ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 541.123/.123.8/9:546.56'289'28/23

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ Cu₂Se-Cu₈SiSe₆-Cu₈GeSe₆

© 2023 г. У. Р. Байрамова^{*a*}, К. Н. Бабанлы^{*a*}, Л. Ф. Машадиева^{*a*}, *, Ю. А. Юсибов^{*b*}, М. Б. Бабанлы^{*a*}, **

^аИнститут катализа и неорганической химии, пр-т Г. Джавида, 113, Баку, AZ-1148 Азербайджан ^bГянджинский государственный университет, пр-т Г. Алиева, 187, Гянджа, AZ-2000 Азербайджан

*e-mail: leylafm76@gmail.com **e-mail: babanlymb@gmail.com Поступила в редакцию 05.05.2023 г. После доработки 20.06.2023 г. Принята к публикации 28.06.2023 г.

Изучены фазовые равновесия в области составов $Cu_2Se-Cu_8SiSe_6-Cu_8GeSe_6$ системы $Cu_2Se-SiSe_2-GeSe_2$. На основании результатов дифференциального термического и рентгенофазового анализа, сканирующей электронной микроскопии и энергодисперсионной спектроскопии построены T-x-диаграмма граничной системы $Cu_8SiSe_6-Cu_8GeSe_6$, ряд политермических сечений и изотермическое сечение при 300 К фазовой диаграммы, а также проекция поверхности ликвидуса исследуемой системы. Определены области первичной кристаллизации и гомогенности фаз, характер и температуры нон- и моновариантных равновесий. В граничной системе $Cu_8SiSe_6-Cu_8GeSe_6$ выявлены непрерывные твердые растворы между высокотемпературными модификациями исходных соединений и широкие области гомогенности на основе их низкотемпературных модификаций. По данным порошковых дифрактограмм определены типы и параметры кристаллических решеток исходных соединений и твердых растворов обеих модификаций. Полученные фазы переменного состава представляют интерес как экологически безопасные функциональные материалы.

Ключевые слова: селенид меди-германия, селенид меди-кремния, соединения семейства аргиродита, фазовая диаграмма, поверхность ликвидуса, твердые растворы

DOI: 10.31857/S0044457X23600792, **EDN:** YZYIDM

введение

Среди сложных халькогенидов меди и серебра особое место занимают соединения семейства аргиродита с общей формулой A_8BX_6 (A = Cu, Ag; B = Si, Ge, Sn; X = S, Se, Te). Эти соединения и фазы на их основе считаются экологически безопасными материалами и благоларя особенностям кристаллической структуры обладают рядом ценных функциональных свойств [1-6]. Эта особенность заключается в гибридности кристаллической структуры. в которой частично занятая подвижная А-подрешетка взаимопроникает в жесткий анионный каркас тетраэдров BX₄, что обеспечивает высокую мобильность ионов Ag⁺/Cu⁺. Благодаря этому представители данного класса обладают смешанной ионно-электронной проводимостью [7-12], что делает их весьма перспективными для разработки фотоэлектродных материалов, электрохимических преобразователей солнечной энергии, ионоселективных датчиков и др. Кроме того, большинство аргиродитных фаз на основе меди и серебра проявляют себя как перспективные термоэлектрические материалы

[13–22]. Еще одной интересной особенностью аргиродитов является их способность к множественным полиморфным превращениям, свидетельствующим о небольшой энергии этих фазовых переходов.

Одним из эффективных путей оптимизации свойств функциональных материалов является получение на их основе твердых растворов. Для этого целесообразно исследование фазовых равновесий в системах, состоящих из соединений – формульных или структурных аналогов, поскольку в них можно ожидать образования широких областей твердых растворов [23–27].

Большинство соединений семейства аргиродита имеют полиморфные переходы при низких температурах (~310-520 К). Как правило, их высокотемпературные модификации кристаллизуются в кубической структуре, а низкотемпературные фазы имеют более низкую симметрию [1, 28-30]. Низкотемпературные модификации некоторых представителей этого класса также изоструктурны. Это увеличивает вероятность образования в системах на основе аргиродитных аналогов твердых растворов с различными структурами и типа-

