———— КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ ———

УДК 547.979

СИНТЕЗ, ХИМИЧЕСКОЕ СТРОЕНИЕ И СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ В ОСНОВНОМ И ВОЗБУЖДЕННОМ СОСТОЯНИЯХ (ПОРФИРИНАТО)(ХЛОРО)ИНДИЯ(III) И ЕГО КОМПЛЕКСОВ С С₆₀ И ПИРИДИЛЗАМЕЩЕННЫМ ФУЛЛЕРО[60]ПИРРОЛИДИНОМ

© 2023 г. Е. Н. Овченкова^{а, *}, Н. Г. Бичан^а, Т. Н. Ломова^а

^аИнститут химии растворов им. Г.А. Крестова РАН, ул. Академическая, 1, Иваново, 153045 Россия

*e-mail: enk@isc-ras.ru Поступила в редакцию 25.04.2023 г. После доработки 13.07.2023 г. Принята к публикации 14.07.2023 г.

Получены новые комплексы [5,10,15,20-тетра(4-метоксифенил)порфинато](хлоро)индия(III) ((Cl)InTPP(p-OCH₃)₄) с незамещенным C₆₀ и 1-метил-2-(пиридин-4'-ил)-3,4-фуллеро[60]пирролидином (РуС₆₀) в толуоле. Константы устойчивости комплексов 1 : 1 (диад) определены с помощью электронной и флуоресцентной спектроскопии. Диады охарактеризованы методами ИК- и ¹Н ЯМР-спектроскопии. Установлено, что флуоресценция (Cl)InTPP(p-OCH₃)₄ тушится при постепенном добавлении фуллеренов; определены численные значения констант тушения Штерна—Фольмера (K_{SV}). С использованием метода фемтосекундной импульсной лазерной спектроскопии получены важнейшие характеристики переноса заряда в диадах (время жизни состояний с разделенными зарядами, константы разделения и рекомбинации зарядов), необходимые для дальнейшего рассмотрения диад на основе порфириновых комплексов индия(III) в качестве систем со свойством фотоиндуцированного переноса электрона.

Ключевые слова: индий(III)порфирин, фуллерен С₆₀, фуллеро[60]пирролидин, донорно-акцепторный комплекс, кинетика реакции образования, спектральные характеристики **DOI:** 10.31857/S0044457X23600652, **EDN:** DJDWRN

введение

Донорно-акцепторные пары (диады), в которых в качестве доноров электронов выступают металлопорфирины, перспективны как системы с возможностью фотоиндуцированного переноса электронов [1-7]. Комплексы порфиринов с индием(III) характеризуются специфическими фотофизическими свойствами, а именно: длительным временем жизни возбужденного триплетного состояния, низкими временем жизни и квантовым выходом флуоресценции, высоким квантовым выходом генерации синглетного молекулярного кислорода [8]. Они образуют перспективные в различных областях науки и практики молекулярные и надмолекулярные системы. Так, на основе [5,10,15,20-тетра(4-метилтиофенил)порфинато](хлоро)индия(III) и [5,10,15,20-тетра(2-тиенил)порфинато](хлоро)индия(III) были получены конъюгаты с наночастицами золота AuNPs, которые показали темновую цитотоксичность к раковым клеткам MCF-7, что делает их актуальными объектами для исследований в фотодинамической терапии [9]. Свою активность порфириновые комплексы индия(III), связанные с магнитными наночастицами серебра, показали также в качестве антимикробных агентов против грамотрицательного штамма Escherichia coli. Однако порфириновые комплексы индия(III) могут быть интересны не только в области фотодинамической терапии. Порфириновые комплексы индия(III) также могут представлять интерес как донорные компоненты мультихромофорных супрамолекул с широким светопоглощением для солнечных батарей и оптоэлектронных приложений [10, 11]. В работе [12] сообщается о синтезе [5,10,15,20-тетрафенилпорфинато](хлоро)индия(III) ((Cl)InTPP), аксиально замещенного различными бордипирриновыми (**BODIPY**) хромофорами, по реакции (Cl)InTPP с BODIPY, содержащими *пара*-гидрокси- или карбоксифенильный заместитель, в обезвоженном толуоле в присутствии гидрида натрия. При избирательном возбуждении звена BODIPY заселение его первого синглетного возбужденного состояния частично сопровождается передачей энергии в низшее синглетное возбужденное состояние порфирина, т.е. фрагмент ВОДІРУ является "фотопоглощающей антенной" по отношению к порфириновому фрагменту супрамолекулярной

Рис. 1. Структурные формулы исследуемых соединений.

системы. Донорно-акцепторные системы на основе порфириновых коплексов индия(III) получены также и путем координационного связывания известных фуллереновых акцепторов [13— 16]. Для полученных ранее донорно-акцепторных систем на основе порфириновых комплексов индия(III) и фуллеро[60]пирролидинов был предложен механизм их образования и определены основные спектральные характеристики [13, 14].

Настоящее исследование посвящено получению и анализу новых диад на основе [5,10,15,20-тетра(4-метоксифенил)порфинато](хлоро)индия(III) ((Cl)InTPP(*p*-OCH₃)₄) и фуллеренов C₆₀ и 1-метил-2-(пиридин-4'-ил)-3,4-фуллеро[60]пирролидина (РуС₆₀) (рис. 1), перспективных для получения фотоактивных систем. Проведен анализ флуоресцентных свойств и сверхбыстрой динамики возбужденных состояний диад и их составных компонент.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В исследовании использовали фуллерен С₆₀ (99.9%) научно-производственной компании "НеоТекПродакт". Толуол марки "ЭКОС" осушали гидроксидом калия и перед использованием перегоняли (*t*_{кип} = 110.6°C).

