси b, которые проявляются в удлиненном габитусе кристаллов, имеющих вид удлиненных стержней.

По данным ДТГ-анализа (рис. 5), полученные соединения термически достаточно стабильны: фаза с Pr до температуры $320^{\circ}C$, с Er- до $410^{\circ}C$, с Tb- до $550^{\circ}C$. При дальнейшем нагревании происходит потеря веса. В случае $NaPr(IO_3)_4$ кривая потери веса заметно отличается от наблюдаемой у аналогов. Именно у тербиевого соединения гладкая $T\Gamma$ -кривая (рис. 5а) имеет одноступенчатый вид, а у эрбиевого проявляет слабовыраженную двухступенчатость (рис. 5б). Максимальная поте-

Рис. 3. Празеодим-натрий-оксидный слой в структуре $NaPr(IO_3)_4$.

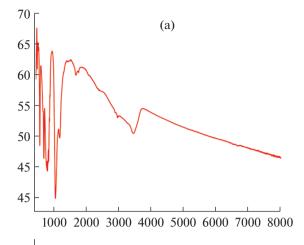

ря веса у $NaTb(IO_3)_4$ наблюдается в интервале температур $545-605^{\circ}C$, у $NaEr(IO_3)_4$ — в интервале $560-680^{\circ}C$, где расположено по одному интен-

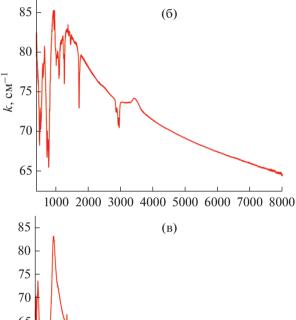

Рис. 4. Структура NaPr(${\rm IO_3}$)₄ (сплошной линией обозначен контур элементарной ячейки).

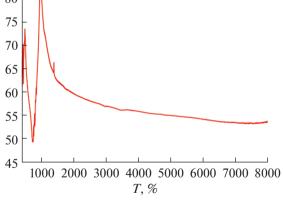
сивному эндотермическому пику при 579 и 568°С соответственно. Изменение веса обусловлено потерей иодатных групп при их распаде на свободные I_2 и O_2 . На указанных участках образцы в первом случае теряют 66.6% исходного веса, во втором — 59%. В тербиевой системе на кривой ДТА присутствует эндотермический эффект при 545°С, который может быть связан со структурной перестройкой. Такая особенность термического поведения $NaLn(IO_3)_4$ отмечалась ранее для производных лантаноидов конца ряда P39 (Ln = Dy-Lu) [27].

Термическое поведение нового празеодимового соединения (рис. 5в) достаточно своеобразно. Начальное активное разложение NaPr(IO_3)₄ в интервале температур 320—463°C приводит к потере образцом 38.6% своего первоначального веса, что хорошо коррелирует с величиной (38.7%) улетучивания из вещества одной молекулы I_2 и 2.5 молекул O_3 . Дальнейшее нагревание образца приво-

Рис. 5. ДТГ- и ДСК-кривые для $NaLn(IO_3)_4$: Ln = Er (a); Tb (б); Pr (в).


Рис. 6. Интенсивность сигнала второй гармоники в монодисперсных порошках $NaLn(IO_3)_4$ (Ln=Er, Pr, Tb) в зависимости от размера составляющих их кристаллитов в сравнении с порошками KH_2PO_4 .


дит к появлению на ДТА-кривой ряда эндотермических пиков при 499.5, 525.5, 591 и 654.7°C.


Для соединений рассматриваемого структурного типа подобный ход ДТА-зависимости может быть отмечен только у NaBi(IO_3)₄ [28]. В упомянутой висмутовой системе в качестве конечного продукта описываемого термического процесса авторы [28] обнаружили новое неидентифицированное соединение. Не исключено, что и в нашем случае имеет место аналогичная ситуация.