Соединение, Т, К	Структура	Пр. гр.	Пар	Социнио		
			а	b	С	ССЫЛКА
HT-Cu ₂ Se, 396–1403	Кубическая	Fmm	5.859(1)			[38]
LT-Cu ₂ Se, <396	Моноклинная	<i>C</i> 2/ <i>c</i>	7.1379(4)	12.3823(7)	27.3904(9)	[38]
HT-Cu ₈ SiSe ₆ , 335–1380	Кубическая	F3m	10.17			[29, 30]
$LT-Cu_8SiSe_6, <335$	Орторомбическая	$Pmn2_1$	7.2835(2)	7.2185(2)	10.2281(3)	[41]
HT-Cu ₈ GeSe ₆ , 1083–333	Кубическая	F3m	10.20			[44]
LT-Cu ₈ GeSe ₆ , <333	Гексагональная	$P6_3mc$	12.6601(4)		11.7698(3)	[42, 43]

Таблица 1. Кристаллографические данные для соединений Cu₂Se, Cu₈GeSe₆ и Cu₈SiSe₆

Примечание. HT – высокотемпературная и LT – низкотемпературная модификации.

ми замещений. Ранее в работах [31–37] были представлены результаты исследования ряда систем на основе синтетических аналогов аргиродита, в которых выявлены новые фазы переменного состава, представляющие практический интерес как функциональные материалы.

В настоящей работе представлены результаты исследования фазовых равновесий в системе $Cu_2Se-Cu_8SiSe_6-Cu_8GeSe_6$. Ниже приведена информация об исходных соединениях и граничных составляющих этой системы.

Селенид меди(I) плавится конгруэнтно при 1403 К, претерпевая полиморфное превращение при 396 К [38]. Это соединение имеет область гомогенности, максимальную при 800 К (33.3–36.6 ат. % Se), которая смещена в сторону избытка селена. Низкотемпературная кристаллическая фаза LT-Cu₂Se образует моноклинную, а высокотемпературная HT-Cu₂Se – кубическую структуру. Кристаллографические данные для всех кристаллических модификаций соединений системы Cu₂Se– Cu₈SiSe₆–Cu₈GeSe₆ приведены в табл. 1.

Соединение Cu_8SiSe_6 плавится конгруэнтно при 1380 К и имеет полиморфное превращение при 355 К [39, 40]. Высокотемпературная фаза этого соединения кристаллизуется в кубической структуре, а низкотемпературная — в орторомбической [29, 30, 41]. Cu_8SiSe_6 образует эвтектику с HT-Cu₂Se, которая кристаллизуется при 1275 К и имеет состав ~50 мол. % Cu_2Se [40].

Соединение Cu_8GeSe_6 образуется по перитектической реакции L + $Cu_2Se \leftrightarrow Cu_8GeSe_6$ при 1083 К в системе $Cu_2Se-GeSe_2$. Точка перитектики соответствует составу 75 мол. % Cu_2Se . Это соединение имеет фазовый переход при 333 К [42] (328 К согласно [43]). Низкотемпературная модификация LT- Cu_8GeSe_6 кристаллизуется в гексагональной [42, 43], а высокотемпературная HT- $Cu_8GeSe_6 - в$ кубической структуре [44] (табл. 1).

Мы не обнаружили какие-либо сведений о фазовых равновесиях в граничной системе $Cu_8SiSe_6-Cu_8GeSe_6$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединения Cu₂Se, Cu₈SiSe₆ и Cu₈GeSe₆ синтезировали сплавлением элементарных компонентов в стехиометрических соотношениях в откачанных до ~10⁻² Па и запаянных кварцевых ампулах. Были использованы высокочистые (≥99.999%) элементы от компании Evochem Advanced Materials GmbH. Синтез всех соединений проводили в двухзонных наклонных печах. Нижнюю горячую зону нагревали до 1300 К, а холодную – до 850 К, что несколько ниже температуры кипения селена. Синтез проводили до полного реагирования паров селена с другими компонентами реакционной смеси. После чего ампулу полностью вводили в горячую зону, выдерживали в течение нескольких часов, затем охлаждали в режиме выключенной печи. Для получения однородного Cu₂Se стехиометрического состава, согласно рекомендации [45], после синтеза образец закаливали в ледяной воде. Учитывая высокую температуру плавления соединения Cu₈SiSe₆ и возможное разъедание стенок кварцевой ампулы элементарным кремнием, синтез этого соединения и сплавов, богатых кремнием, проводили в кварцевой ампуле, предварительно графитизированной толуолом. Для полной гомогенизации инконгруэнтно плавящегося Cu_8GeSe_6 печь после синтеза охлаждали до 950 K, что ниже точки перитектического разложения этого соединения, и выдерживали его в течение 100 ч.