[5,10,15,20-тетра(4-метоксифенил)порфинато](хлоро)индий(III). (Cl)InTPP(p-OCH₃)₄ синтезировали реакцией H₂TPP(p-OCH₃)₄ с InCl₃ · 3H₂O в мольном соотношении 1 : 5 в среде кипящего фенола в течение 4 ч. После охлаждения реакционной смеси продукты экстрагировали в хлороформ, раствор многократно промывали теплой водой для удаления фенола, концентрировали путем частичной отгонки хлороформа и помещали на колонку с Al_2O_3 для хроматографии с хлороформом в качестве элюента. Затем хроматографию повторяли на силикагеле, в качестве элюента использовали бензол. Электронный спектр поглощения (ЭСП) регистрировали в толуоле, взятом для дальнейших исследований. Выход 55%.

ЭСП (λ_{max} , нм (lgɛ)): 410 (плечо), 433 (5.55), 527 (3.39), 565 (4.10), 608 (3.99). ИК-спектр в таблетках с КВг (v, см⁻¹): 3031 v(С–Н)_{фенил}); 2998, 2956, 2930, 2835 v(C-H)_{метил}; 1607 (скелетные колебания пиррольных колец), 1573, 1518, 1507 v(C=C)_{фенил}; 1474, 1464, 1441, 1411 δ(С-Н)_{метил}; 1339 ν(С-N); 1287 δ (C–H, =CH–); 1250 v_{as} (=C–O–C); 1207, 1176 б(С-Н)_{фенил}; 1107, 1070, 1037, 1005 (скелетные колебания пиррольных колец), 1013 v_s(=C-O-C); 849, 800 y(C-H, =CH-); 726, 717, 638, 601 y(C- $H)_{\phi e \mu u \pi}$. ИК-спектр в таблетках с CsBr (v, см⁻¹); 567 v_{as} (In–Cl); 539 v(In–N); 421, 337 v_{s} (In–Cl). Macc-спектр MALDI–ТОГ (*m/z*) найдено 848.65 [M–Cl]⁺; рассчитано 883.11 для C₄₈H₃₆N₄O₄Cl. ¹H ЯМР-спектр в CDCl₃ (δ, м.д., *J*, Гц: 9.10 (с, 8H_β); 8.29 (μ , 4H_o, J = 7.8); 8.03 (μ , 4H_o, J = 7.8); 7.35 (μ , $4H_{M}, J = 8.5$; 7.29 (π , $4H_{M}, J = 8.5$); 4.12 (c, $12H_{-OCH_{2}}$).

1-метил-2-(пиридин-4'-ил)-3,4-фуллеро[60]пирролидин РуС₆₀ синтезировали по методике, представленной в работе [17], по реакции между C_{60} , пиридин-4-карбоксиальдегидом и N-метилглицином в толуоле.

ЭСП, флуоресцентные, ИК-, ¹Н ЯМР- и массспектры регистрировали с использованием спектрофотометра Agilent 8453, спектрофлуориметра Avantas, спектрометра VERTEX 80v, спектрометра Bruker Avance III-500 и масс-спектрометра Shimadzu Confidence соответственно. Исследование времени жизни флуоресценции (Cl)InTPP(p-OCH₃)₄ и диад на его основе проводили с помощью спектрофлуориметра FluoTime 300 PicoOuant. В качестве источника возбуждения использовали лазер LDH-P-C-450. Учет функции отклика прибора проводили путем измерения сигнала рассеянного света разбавленной суспензии коллоидного кремнезема (LUDOX®). Кривую затухания флуоресценции измеряли в максимуме полосы флуоресценции, время жизни флуоресценции (Cl)InTPP(p-OCH₃)₄ определяли путем обработки кривой затухания с помощью пакета программ EasyTau 2 (PicoQuant).

Реакцию (Cl)InTPP(*p*-OCH₃)₄ с РуС₆₀ или С₆₀ исследовали методами электронной спектроскопии поглощения и флуоресценции. В первом случае реакция была изучена спектрофотометрически методами молярных отношений и избыточных концентраций (проводили измерения оптической плотности для серии растворов с постоянной концентрацией (Cl)InTPP(p-OCH₃)₄ $(4.5 \times 10^{-6} \text{ моль/л})$ и переменной концентрацией $PyC_{60} (0-1.2 \times 10^{-4} \text{ моль/л})$ сразу после смешивания реагентов и во времени с использованием в качестве нулевой линии спектра РуС₆₀ той же концентрации, что и в рабочем растворе), а во втором случае – методом изомолярных серий или методом Джоба (были приготовлены растворы, содержащие (Cl)InTPP(p-OCH₃)₄ и C₆₀ в различных мольных соотношениях, при условии, что сумма их мольных долей в каждом растворе была равна 1).