Структуры синтезированных фаз относятся к нецентросимметричной пр. гр. (табл. 2), поэтому одним из значимых атрибутов изучаемых соединений является их способность к генерации второй оптической гармоники. Интенсивность сигнала второй гармоники (относительно кварцевого эталона), генерируемого новыми соединениями, и ее зависимость от размера зерна генерирующего поликристаллического образца приведены на рис. 6 в сравнении с соответствующими графиками для α -кварца и KH_2PO_4 . Из этого рисунка следует, что новые иодаты относятся к соединениям с высоким сигналом ГВГ, в десятки и сотни раз превышающим сигнал эталонного α-SiO₂. Это ставит полученные нами новые вещества в один ряд со структурно близкими им иодатами NaLn(IO₃)₄ (Ln = Sm, Eu, Dy, Ho, Er, Yb, Lu, Y), ранее классифицированными как эффективные нелинейно-оптические кристаллы [25, 27, 29, 30].

Хотя оксидные полиэдры катионов металлов, как указывалось выше, в структурах $NaLn(IO_3)_4$ полярно искажены, их вклад в макроскопическую не-

Рис. 7. ИК-спектры поглощения $NaLn(IO_3)_4$: Ln = Er (a); Pr (б); Tb (в).

линейность уступает вкладу от групп IO_3 с высокополяризуемой неподеленной парой электронов. Такая закономерность надежно прослеживается для всех нецентросимметричных иодатов и определяет их исключительную привлекательность для нелинейно-оптического применения. Наблюдаемая при этом разница в интенсивности сигналов ГВГ для изоструктурных соединений $NaLn(IO_3)_4$

вдоль ряда РЗЭ может быть связана с разной степенью компенсации групп IO_3^- , расположенных в структуре взаимно противоположным образом.

С рассматриваемых позиций важнейшей характеристикой исследуемых кристаллов является область их оптической прозрачности. Их ИК-спектры пропускания представлены на рис. 7. Кривая пропускания NaTb(IO_3)₄ не содержит каких-либо полос поглощения вплоть до 7 мкм (до 1550 см $^{-1}$), а на кривых двух других образцов в этом же частотном интервале наблюдаются полосы поглощения, которые могут быть отнесены к адсорбционной воде. Это обстоятельство свидетельствует о том, что рассматриваемые кристаллы прозрачны в указанном спектральном диапазоне, хотя празеодимовый и эрбиевый образцы, по-видимому, подвержены воздействию атмосферной влаги.

ЗАКЛЮЧЕНИЕ

Семейство сложных иодатов общего состава $NaLn(IO_3)_4$ изучено достаточно подробно [26, 28, 30]. В данной статье мы дополнили имеющиеся о них сведения информацией о синтезе и свойствах $NaLn(IO_3)_4$ для Ln = Pr, Tb, предложили модернизированную методику получения таких соединений. Структура новых кристаллов, как и их аналогов, относится к нецентросимметричной пр. гр. Cc, и они демонстрируют способность к генерации второй оптической гармоники высокой интенсивности, характеризуются термической стабильностью и широким интервалом оптической прозрачности. С учетом полученных нами соединений композиционная протяженность исследуемого семейства однотипных кристаллов NaLn(IO₃)₄ теперь охватывает почти целиком весь ряд РЗЭ, что указывает на общие кристаллохимические предпосылки существования данного структурного типа и общий механизм формирования нелинейно-оптических свойств.