Индивидуальность синтезированных соединений контролировали методами дифференциального термического (ДТА) и рентгенофазового анализа (РФА). Дифракционные картины синтезированных соединений совпадали с данными PDF файлов (Powder Diffraction File) из базы ICDD (The International Centre for Diffraction Data): LT-Cu₂Se (PDF 03-065-2982), LT-Cu₈SiSe₆ (PDF 01-070-3114) и LT-Cu₈GeSe₆ (PDF 01-080-1757). Полученные значения температур плавления и полиморфных переходов, а также параметры кристаллических решеток в пределах погрешности (± 3 и ± 0.0003 Å) совпадали с литературными данными.

Было приготовлено около 30 сплавов по различным сечениям концентрационного треугольника $Cu_2Se-Cu_8SiSe_6-Cu_8GeSe_6$ сплавлением исходных соединений в кварцевых ампулах в условиях вакуума. После синтеза образцы были подвергнуты последующему гомогенизирующему отжигу при 850 К (500 ч) с дальнейшим охлаждением в инерционном режиме. Ряд сплавов по разрезу $Cu_8SiSe_6 Cu_8GeSe_6$ после отжига были закалены от 850 К бросанием ампул в ледяную воду.

Исследования проводили методами ДТА, РФА, а также сканирующей электронной микроскопии (СЭМ) и энергодисперсионной спектроскопии (ЭДС).

Дифференциальный термический анализ образцов проводили в вакуумированных кварцевых ампулах в интервале температур от комнатной до 1400 К со скоростью нагревания 10 град/мин на дифференциальном сканирующем калориметре 404 F1 Pegasus System Фирмы Netzsch с платинародиевыми термопарами. Результаты измерений обрабатывали с помощью программного обеспечения Netzsch Proteus Software. Точность измерения температуры составляла ±2 К.

Рентгенофазовый анализ проводили при комнатной температуре на дифрактометре D8 Advance фирмы Bruker (Cu $K_{\alpha 1}$ -излучение). Рентгенограммы индексировали с помощью программы Topas V3.0 Software Bruker.

Сканирующую электронную микроскопию и энергодисперсионную спектроскопию отшлифованных образцов осуществляли с помощью сканирующего электронного микроскопа Tescan Vega 3 с энергодисперсионной системой микроанализа Oxford Instruments, оснащенного детектором Thermo Scientific Ultra Dry Compact EDS. Исследования проводили в режиме обратного рассеяния электронов для выявления композиционного контраста между разными фазами.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На основании совместной обработки полученных экспериментальных результатов с использованием литературных данных по боковым системам [39, 40, 42, 43] получена взаимосогласованная картина фазовых равновесий в системе Cu₂Se-Cu₈SiSe₆-Cu₈GeSe₆.

Далее в тексте, таблицах и на рисунках приняты следующие обозначения фаз: γ_1 и γ_2 — твердые растворы на основе низкотемпературных модификаций Cu₈SiSe₆ и Cu₈GeSe₆ соответ-

ственно, δ — высокотемпературные твердые растворы $Cu_8Si_{1-x}Ge_xSe_6$.

Граничная система Cu₈SiSe₆—Cu₈GeSe₆ характеризуется образованием неограниченных твердых растворов (δ -фаза) на основе высокотемпературных модификаций исходных соединений (рис. 1). На основе низкотемпературных структур исходных соединений наблюдается широкая растворимость. Растворимость на основе Cu₈SiSe₆ при комнатной температуре составляет ~50 мол. % (γ_1 -фаза), а на основе Cu₈GeSe₆ – 15 мол. % (γ_2 -фаза). Система в целом неквазибинарна в силу инконгруэнтного характера плавления соединения Cu₈GeSe₆.

Построенная фазовая диаграмма полностью подтверждается данными РФА (рис. 2).

На рис. 2 представлены рентгенограммы некоторых сплавов системы $Cu_8SiSe_6-Cu_8GeSe_6$ после отжига в вышеуказанном режиме, снятые при комнатной температуре. Видно, что дифракционные картины сплавов состава 20 и 40 мол. % Cu_8GeSe_6 качественно аналогичны дифрактограмме соединения Cu_8SiSe_6 , а сплава состава 90 мол. % Cu_8GeSe_6- дифрактограмме соединения Cu_8GeSe_6 . Дифрактограмме соединения Cu_8GeSe_6 . Дифрактограмме соединения Cu_8GeSe_6 . Дифрактограмме соединения Cu_8GeSe_6 . Дифракционные пики промежуточных сплавов (40 и 60 мол. % Cu_8GeSe_6) состоят из суммы спектров отражения исходных соединений. При повышении концентрации кремния в сплавах наблюдается небольшое смещение дифракционных пиков в сторону больших углов.