Константа стабильности полученного комплекса (Cl)InTPP(p-OCH₃)₄ с PyC₆₀ была рассчитана с использованием уравнения для трехкомпонентной системы с двумя окрашенными соединениями:

$$K = \frac{(A_i - A_0)/(A_{\infty} - A_0)}{1 - (A_i - A_0)/(A_{\infty} - A_0)} \times \frac{1}{\left(C_{\text{PyC}_{60}}^0 - C_{(\text{Cl})\text{InTPP}(p-\text{OCH}_3)_4}^0(A_i - A_0)/(A_{\infty} - A_0)\right)},$$
(1)

где $C_{\text{РуС}_{60}}^{0}$, $C_{(\text{Cl})\text{InTPP}(p-\text{OCH}_{3})_{4}}^{0}$ – начальные концентрации РуC_{60} и (Cl)InTPP(p-OCH₃)₄ в толуоле соответственно; A_0 , A_i , A_{∞} – оптическая плотность (Cl)InTPP(p-OCH₃)₄, равновесной смеси при

определенной концентрации фуллерена и продукта реакции. Относительная ошибка в определении *K* не превышала 15%. Стехиометрию реакции определяли как тангенс угла наклона прямой $\lg I - f(\lg C_{PvCe_0})$, где $I = (A_i - A_0)/(A_{\infty} - A_i)$.

Константы скорости реакций при различных концентрациях PyC_{60} рассчитывали по уравнению (2), которое соответствует первому порядку по (Cl)InTPP(*p*-OCH₃)₄ и смеси двух окрашенных веществ:

$$k_{\mathrm{s}\phi} = (1/\tau) \ln\left(\left(A_0 - A_{\mathrm{s}} \right) / \left(A_{\mathrm{\tau}} - A_{\mathrm{s}} \right) \right). \tag{2}$$

При использовании метода флуоресценции готовили серию растворов в толуоле с постоянной концентрацией (Cl)InTPP(*p*-OCH₃)₄ (2.3 × $\times 10^{-6}$ моль/л) и различными концентрациями C₆₀ (0–2.8 × 10^{-4} моль/л) или РуС₆₀ (0–1.7 × 10^{-4} моль/л). Константу Штерна–Фольмера (K_{SV}) определяли для оценки эффективности тушения флуоресценции (Cl)InTPP(*p*-OCH₃)₄ в присутствии C₆₀ или РуС₆₀ по уравнению (3):

$$I_0/I = 1 + K_{\rm SV}C_{\rm dyn},\tag{3}$$

где $C_{\text{фул}}$ — концентрация фуллерена, I_0 и I — интенсивность флуоресценции (Cl)InTPP(*p*-OCH₃)₄ в отсутствие и при добавлении фуллерена соответственно.

Используя данные флуоресцентного титрования, рассчитывали константы устойчивости диад $(K_{\rm BH})$ по модифицированному уравнению Бенези—Хильдебранда (4):

$$(I_{\text{max}} - I_0)/(I_x - I_0) = 1 + (1/K_{\text{BH}})(1/C_{\text{dyn}}^n),$$
 (4)

где I_0 , I_x , I_{max} – интенсивность флуоресценции (Cl)InTPP(*p*-OCH₃)₄ при отсутствии, определенной концентрации и максимальной добавке фуллерена соответственно; *n* – число молекул C₆₀/PyC₆₀.

Исследования возбужденных электронных состояний индий(III)порфирина и супрамолекулярных систем на их основе проводили методом импульсной фемтосекундной абсорбционной спектроскопии. Разрешенные во времени дифференциальные спектры наведенного поглощения $\Delta A(\lambda, \tau)$ измеряли в спектральном диапазоне 380–800 нм методом "возбуждение—зондирование", описанным в работах [18, 19]. Дифференциальные спектры поглощения, возникающие при импульсном фотовозбуждении, являются разностью двух спектров исследуемых образцов: $A(\lambda, \tau)$ при времени задержки τ и исходного спектра поглощения раствора образца без возбуждения $A_0(\lambda)$:

$$\Delta A(\lambda, \tau) = A(\lambda, \tau) - A_0(\lambda).$$
⁽⁵⁾

Измеренные спектры подвергали коррекции, учитывающей дисперсию групповой скорости континуума, по процедуре, описанной в работах [20, 21]. Эксперименты выполняли при темпера-

Рис. 2. Зависимость $\lg I - \lg C_{PyC_{60}}$ для реакции (Cl)InTPP(*p*-OCH₃)₄ с PyC₆₀ (a) и зависимость Джоба для системы (Cl)InTPP(*p*-OCH₃)₄-C₆₀ (б) в толуоле при 298 К.

туре 298 К в 0.5 мм оптической кювете в атмосфере азота, чтобы избежать контакта раствора пробы с воздухом. Анализ временных характеристик дифференциальных спектров осуществляли с помощью кинетического моделирования на основе сингулярного разложения матрицы полученных данных. Используемый подход предполагает рассмотрение всего массива экспериментальных значений $\Delta A(\lambda, \tau)$, где ΔA отображает фотоиндуцированные изменения оптической плотности исследуемого образца (просветление и наведенное поглощение). Экспоненциальную обработку полученных данных на длине волны максимума поглощения возбужденного состояния использовали для определения времени жизни возбужденного состояния.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Исследование реакций (Cl)InTPP(p-OCH₃)₄ с фуллеренами спектральными методами наряду с физико-химическим анализом их продуктов показало, что образование диады с незамещенным C₆₀ происходит за счет межмолекулярных взаимодействий, тогда как PyC₆₀ координируется по центральному атому металла.