БЛАГОДАРНОСТЬ

Авторы выражают благодарность Т.Б. Шаталовой и А.Ф. Муртазоеву за помощь в проведении эксперимента.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке РФФИ в рамках проекта 20-03-00702A.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Chen J., Hu C.L., Kong F. et al. // Acc. Chem. Res. 2021. V. 54. P. 2775. https://doi.org/10.1021/acs.accounts.1c00188
- 2. *Gong P., Liang F., Kang L. et al.* // Coord. Chem. Rev. 2019. V. 380. P. 83. https://doi.org/10.1016/j.ccr.2018.09.011
- Chen X., Ok K.M. // Chem. Asian J. 2020. V. 15. I. 22. P. 3709. https://doi.org/10.1002/asia.202001086
- Chen C.T., Wu B.C., Jiang A.D. et al. // Sci. Sin. Ser. B. 1985, V. 28, P. 235.
- Fedorov P.P., Kokh A.E., Kononova N.G. // Russ. Chem. Rev. 2002. V. 71. P. 651. https://doi.org/10.1070/RC2002v071n08ABEH000716
- 6. *Chen C.T., Wu Y.C., Jiang A.D. et al.* // J. Opt. Soc. Am. B: Opt. Phys. 1989. V. 6. № 4. P. 616. https://doi.org/10.1364/JOSAB.6.000616
- 7. *Boyd G.D., Nassau K., Miller R.C. et al.* // Appl. Phys. Lett. 1964. V. 5. P. 234. https://doi.org/10.1063/1.1723604
- 8. *Haussuhl S.* // Z. Kristallogr. 1964. V. 120. P. 401. https://doi.org/10.1524/zkri.1964.120.16.401
- Bierlein J.D., Vanherzeele H. // J. Opt. Soc. Am. B: Opt. Phys. 1989. V. 6. P. 622. https://doi.org/10.1364/JOSAB.6.000622
- Liang F., Kang L., Lin Z. et al. // Cryst. Growth Des. 2017. V. 17. P. 2254. https://doi.org/10.1021/acs.cgd.7b00214
- Feng J.H., Hu C.L., Xu X. et al. // Chem. Eur. J. 2017.
 V. 23. P. 10933. https://doi.org/10.1002/chem.201702632
- Phanon D., Bentria B., Benbertal D. et al. // Solid State Sci. 2006. V. 8. P. 1466. https://doi.org/10.1016/j.solidstatesciences.2006.07.014
- Phanon D., Mosset A., Gautier-Luneau I. // J. Mater. Chem. 2007. V. 17. P. 1123. https://doi.org/10.1039/B612677D
- Hu C.L., Mao J.G. // Coord. Chem. Rev. 2015. V. 288.
 P. 1. https://doi.org/10.1016/j.ccr.2015.01.005
- 15. *Silambarasan A., Rajesh P., Ramasamy P. et al.* // Bull. Mater. Sci. 2017. V. 40. № 4. P. 783. https://doi.org/10.1007/s12034-017-1427-8
- Xu X., Hu C.L., Li B.X. et al. // Chem. Mater. 2014.
 V. 26. P. 3219. https://doi.org/10.1021/cm500898q
- Chen J., Hu C.L., Mao F.F. et al. // Angew. Chem. Int. Ed. 2019. V. 58. P. 11666. https://doi.org/10.1002/anie.201904383
- Mao F.F., Hu C.L., Chen J. et al. // Inorg. Chem. 2019.
 V. 58. P. 3982. https://doi.org/10.1021/acs.inorgchem.9b00075
- 19. *Krause L., Herbst-Irmer R., Sheldrick G.M. et al.* // J. Appl. Crystallogr. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
- Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Advan. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370

- Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Parson S. // Tetrahedron: Asymmetry. 2017. V. 28.
 P. 1304.
 https://doi.org/10.1016/j.tetasy.2017.08.018
- 23. *Torbeev V.Y., Lyssenko K.A., Kharybin O.N. et al.* // J. Phys. Chem. B. 2003. V. 107. P. 13523. https://doi.org/10.1021/jp0355881
- 24. *Kurtz S.K.*, *Perry T.T.* // J. Appl. Phys. 1968. V. 39. P. 3798. https://doi.org/10.1063/1.1656857
- Ok K.M., Halasyamani P.S. // Inorg. Chem. 2005.
 V. 44. P. 9353. https://doi.org/10.1021/ic051340u

- Bresse N.E., O'Keeffe M. // Acta Crystallogr. 1991.
 V. B47. P. 192. https://doi.org/10.1107/S0108768190011041
- 27. Liu H.M., Wang X.X., Meng X.G. et al. // J. Synth. Cryst. 2020. V. 49. P. 1523.
- Jia Y.J., Chen Y.G., Wang T. et al. // Dalton Trans. 2019.
 V. 48. P. 10320. https://doi.org/10.1039/C9DT01573F
- Oh S.J., Kim H.G., Jo H. et al. // Inorg. Chem. 2017.
 V. 56. P. 6973. https://doi.org/10.1021/acs.inorgchem.7b00531
- 30. *Phanon D., Suffren Y., Taouti M.B. et al.* // J. Mater. Chem. C. 2014. V. 2. P. 2715. https://doi.org/10.1039/C3TC32517B