РФА сплавов, закаленных от 850 К, подтвердил неограниченную взаимную растворимость высокотемпературных модификаций исходных соединений. В качестве примера на рис. 3 приведена порошковая дифрактограмма образца состава 60 мол. % Cu₈GeSe₆. Она имеет дифракционную картину, характерную для кубической сингонии. Все линии отражения индицируются в кубической структуре (пр. гр. *F3m*).

На основании порошковых дифракционных данных вычислены кристаллографические параметры исходных соединений и твердых растворов $Cu_8Si_{1-x}Ge_xSe_6$ для обеих модификаций (табл. 2). Показано, что линии отражения отожженных и медленно охлажденных сплавов состава 20 и 40 мол. % Cu₈GeSe₆ полностью индицируются в орторомбической структуре LT-Cu₈SiSe₆ (пр. гр. $Pmn2_1$), а сплава состава 90 мол. % $Cu_8GeSe_6 - в$ гексагональной структуре LT-Cu₈GeSe₆ (пр. гр. $P6_3mc$). Для промежуточных сплавов наблюдаются дифракционные линии как орторомбической (γ_1), так и гексагональной (γ_2) фазы. Определение областей гомогенности этих фаз на основе концентрационных зависимостей кристаллографических параметров затруднительно, так как при замещении Ge \leftrightarrow Si происходит незначительное изменение параметров.

Рис. 2. Порошковые рентгенограммы отожженных сплавов системы $Cu_8SiSe_6-Cu_8GeSe_6$.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 11 2023

Рис. 3. Порошковая дифрактограмма закаленного от 850 К сплава состава 60 мол. % Cu_8GeSe_6 системы $Cu_8SiSe_6-Cu_8GeSe_6$.

Рис. 4. Концентрационная зависимость параметров кристаллической решетки высокотемпературных твердых растворов $Cu_8Si_{1-x}Ge_xS_6$.

Для высокотемпературных твердых растворов построен график концентрационной зависимости периода кубической решетки (рис. 4), из которого видно, что эта зависимость носит линейный характер..

Твердофазные равновесия при 300 К. На основании данных РФА и СЭМ–ЭДС-исследований ряда равновесных сплавов внутри концентрационного треугольника Cu₂Se–Cu₈SiSe₆–Cu₈GeSe₆ и фазовых диаграмм граничных квазибинарных систем построена диаграмма твердофазных равновесий при 300 К (рис. 5).

Наличие γ_1 - и γ_2 -твердых растворов в боковой системе Cu₈SiSe₆—Cu₈GeSe₆ и отсутствие других фаз

в данном концентрационном треугольнике приводят к образованию двухфазных (LT-Cu₂Se) + γ_1 , (RT-Cu₂Se) + γ_2 и трехфазной (LT-Cu₂Se) + γ_1 + γ_2 областей. Как видно из рис. 5, γ_1 - и γ_2 -твердые растворы образуют конноды с фазой на основе RT-Cu₂Se. Наличие лучевых коннод подтверждено методом РФА. На рис. 6 представлены дифрактограммы сплавов **1**–**3** из рис. 5. Видно, что дифрактограмма сплава **1** отражает дифракционные пики соединения Cu₈SiSe₆ с некоторым смещением, что характерно для твердых растворов (γ_1 -фаза). На дифрактограмме сплава **2** наблюдаются дифракционные линии γ_1 -фазы и LT-Cu₂Se. Дифракционная картина сплава **3** состоит из сум-