Сразу после сливания растворов (Cl)InTPP(p-OCH₃)₄ с РуС₆₀ в каждой точке титрования устанавливается равновесие. В ходе титрования в ЭСП наблюдается уменьшение интенсивности

Таблица 1. Эффективные константы скорости $k_{3\phi}$ реакции (Cl)InTPP(*p*-OCH₃)₄ с РуС₆₀ в толуоле при 298 К

$C_{\rm PyC60} \times 10^5$, моль/л	$k_{\mathrm{s}\Phi} \times 10^4, \mathrm{c}^{-1}$			
4.93	4.34 ± 0.37			
5.63	4.81 ± 0.30			
6.34	4.35 ± 0.35			
7.71	4.46 ± 0.25			
$k = (4.49 \pm 0.31) \times 10^{-4} \mathrm{c}^{-1}$				

полосы Соре (433 нм) с сохранением изобестических точек. По данным графика зависимости $\lg I - f(\lg C_{\text{РуС}_{60}})$, стехиометрия взаимодействия составляет приблизительно 1 : 1 (рис. 2а), что подтверждается также флуоресцентным титрованием (описано ниже). Константа равновесия *K* составляет (2.1 ± 0.24) × 10⁴ л/моль.

0.2

0.4

0.6

0.8

 $\alpha_{PyC_{60}}$

После быстрого установления равновесия во всех равновесных смесях с различным содержанием РуС₆₀ наблюдается медленный необратимый процесс, который сопровождается уменьшением интенсивности полосы Соре при 433 нм и батохромным смещением полосы поглощения при 565 нм на 2 нм (рис. 3). Установлено, что кинетика реакции характеризуется первым порядком по концентрации (Cl)InTPP(p-OCH₃)₄, определены эффективные константы скорости (табл. 1). Константы $k_{3\phi}$ не зависят от $C_{PvC_{60}}$ в пределах ошибки, что указывает на нулевой порядок кинетики реакции по $C_{PvC_{60}}$. Не зависящая от концентраций константа скорости k, рассчитанная как среднеарифметическое значение $k_{\rm adb}$, составляет $(4.5 \pm 0.3) \times 10^{-4} \,\mathrm{c}^{-1}$

Согласно представленным данным, реакция (Cl)InTPP(p-OCH₃)₄ с PyC₆₀ протекает через быстрое равновесие и последующую одностороннюю реакцию с образованием порфирин-фуллероновой диады с внутрисферным (уравнение (6)) и внешнесферным (уравнение (7)) хлорид-ионом:

$$(Cl) InTPP(p-OCH_3)_4 + PyC_{60} \xrightarrow{k} (Cl)(PyC_{60}) InTPP(p-OCH_3)_4,$$
(6)
$$(Cl)(PyC_{60}) InTPP(p-OCH_3)_4 \xrightarrow{k} (Cl)(PyC_{60}) InTPP(p-OCH_3) \underbrace{k} (PyC_{60}) InTPP(p-OCH_3) InTPP($$

Эта реакция повторяет картину взаимодействия изоструктурного комплекса индия (Cl)InTPP(*o*-OCH₃)₄ с 2'-(пиридин-4-ил)-5'-(пиридин-2-ил)-1'-(пиридин-2-ил)метил-3,4-фуллеро[60]пирро-

Рис. 3. Изменение ЭСП (Cl)InTPP(p-OCH₃)₄ в системе толуол-7.71 × 10⁻⁵ моль/л РуС₆₀ в течение 3 ч.

лидином (Py_3C_{60}) [14]. Константа устойчивости комплекса (Cl)InTPP(*o*-OCH₃)₄ с Py_3C_{60} ниже на порядок ((2.3 ± 0.3) × 10³ л/моль), что, вероятно, связано с пространственными эффектами.

Для реакции (Cl)InTPP(p-OCH₃)₄ с C₆₀ стехиометрия была определена методом Джоба, который применяется при изучении супрамолекулярных систем [22, 23]. По данным соответствующего графика Джоба установлен стехиометрический состав продукта реакции 1 : 1 (рис. 26).

Спектр флуоресценции (Cl)InTPP(p-OCH₃)₄ при возбужлении импульсом с длиной волны 430 нм имеет две полосы испускания при 618 и 671 нм. Время жизни флуоресценции ($\tau_{\rm F}$) (Cl)InTPP(*p*-OCH₃)₄ составило 0.34 нс в толуоле (параметр χ^2 качества аппроксимации двухэкспоненциальной зависимости составил 1.40), значение которого практически не отличается от τ_F , определенного в CH_2Cl_2 (0.31 нс) [8]. Фуллерен С₆₀ и его производные также обладают флуоресценцией [24, 25], однако она намного слабее флуоресценции (Cl)InTPP(p-OCH₃)₄ (например, квантовый выход флуоресценции [5,10,15,20-тетра(4-пиридил)порфинато](хлоро)индия(III) составляет 0.015 [26]) и не наблюдается при возбуждении диодным источником света с длиной волны 430 нм. Квантовый выход флуоресценции C_{60} и PyC_{60} составляет 2.6×10^{-4} и 5.3 × 10⁻⁴ [27] соответственно. Поэтому было проведено исследование флуоресценции (Cl)InTPP(p- $OCH_3)_4$ с различными добавками C_{60} или PyC_{60} в толуоле и установлено, что имеет место ее гашение при постепенном добавлении фуллеренов (рис. 4).