	Параметры кристаллической решетки								
Фаза	низкотемпера	закаленные от 850 К сплавы; кубическая структура; пр. гр. F3m							
	структура; пр. гр.	a, Å	b, Å	c, Å	<i>a</i> , Å				
Cu ₈ GeSe ₆	Гексагональная <i>Р</i> 6 ₃ <i>тст</i>	12.6428(5)		11.7549(4)	10.2103(5)				
$Cu_8Si_{0.1}Ge_{0.9}Se_6$	Гексагональная <i>Р</i> 6 ₃ <i>тст</i>	12.6395(2)		11.7517(7)					
$Cu_8Si_{0.2}Ge_{0.8}Se_6$	Двухфазі	10.2031(1)							
$Cu_8Si_{0.4}Ge_{0.6}Se_6$	Двухфазі	10.1957(3)							
$Cu_8Si_{0.6}Ge_{0.4}Se_6$	Орторомбическая <i>Ртп</i> 2 ₁	7.2870(1)	7.2156(8)	10.2172(3)	10.1868(7)				
$Cu_8Si_{0.8}Ge_{0.2}Se_6$	Орторомбическая <i>Ртп</i> 2 ₁	7.2818(5)	7.2107(2)	10.2111(5)	10.1812(1)				
Cu ₈ SiSe ₆	Орторомбическая <i>Ртп</i> 2 ₁	7.2769(4)	7.2056(5)	10.2052(6)	10.1753				

Таблица 2. Типы и параметры кристаллических решеток для твердых растворов $Cu_8Si_{1-x}Ge_xS_6$

мы дифракционных линий отражения LT-Cu₂Se, γ_1 - и γ_2 -фаз. Индексированием порошковых дифрактограмм с помощью компьютерной программы TOPAS 3.0 были определены следующие параметры решетки для сплавов **1** и **2**:

Сплав 1: орторомбическая структура; a = 7.2870; b = 7.2156; c = 10.2172 Å (γ_1 -фаза);

Сплав **2**: двухфазная смесь γ_1 + LT-Cu₂Se; орторомбическая структура: a = 7.2868; b = 7.2149; c =

Рис. 5. Диаграмма твердофазных равновесий системы Cu₂Se-Cu₈SiSe₆-Cu₈GeSe₆ при 300 К.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 11 2023

Рис. 6. Порошковые дифрактограммы сплавов 1-3 на рис. 5.

Рис. 7. СЭМ-изображения сплавов 2 и 3 на рис. 5.

= 10.2171 Å (γ_1 -фаза); моноклинная структура: *a* = 7.1380; *b* = 12.3825; *c* = 27.3911 Å (LT-Cu₂Se).

Значения параметров решетки, полученные для γ_1 -фазы образца 2, практически совпадают с параметрами решетки твердого раствора состава Cu₈Si_{0.6}Ge_{0.4}Se₆ (сплав 1), образующегося в системе Cu₈SiSe₆-Cu₈GeSe₆ (табл. 2). Это говорит о том, что сплав 2 лежит на конноде Cu₂Se + γ_1 , исходящей из состава 40 мол. % Cu₈GeSe₆, и является экспериментальным доказательством лучевого характера коннод в этой двухфазной области.

Фазовый состав исследуемой системы был подтвержден также с помощью СЭМ различных сплавов из соответствующих областей. Например, на рис. 7 представлены СЭМ-изображения сплавов из двух- и трехфазной областей исследуемой системы (соответственно сплавы 2 и 3 на рис. 5).

Практически все образцы были исследованы с помощью ЭДС-анализа для получения химического состава фаз. К примеру, на рис. 8 представлен результат ЭДС-анализа γ_1 -фазы состава 20 мол. %

Полная шкала 12138 имп. Курсор: 0.000

Рис. 9. Проекция поверхности ликвидуса системы Cu₂Se–Cu₈SiSe₆–Cu₈GeSe₆. Поля первичной кристаллизации: *1* – (HT-Cu₂Se); *2* – δ-фаза. *Красные пунктирные линии – изученные внутренние сечения.

 Cu_8GeSe_6 , который показал, что его элементный состав соответствует формуле $Cu_{8.02}Si_{0.78}Ge_{0.22}Se_{5.98}$.

Проекция поверхности ликвидуса. Поверхность ликвидуса системы $Cu_2Se-Cu_8SiSe_6-Cu_8GeSe_6$ (рис. 9) состоит из двух полей, отвечающих первичной кристаллизации α -фазы на основе HT-Cu_2Se и твердых растворов $Cu_8Si_{1-x}Ge_xS_6$ (δ -фаза). Эти поля ограничены между собой моновариантной эвтектической ($L \rightarrow$ (HT-Cu_2Se) + δ) кривой *eK*. Учитывая перитектический характер образования

Cu₈GeSe₆ [42], можно предположить, что эта кривая переходит далее в перитектическое равновесие (L + (HT-Cu₂Se) $\rightarrow \delta$) в точке перехода *K* [46].