Из рис. 4 определено уменьшение интенсивности флуоресценции на 36 и 64% при взаимодействии (Cl)InTPP(p-OCH₃)₄ с С₆₀ и РуС₆₀ соответственно. Во всем исследуемом концентрационном (по фуллерену) диапазоне наблюдаются прямолинейные зависимости в координатах уравнения Штерна-Фольмера (рис. 5). Значения констант тушения K_{SV} составляют 1.58 × 10³ л/моль и 8.15×10^3 л/моль в случае реакции с С₆₀ и РуС₆₀ соответственно. Константы устойчивости указанных диад, обозначенные в рамках метода как константы стабильности $K_{\rm BH}$, равны (2.85 ± 0.58) × 10⁴ (значение К, по данным спектрофотометрического титрования, равно (2.1 \pm 0.24) \times 10⁴ и (5.9 \pm 1.7) \times $\times 10^{3}$ л/моль соответственно для [(PyC₆₀)InTPP(*p*- $OCH_3)_4]^+Cl^-$ и (C₆₀)(Cl)InTPP(*p*-OCH₃)₄). K_{BH} для аксиально координированного комплекса $[(PyC_{60})InTPP(p-OCH_3)_4]^+Cl^-в 3$ раза выше, чем для диады с C₆₀, образованной за счет межмолекулярного взаимодействия.

Образование новых донорно-акцепторных диад (Cl)InTPP(p-OCH₃)₄ с С₆₀ и РуС₆₀ было дополнительно подтверждено данными ¹Н ЯМР- и ИКспектроскопии. ¹Н ЯМР-спектр (Cl)InTPP(*p*-OCH₃)₄ в CDCl₃ (см. Экспериментальную часть) указывает на его диамагнитную природу [28, 29]. Сигнал В-протонов проявляется в виде синглета при 9.1 м.д. Магнитная неэквивалентность ортои мета-фенильных протонов [8], которая проявляется в виде набора дублетов при 8.29, 8.03 и 7.35, 7.29 м.д. соответственно, связана с внеплоскостным расположением атома индия в координационном пространстве макроцикла [8]. При добавлении к раствору (Cl)InTPP(p-OCH₃) в CDCl₃ незамещенного С₆₀ вид спектра не меняется, наблюдается лишь незначительный сдвиг H₆- и

Рис. 4. Спектры флуоресценции (Cl)InTPP(*p*-OCH₃)₄ в толуоле с увеличением добавок C₆₀ (0–2.8 × 10⁻⁴ моль/л) (а) и PyC_{60} (0–1.7 × 10⁻⁴ моль/л) (б), $\lambda_{exc} = 430$ нм.

Рис. 5. Графики зависимости Штерна-Фольмера (а) и Бенези-Хилдебранда (б) для систем (Cl)InTPP(*p*-OCH₃)₄ с C₆₀ (*1*) и РуС₆₀ (*2*).

Н_о-протонов (на 0.01 м.д.) в сильное поле. Небольшой сдвиг сигналов протонов порфиринового макроцикла можно наблюдать и при образовании диады (Cl)InTPP(p-OCH₃) с PyC₆₀ – H_{β}- и H_oпротоны сдвигаются на 0.02 м.д в сильное поле. Более чувствительными к образованию диады оказались протоны РуС₆₀ (табл. 2). Протоны пиридильного и метильного заместителей сдвинуты в сильное поле на 0.04-0.08 м.д. по сравнению с сигналами некоординированного РуС₆₀. Наибольший сдвиг претерпевают протоны пирролидинового кольца, которые проявляются в спектре диады в виде трех синглетов при 4.88, 4.86 и 4.83 м.д. Полученные данные ЯМР-спектроскопии подтверждают факт образования в растворе донорноакцепторных диад, в которых еще не происходит процесс разделения зарядов с образованием катион-радикала порфиринового комплекса индия и анион-радикала фуллерена, для реализации которого необходимо фотовозбуждение.

В ИК-спектре $(C_{60})(Cl)InTPP(p-OCH_3)_4$ в KBr преобладают сигналы колебаний порфиринового макроцикла на тех же или немного сдвинутых частотах по сравнению с частотами некоординированного индий(III)порфирина. Четыре пика при 1429, 1182, 577 и 527 см⁻¹ соответствуют колебаниям фуллеренового каркаса [30] (рис. 6б). В случае диады с РуС₆₀ наряду с сигналами от фуллеренового каркаса, сохраняющими свое положение, присутствуют максимумы колебаний пиридинового и пирролидинового фрагментов. Они проявляются в основном в области $800-400 \text{ см}^{-1}$ и смещены на 1-15 см⁻¹ по сравнению с частотами колебаний исходного РуС₆₀ (рис. 6в). Пики колебаний связей In $-N_{PyC_{60}}$ и In-Cl в спектре диады обнаружить не удалось. Слабые сигналы, отвечающие колебаниям связи In-N и In-Cl, наблюдаются в области 540-520 и 350-330 см⁻¹ [8, 28, 31]. В случае [(РуС₆₀)InTPP(*p*-OCH₃)₄]⁺Cl⁻ они перекрываются интенсивными пиками колебаний РуС₆₀.

Сигналы РуС ₆₀ δ, м. д.; <i>J</i> , Гц								
PyC ₆₀								
8.71 (д, 2H _{Py} , <i>J</i> = 5.49)	7.82 (м, 2H _{Py})	5.02 (д, 1Н, <i>J</i> = 9.77)	4.96 (c, 1H)	4.31 (д, 1Н, <i>J</i> = 9.77)	$2.83 (c, 3H_{-CH_3})$			
$[(PyC_{60})InTPP(p-OCH_3)_4]^+Cl^-$								
8.67 (д, 2H _{Py} , J = 5.0)	7.74 (уш. с, 2H _{Py})	4.88 (c, 1H)	4.86 (c, 1H)	4.83(c, 1H)	2.77 (c, 3H _{-CH₃})			

Таблица 2. Сигналы PyC_{60} в ¹Н ЯМР-спектрах в CDCl₃

В случае (C_{60})(Cl)InTPP(p-OCH₃)₄ колебания связей In–N и In–Cl наблюдаются в ИК-спектре диады в CsBr и их положение не меняется, что указывает на присутствие иона Cl⁻ в первой координационной сфере.

Наличие у диад свойства фотоиндуцированного переноса заряда выявлено с использованием фемтосекундной импульсной лазерной спектроскопии. Дифференциальные спектры поглощения (Cl)InTPP(p-OCH₃)₄ в деаэрированном толуоле представлены на рис. 7. После возбуждения (Cl)InTPP(p-OCH₃)₄ импульсом с длиной волны 435 нм наблюдается отрицательное и положительное разностное поглощение, отвечающее соответственно выцветанию хромофора в основном состоянии (bleaching bands, BL) и образованию возбужденного состояния (excited state absorption bands, ESA). BL-полосы при 434 нм и в области 560-610 нм соответствуют положению полос Соре и Q, наблюдаемым в стационарном ЭСП. Широкая интенсивная полоса поглощения с максимумом при 458 нм отвечает синглетному возбужденному состоянию ¹*((Cl)InTPP(*p*-OCH₃)₄) [32]. Анализ кинетики нестационарного поглощения при 458 нм (рис. 7, вставка) при коротких временах задержки выявил компоненту быстрого нарастания с постоянной времени всего 0.39 пс. Ее можно интерпретировать как время образования ¹*((Cl)InTPP(*p*-OCH₃)₄) (τ_1). Время жизни в синглетном возбужденном состоянии (τ_2) было рассчитано моноэкспоненциальной обработкой профиля затухания при 458 нм и оказалось равным 292.4 пс.

По мере уменьшения сигнала $^{1*}((Cl)InTPP(p-OCH_3)_4)$ при 458 нм происходит одновременное нарастание сигнала с максимумом при 502 нм с изобестической точкой при 489 нм (рис. 7). Кинетический профиль при 502 нм был обработан моноэкспоненциальной функцией роста. Полученная постоянная времени жизни 263.34 пс согласуется с постоянной времени затухания сигнала при 458 нм. Согласно данным [32], пик при 502 нм может быть идентифицирован как поглощение возбужденного

Рис. 6. ИК-спектры (Cl)InTPP(*p*-OCH₃)₄ (*1*) и его диад с C₆₀ (*2*) и РуС₆₀ (*3*) в КВг (а) и CsBr (б).

Рис. 7. Дифференциальные спектры поглощения (Cl)InTPP(p-OC₄) в толуоле при $\lambda_{exc} = 435$ нм (на вставке – соответствующие кинетические кривые).

триплетного состояния (Cl)InTPP(p-OCH₃)₄. Такой вывод был сделан на основании подобия дифференциальных спектров поглощения, снятых в фемтосекундном и наносекундном диапазонах, и на основании согласования времени распада возбужденного синглетного состояния с временем ростом триплета для (5,10,15,20-тетракис(4гидроксифенил)порфинато)цинка(II) [32].

Спектральные изменения в случае диад (C_{60}) (Cl)InTPP(p-OCH₃)₄ и [(PyC₆₀)InTPP(p-OCH₃)₄]⁺Cl[−] в области 400-800 нм напоминают динамику дифференциальных спектров поглощения (Cl)InTPP(p-OCH₃)₄ и отражают образование возбужденного состояния $1*((Cl)InTPP(p-OCH_3)_4)$ в виде пиков при 459 и 458 нм соответственно (рис. S1). В случае переноса электрона с $^{1*}((Cl)InTPP(p-OCH_3)_4)$ на фуллерен спектральные отличия диад можно ожидать в ближней ИКобласти в виде появления поглощения π-анионрадикальной формы фуллерена в диапазоне 950-1020 нм [33, 34]. Возможности приборной установки, а именно узкий спектральный диапазон, не позволяют зафиксировать полосу С₆₀/РуС₆₀. Однако об образовании состояний с разделенными зарядами в диадах можно судить по изменению τ_1 и τ_2 для ¹*((Cl)InTPP(*p*-OCH₃)₄) и константам скорости разделения (k_{CS}) и рекомбинации (k_{CR}) зарядов в диадах (табл. 3). Анализ данных табл. 3 показывает, что величина k_{CR} для диад на три порядка меньше, чем значения k_{CS} . Такая тенденция обычно наблюдается для порфирин- и фталоцианин-фуллереновых диад из-за низкой энергии реорганизации фуллерена [33, 35].

В табл. S1 для сравнения представлены времена жизни и константы скорости образования и рекомбинации состояний с разделенными зарядами для других донорно-акцепторных диад и триад (донорно-акцепторная диада с дополнительной координированной молекулой замещенного фуллерена) координационной природы.