Политермические разрезы

Разрез Cu₂Se-[A] ([A] – сплав граничной системы Cu₈SiSe₆-Cu₈GeSe₆ с мольным соотношением 1 : 1 (рис. 9)). Ликвидус этой системы состоит из двух ветвей, отвечающих первичной кри-

Рис. 10. Фазовая диаграмма системы $Cu_2Se-[A]$ ([A] – сплав граничной системы $Cu_8SiSe_6-Cu_8GeSe_6$ с мольным соотношением 1 : 1; см. рис. 9).

сталлизации δ -твердых растворов и фазы на основе HT-Cu₂Se (рис. 10). Точки их пересечения отвечают моновариантной эвтектической реакции L \rightarrow (HT-Cu₂Se) + δ , при завершении которой формируется двухфазная область (HT-Cu₂Se) + δ . Термические эффекты при низких температурах (395, 323–326 K) отвечают фазовым переходам Cu₂Se и δ -фазы.

Разрез Си₈SiSe₆-[B] ([B] – сплав граничной системы 5Cu₂Se-Cu₈GeSe₆ состава 33.3 мол. % Cu₈GeSe₆) проходит через поля первичной кристаллизации (HT-Cu₂Se) и δ -фазы (рис. 11). Ниже ликвидуса наблюдается монотектическое эвтектическое равновесие L \rightarrow (HT-Cu₂Se) + δ , при завершении которого формируется двухфазная область (HT-Cu₂Se) + δ . Горизонталь при 395 К соответствует фазовому переходу (HT-Cu₂Se) \leftrightarrow (LT-Cu₂Se). Далее в температурном интервале 325–336 K за счет фазового перехода δ -фазы происходит ее распад на γ_1 - и γ_2 -фазы, вследствие чего образу-

ются трехфазное (LT-Cu₂Se) + γ_1 + γ_2 и двухфазные (LT-Cu₂Se) + γ_1 , (LT-Cu₂Se) + γ_2 поля.

Разрез Си₈SiS₆–[C] ([C] – сплав граничной системы $5Cu_2Se-Cu_8GeSe_6$ состава 66.7 мол. % Cu_8GeSe_6). Картина фазовых равновесий по этому разрезу почти идентична таковой для предыдущей системы (рис. 12).

Анализ вышеуказанных разрезов показывает, что они находятся в полном соответствии с проекцией поверхности ликвидуса и отражают фазовые равновесия в субсолидусной части фазовой диаграммы.

ЗАКЛЮЧЕНИЕ

В работе представлены новые данные по фазовым равновесиям в системе $Cu_2Se-Cu_8SiSe_6-Cu_8GeSe_6$, включающие диаграмму твердофазных равновесий при 300 К, проекцию поверхности ликвидуса, а также *T*-*x*-диаграммы граничной

Рис. 11. Фазовая диаграмма системы Cu₈SiSe₆-[B] ([B] – сплав граничной системы 5Cu₂Se-Cu₈GeSe₆ состава 33.3 мол. % Cu₈GeSe₆; см. рис. 9).

системы Cu₈SiSe₆-Cu₈GeSe₆ и трех внутренних сечений. В системе Cu₈SiSe₆-Cu₈GeSe₆ выявлены непрерывные высокотемпературные твердые растворы (δ-фаза) с кубической структурой. Установлено, что образование твердых растворов сопровождается уменьшением температур полиморфных переходов исходных соединений и установлением эвтектоидного равновесия при 325 К. Растворимость на основе LT-Cu₈SiSe₆ и LT-Cu₈GeSe₆ составляет соответственно ~50 (у₁-фаза) и ~15 мол. % (у₂-фаза) при комнатной температуре. Показано, что поверхность ликвидуса системы Cu₂Se-Cu₈SiSe₆-Cu₈GeSe₆ состоит из двух полей, отвечающих первичной кристаллизации (HT-Cu₂Se) и δ-фаз. С помощью программного обеспечения Тораз V3.0 определены типы и параметры кристаллических решеток выявленных новых фаз.