По этим данным, несмотря на несколько более высокие значения времени образования по сравнению с производными Co²⁺ и Mn³⁺, явным преимуществом диад на основе (Cl)InTPP(*p*-OCH₃)₄ являются на порядок более высокие времена жизни τ_2 и низкие значения констант скорости k_{CR} рекомбинации состояний с разделенными зарядами типа радикальных солей. Как коррелируют эти параметры с устойчивостью диад? Ответ мож-

Комплекс	λ, нм	τ ₁ , пс	$k_{\rm CS},{ m c}^{-1}$	τ ₂ , пс	$k_{\rm CR},{\rm c}^{-1}$
(Cl)InTPP(p-OCH ₃) ₄	458	0.39		292.4	
$(C_{60})(Cl)InTPP(p-OCH_3)_4$	459	0.39	2.6×10^{12}	219.9	4.5×10^{9}
$[(PyC_{60})InTPP(p-OCH_3)_4]^+Cl^-$	458	0.46	2.2×10^{12}	208.9	4.8×10^{9}

Таблица 3. Длина волны поглощения с временным профилем (λ , нм), времена образования и жизни возбужденного состояния (τ_1 , τ_2) и константы скорости разделения (k_{CS}) и рекомбинации (k_{CR}) зарядов в диадах в толуоле

но получить из данных табл. S2 для этих же фотоактивных систем.

Как видно из табл. S2, более низкой устойчивостью (в пределах одного—полутора порядков) по сравнению с диадами на основе (Cl)InTPP(p-OCH₃)₄ обладает только диада [(PyC₆₀)MnPc(3-CF₃Ph)₈]⁺AcO⁻. Возможно, именно это объясняет улучшение фотофизических параметров индийсодержащих диад.

ЗАКЛЮЧЕНИЕ

Охарактеризованы реакции (Cl)InTPP(p-OCH₃)₄ с фуллеренами С₆₀ и РуС₆₀ как процессы самосборки в диады за счет межмолекулярного взаимодействия и аксиальной координации соответственно. Определены параметры устойчивости диад и их фотофизические свойства. Выявлено тушение флуоресценции (Cl)InTPP(p-OCH₃)₄ в составе диад. Впервые получены численные значения времени жизни состояний с разделенными зарядами и константы скорости разделения/рекомбинации зарядов для (Cl)InTPP(p-OCH₃)₄ и его диад с C₆₀ и РуС₆₀. Ввиду того, что диады на основе порфириновых комплексов индия(III) и фуллеренов слабо представлены в мировой литературе, несмотря на их сравнительную простоту приготовления и возможность применения в органических фотовольтаических преобразователях [36], полученные в настояшей работе результаты расширяют представления о способах получения и фотофизических свойствах диад фуллеренов с порфиринатами индия.

БЛАГОДАРНОСТЬ

Авторы выражают признательность за проведение исследований методом фемтосекундной импульсной лазерной спектроскопии проф. д. х. н. В.А. Надточенко, к. х. н. И.В. Шелаеву и Ф.Е. Гостеву. Работа выполнена на оборудовании Федерального исследовательского центра химической физики им. Н.Н. Семенова РАН (№ 1440743, 506694) (Москва) и Центра коллективного пользования научным оборудованием "Верхневолжский региональный центр физико-химических исследований".

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 21-73-20090).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Онлайн-версия содержит дополнительные материалы, доступные по адресу https://doi.org/10.31857/S0044457X23600652

СПИСОК ЛИТЕРАТУРЫ

- 1. *Amati A., Cavigli P., Kahnt A. et al.* // J. Phys. Chem. A. 2017. V. 121. № 22. P. 4242. https://doi.org/10.1021/acs.jpca.7b02973
- Бичан Н.Г., Овченкова Е.Н., Мозгова В.А. и др. // Журн. неорган. химии. 2019. Т. 64. № 5. С. 490. https://doi.org/10.1134/S0044457X19050027
- Borges-Martínez M., Montenegro-Pohlhammer N., Zhang X. et al. // Spectrochim. Acta. Part A: Mol. Biomol. Spectrosc. 2022. V. 269. P. 120740. https://doi.org/10.1016/j.saa.2021.120740
- 4. *Chitta R., Badgurjar D., Reddy G. et al.* // J. Porphyrins Phthalocyanines. 2021. V. 25. № 5–6. P. 469. https://doi.org/10.1142/S1088424621500395
- Койфман О.И., Агеева Т.А. // Высокомолекулярные соединения. Сер. С. 2014. Т. 56. № 1. С. 89. https://doi.org/10.7868/S2308114714010051
- 6. *Цивадзе А.Ю., Чернядьев А.Ю. //* Журн. неорган. химии. 2020. Т. 65. № 11. С. 1469. https://doi.org/10.31857/S0044457X20110197
- 7. *Моторина Е.В., Климова И.А., Бичан Н.Г. и др. //* Журн. неорган. химии. 2022. Т. 67. № 12. С. 1779. https://doi.org/10.31857/S0044457X22600712
- Dechan P., Bajju G.D. // J. Mol. Struct. 2019. V. 1195. P. 140. https://doi.org/10.1016/j.molstruc.2019.05.120
- 9. Soy R.C., Babu B., Oluwole D.O. et al. // J. Porphyrins Phthalocyanines. 2019. V. 23. № 1–2. P. 34. https://doi.org/10.1142/S1088424618501146
- 10. Bagaki A., Gobeze H.B., Charalambidis G. et al. // Inorg. Chem. 2017. V. 56. № 17. P. 10268. https://doi.org/10.1021/acs.inorgchem.7b01050
- 11. *Yang F., Wu Y., Zhao J. et al.* // Phys. Chem. Chem. Phys. 2020. V. 22. № 36. P. 20891. https://doi.org/10.1039/D0CP02672G