Полученные новые фазы переменного состава представляют интерес как потенциальные эколо-

гически безопасные термоэлектрические и ионопроводящие материалы, а представленные данные по фазовым равновесиям могут быть использованы для синтеза их образцов различных составов. Можно предположить, что соответствующие физические исследования приведут к получению материалов с улучшенными по сравнению с исходными соединениями функциональными свойствами.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Азербайджанского научного фонда (грант № AEF-MCG-2022-1(42)-12/10/4-М-10).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

Рис. 12. Фазовая диаграмма системы Cu₈SiSe₆-[C] ([C] – сплав граничной системы 5Cu₂Se-Cu₈GeSe₆ состава 66.7 мол. % Cu₈GeSe₆; см. рис. 9).

СПИСОК ЛИТЕРАТУРЫ

- Бабанлы М.Б., Юсибов Ю.А., Абишев В.Т. Трехкомпонентные халькогениды на основе меди и серебра. Баку: Изд-во БГУ, 1993. 342 с.
- He Q., Qian T., Zai J. et al. // J. Mater. Chem. A. 2015. V. 3. P. 20359. https://doi.org/10.1039/C5TA05304H
- 3. Semkiv I., Ilchuk H., Pawlowski M. et al. // Opto-Electronics Rev. 2017. V. 25. № 1. P. 37. https://doi.org/10.1016/j.opelre.2017.04.002
- Yang C., Luo Y., Xia Y. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 56329. https://doi.org/10.1021/acsami.1c17548
- Chen T., Zhang L., Zhang Z. et al. // ACS Appl. Mater. Interfaces. 2019. V. 13. P. 56329. https://doi.org/10.1021/acsami.9b13313
- Studenyak A., Pogodin V., Studenyak V. et al. // Solid State Ionics. 2020. V. 345. P. 115183. https://doi.org/10.1016/j.ssi.2019.115183
- 7. *Иванов Щиц А.К., Мурин И.В.* Ионика твердого тела. СПб.: Изд-во С. Петерб. Ун-та, 2000. Т. 1. С. 616.

- Heep B.K., Weldert K.S., Krysiak Y. et al. // Chem. Mater. 2017. V. 29. № 11. P. 4833. https://doi.org/10.1021/acs.chemmater.7b00767
- 9. Ayoola O.M., Buldum A., Farhad S. et al. // Energies. 2022. V. 15. P. 7288. https://doi.org/10.3390/en15197288
- 10. Sardarly R.M., Ashirov G.M., Mashadiyeva L.F. et al. // Mod. Phys. Lett. B. 2022. V. 36. № 32. P. 2250171. https://doi.org/10.1142/S0217984922501718
- 11. *Pogodin A.I., Filep M.J., Studenyak V.I. et al.* // J. Alloys Compd. 2022. V. 926. P. 166873. https://doi.org/10.1016/j.jallcom.2022.166873
- 12. *Zhou L., Minafra N., Zeier W.G. et al.* // Acc. Chem. Res. 2021. V. 54. № 12. P. 2717. https://doi.org/10.1021/acs.accounts.0c00874
- 13. *Lin S., Li W., Pei Y.* // Mater. Today. 2021. V. 48. P. 198. https://doi.org/10.1016/j.mattod.2021.01.007
- Li Z., Liu C., Zhang X. et al. // Org. Electron. 2017. V. 45. P. 247. https://doi.org/10.1016/j.orgel.2017.03.029
- Jin Z., Xiong Y., Zhao K. et al. // Mater. Today Phys. 2021. V. 19. P. 100410. https://doi.org/10.1016/j.mtphys.2021.100410