- 12. Panda M.K., Lazarides T., Charalambidis G. et al. // Eur. J. Inorg. Chem. 2015. V. 2015. № 3. P. 468. https://doi.org/10.1002/ejic.201402902
- 13. *Lomova T.N., Malov M.E., Klyuev M.V. et al.* // Macroheterocycles. 2009. V. 2. № 2. P. 164. https://doi.org/10.6060/mhc2009.2.164
- 14. *Овченкова Е.Н., Бичан Н.Г., Ломова Т.Н.* // Журн. неорган. химии. 2018. Т. 63. № 3. С. 367.
- Lomova T.N., Malov M.E., Klyuev M.V. et al. // Adv. Mater. Sci. Research. N.Y.: Nova Science Publishers, 2011. V. 2. P. 143.
- Ломова Т.Н., Моторина Е.В., Тюляева Е.Ю. и др. // Успехи химии порфиринов. 2007. Т. 5. С. 114.
- 17. *Prato M., Maggini M., Giacometti C. et al.* // Tetrahedron. 1996. V. 52. № 14. P. 5221. https://doi.org/10.1016/0040-4020(96)00126-3
- Bichan N.G., Ovchenkova E.N., Ksenofontov A.A. et al. // Dyes and Pigments. 2022. V. 204. P. 110470. https://doi.org/10.1016/j.dyepig.2022.110470
- Михайлов К.М., Шелаев И.В., Гостев Ф.Е. и др. // Химия высоких энергий. 2014. Т. 48. № 4. С. 319. https://doi.org/10.7868/S0023119714040115
- 20. *Shelaev I.V., Gostev F.E., Vishnev M.I. et al.* // J. Photochem. Photobiol. B: Biology. 2011. V. 104. № 1. P. 44. https://doi.org/10.1016/j.jphotobiol.2011.02.003
- Kovalenko S.A., Dobryakov A.L., Ruthmann J. et al. // Phys. Rev. A. 1999. V. 59. № 3. P. 2369. https://doi.org/10.1103/PhysRevA.59.2369
- Nayak S., Ray A., Bhattacharya S. // J. Mol. Liq. 2021.
 V. 321. P. 114367. https://doi.org/10.1016/j.mollig.2020.114367
- Nayak S., Ray A., Bhattacharya S. et al. // J. Mol. Liq. 2019. V. 290. P. 110842. https://doi.org/10.1016/j.molliq.2019.04.119
- 24. *Ma B., Sun Y.-P.* // J. Chem. Soc., Perkin Trans. 2. 1996. № 10. P. 2157. https://doi.org/10.1039/P29960002157

- 25. Brites M.J., Santos C., Nascimento S. et al. // New J. Chem. 2006. V. 30. № 7. P. 1036. https://doi.org/10.1039/B601649A
- Makola L.C., Mgidlana S., Nyokong T. // Dyes and Pigments. 2021. V. 192. P. 109262. https://doi.org/10.1016/j.dyepig.2021.109262
- Bichan N.G., Ovchenkova E.N., Mozgova V.A. et al. // Molecules. 2022. V. 27. P. 8900. https://doi.org/10.3390/molecules27248900
- Bajju G.D., Ahmed A., Gupta D. et al. // Bioinorg. Chem. Appl. 2014. V. 2014. P. 865407. https://doi.org/10.1155/2014/865407
- 29. *Scheer H., Katz J.J.* // Porphyrins and Metalloporphyrins: A New Edition Based on the Original Volume. Amsterdam: Elsevier, 1975. P. 399.
- 30. Bethune D.S., Meijer G., Tang W.C. et al. // Chem. Phys. Lett. 1991. V. 179. № 1. P. 181. https://doi.org/10.1016/0009-2614(91)90312-W
- Burtsev I.D., Platonova Y.B., Volov A.N. et al. // Polyhedron. 2020. V. 188. P. 114697. https://doi.org/10.1016/j.poly.2020.114697
- 32. Gacka E., Burdzinski G., Marciniak B. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. № 24. P. 13456. https://doi.org/10.1039/D0CP02545C
- 33. *Seetharaman S., Jang Y., Kc C. et al.* // J. Porphyrins Phthalocyanines. 2018. V. 21. P. 1. https://doi.org/10.1142/s1088424617500924
- 34. *Guldi D.M., Rahman G.M.A., Jux N. et al.* // J. Am. Chem. Soc. 2005. V. 127. № 27. P. 9830. https://doi.org/10.1021/ja050930o
- Das S.K., Song B., Mahler A. et al. // J. Phys. Chem. C. 2014. V.1 18. № 8. P. 3994. https://doi.org/10.1021/jp4118166
- Dammer S.J., Solntsev P.V., Sabin J.R. et al. // Inorg. Chem. 2013. V. 52. № 16. P. 9496. https://doi.org/10.1021/ic401163y