- Fan Y., Wang G., Wang R. et al. // J. Alloys Compd. 2020. V. 822. P. 153665. https://doi.org/10.1016/j.jallcom.2020.153665
- 17. *Shen X., Yang C., Liu Y. et al.* // ACS Appl. Mater. Interfaces. 2019. V. 11. № 2. P. 2168. https://doi.org/10.1021/acsami.8b19819
- Jin M., Lin S., Li W. et al. // Chem. Mater. 2019. V. 31. № 7. P. 2603. https://doi.org/10.1021/acs.chemmater.9b00393
- 19. *Jiang B., Qiu P., Eikeland E. et al.* // J. Mater. Chem. C. 2017. V. 5. № 4. P. 943. https://doi.org/10.1039/C6TC05068A
- 20. Yang C., Luo Y., Li X. et al. // RSC Advances. 2021. V. 11. № 6. P. 3732. https://doi.org/10.1039/D0RA10454J
- Li W., Lin S., Ge B. et al. // Adv. Sci. 2016. V. 3. P. 1600196. https://doi.org/10.1002/advs.201600196
- Jiang Q., Li S., Luo Y. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 54653. https://doi.org/10.1021/acsami.0c15877
- West D.R.F. Ternary Phase Diagrams in Materials Science. Boca Raton: CRC Press, 2013. 240 p. https://doi.org/10.1201/9781003077213
- Saka H. Introduction to Phase Diagrams in Materials Science and Engineering. London: World Scientific Publishing Company, 2020. 188 p. https://doi.org/10.1142/11368
- 25. Babanly M.B., Mashadiyeva L.F., Babanly D.M. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 13. P. 1649. https://doi.org/10.1134/S0036023619130035
- Babanly M.B., Chulkov E.V., Aliev Z.S. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1703. https://doi.org/10.1134/S0036023617130034
- 27. *Imamaliyeva S.Z., Babanly D.M., Tagiev D.B. et al.* // Russ. J. Inorg. Chem. 2018. V. 63. № 13. P. 1703. https://doi.org/10.1134/S0036023618130041
- Новоселова А.В., Лазарев В.Б. Физико-химические свойства полупроводниковых веществ: Справочник. М.: Наука, 1979. 340 с.
- Hahn H., Schulze H., Sechser L. // Naturwissenschaften. 1965. V. 52. № 15. P. 451. https://doi.org/10.1007/BF00627053
- 30. Gorochov O. // Bull. Soc. Chim. Fr. 1968. № 6. P. 2263.

- 31. Алиева З.М., Багхери С.М., Алвердиев И.Дж. и др. // Неорган. материалы. 2014. Т. 50. № 10. С. 1063.
- Bagheri S.M., Imamaliyeva S.Z., Mashadiyeva L.F. et al. // Int. J. Adv. Sci. Tech. res. 2014. V. 4. № 2. P. 291.
- 33. Алвердиев И.Дж., Багхери С.М., Алиева З.М. и др. // Неорган. материалы. 2017. Т. 53. № 8. С. 801. https://doi.org/10.1134/S0020168517080027
- 34. Aliyeva Z.M., Bagheri S.M., Aliev Z.S. et al. // J. Alloys Compd. 2014. V. 611. P. 395. https://doi.org/10.1016/j.jallcom.2014.05.112
- Alverdiyev I.J., Aliev Z.S., Bagheri S.M. et al. // J. Alloys Compd. 2017. V. 691. P. 255. https://doi.org/10.1016/j.jallcom.2016.08.251
- 36. *Машадиева Л.Ф., Алиева З.М., Мирзоева Р.Дж. и др. //* Журн. неорган. химии. 2022. Т. 67. № 5. С. 606.
- Bayramova U., Poladova A., Mashadiyeva L. // New Materials, Compounds and Applications. 2022. V. 6. № 3. P. 276.
- Binary Alloy Phase Diagrams / Ed. Massalski T.B. ASM International. Materials Park. Ohio, 1990. P. 3589. https://doi.org/10.1002/adma.19910031215
- 39. Шпак О., Когут Ю., Федорчук А. и др. // Научн. вестн. Среднеевроп. нац. ун-та им. Леси Украинки. Сер.: Хим. науки. 2014. Т. 21. № 298. С. 39.
- 40. Олексеюк И.Д., Пискач Л.В., Парасюк О.В. // Журн. неорган. химии. 1998. Т. 43. № 3. С. 516.
- 41. *Ishii M., Onoda M., Shibata K. //* Solid State Ionics. 1999. V. 121. № 1–4. P. 11. https://doi.org/10.1016/S0167-2738(98)00305-1
- Tomashik V. /// Non-Ferrous Metal Ternary Systems. Semiconductor Systems: Phase Diagrams, Crystallographic and Thermodynamic Data. Berlin: Springer-Verlag Heidelberg, 2006. P. 288. https://doi.org/10.1007/10915981 23
- 43. Onoda M., Ishii M., Pattison P. et al. // J. Solid State Chem. 1999. V. 146. P. 355. https://doi.org/10.1006/jssc.1999.8362
- 44. *Мороз В.* // Изв. Акад. наук СССР. Неорган. материалы. 1990. Т. 26. С. 1830.
- 45. *Глазов В.М., Бурханов А.С., Салеева Н.М.* // Изв. АН СССР. Неорган. материалы. 1977. Т. 13. № 5. С. 917.
- 46. Луцык В.И., Воробьева В.П., Шодорова С.Я. // Журн. физ. химии. 2015. Т. 89. № 13. С. 2331.