_____ ФИЗИЧЕСКИЕ МЕТОДЫ ____ ИССЛЕДОВАНИЯ ____

УДК 544.31

СИНТЕЗ И ВЫСОКОТЕМПЕРАТУРНАЯ ТЕПЛОЕМКОСТЬ ГЕКСААЛЮМИНАТОВ СОСТАВА LaMgAl₁₁O₁₉ И SmMgAl₁₁O₁₉

© 2023 г. П. Г. Гагарин^{*a*, *}, А. В. Гуськов^{*a*}, В. Н. Гуськов^{*a*}, А. В. Хорошилов^{*a*}, М. А. Рюмин^{*a*}, К. С. Гавричев^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: gavrich@igic.ras.ru Поступила в редакцию 05.06.2023 г. После доработки 21.06.2023 г.

Принята к публикации 01.07.2023 г.

Методами дифференциального термического, термогравиметрического и рентгенофазового анализа изучены процессы, протекающие при нагревании стехиометрической смеси гидроксидов лантана, самария, магния и алюминия, полученных методом обратного осаждения. Определены условия синтеза однофазных образцов LaMgAl₁₁O₁₉ и SmMgAl₁₁O₁₉ структурного типа магнетоплюмбитов и измерена изобарная теплоемкость в интервале температур 317–1817 К, показано отсутствие структурных превращений в этой области.

Ключевые слова: магнетоплюмбит, изобарная теплоемкость **DOI:** 10.31857/S0044457X23601062, **EDN:** EMEVDU

введение

Гексаалюминаты магния-РЗЭ со структурой магнетоплюмбита в настоящее время рассматриваются как перпективные материалы для создания новых термобарьерных покрытий. поскольку они обладают комплексом необходимых теплофизических и механических свойств [1-5]. Покрытия из REMgAl₁₁O₁₉ устойчивы к спеканию при температурах до 1600°С [1]. Хотя теплопроводность REMgAl₁₁O₁₉ несколько выше, чем редкоземельных цирконатов [1, 7–11], они обладают хорошими механическими свойствами, такими как прочность на изгиб. вязкость разрушения и модуль упругости [1, 6-9]. Гексаалюминаты магния-РЗЭ имеют слоистую структуру, в которой чередуются блоки шпинели и оксидные слои [6]. Свойства LaMgAl₁₁O₁₉ при тепловом расширении близки к свойствам оксида алюминия [5], что положительно сказывается на уменьшении внутренних напряжений между слоем оксида (TGO), образовавшимся при термическом окислении промежуточного покрытия (Bondcoat), и слоем гексаалюмината магния-РЗЭ. В литературе имеются сведения о том, что при введении в состав гексаалюмината нескольких РЗЭ, которые внедряются в структуру магнетоплюмбита, а также ионов двух- и четырехвалентных металлов (Sr²⁺, Zn²⁺, Ti⁴⁺) теплопроводность снижается, что продемонстрировано на примере GdMgAl₁₁O₁₉

и $Gd_{0.7}Yb_{0.3}MgAl_{11}O_{19}$ [1], а также $La_{1-x}Sr_xMg_{1-x}Zn_xAl_{11-x}Ti_xO_{19}$ [12].

В литературе описаны различные методы синтеза гексаалюминатов магния-РЗЭ со структурой магнетоплюмбита, однако в основном используется спекание оксидов с промежуточной гомогенизацией и финальным отжигом при высоких температурах [13] и соосаждение из водных растворов с последующим отжигом [14].

Информация по изучению термических свойств и теплоемкости гексаалюминатов магния-РЗЭ со структурой магнетоплюмбита в литературе нами не найдена.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез образцов гексаалюминатов лантана-магния и самария-магния проводили хорошо известным методом обратного осаждения [15, 16]. Для этого готовили водные растворы La(NO₃)₃ · 6H₂O (х. ч., 99.9 мас. %), Sm(NO₃)₃ · 6H₂O (х. ч.), Al(NO₃)₃ · 9H₂O (ч., РусХим) и Mg(NO₃)₂ · 6H₂O (99.0 мас. %, PEAXИM). Моляльную концентрацию растворов предварительно определяли осаждением гидроксидов водным раствором аммиака с последующим осушением и отжигом при 1000°С. Исходные растворы со стехиометрическим соотношением металлов готовили взвешиванием, затем осаждали медленным прикапыванием в водный

Рис. 1. Дифракционные отражения образцов LaMgAl₁₁O₁₉ (а) и SmMgAl₁₁O₁₉ (б) структурного типа *P*63/*mmc*, полученных после отжига при 1600°С.

раствор аммиака. Полученный осадок гидроксидов сушили и подвергали ступенчатому нагреву в соответствии с результатами анализа методом дифференциальной сканирующей калориметрии. Как было установлено, нагревание до 1500°С приводит к образованию смеси алюминатов и шпинелей. Однофазные гексаалюминаты лантана-магния и самария-магния образуются только после отжига исходной смеси при 1600°С в течение 6 ч.

Морфологию поверхности изучали методом растровой электронной микроскопии с использованием микроскопа TESCAN Amber GMH (Чехия) с неиммерсионной колонной BrightBeam и ультравысоким разрешением 1.3 нм. Ускоряющее напряжение подбирали для каждого образца индивидуально в диапазоне от 2 до 10 кэВ. В качестве детектора использовали BSE (Backs cattered Electrons)-детектор. Для определения состава поверхности использовали EDS-спектрометр при ускоряющем напряжении 20 кэВ.

Исследования термического поведения исходных смесей для синтеза гексаалюминатов LaMgAl₁₁O₁₉ и SmMgAl₁₁O₁₉ в области температур от комнатной до 1500°С проводили на приборе синхронного термического анализа STA 449F1 Jupiter и дифференциальном сканирующем калориметре DSC 404 F1 Pegasus фирмы Netzsch-Gerätebau GmbH (ЦКП ИОНХ РАН).

Термическое поведение с фиксацией потери массы исходных смесей для синтеза гексаалюминатов изучали от комнатной температуры до 1500°С в инертной атмосфере при скорости нагрева 20 град/мин (STA449F1 Jupiter), а без потери массы - со скоростью 10 град/мин до 1550°С (DSC 404 F1 Pegasus). Измерения теплоемкости проводили до 1817 К на установке DSC 404 F1 Pegasus методом отношений с изотермическими сегментами (DIN ISO 11357-4) в платинородиевых тиглях с крышкой в инертной атмосфере со скоростью 10 град/мин. Перед измерениями проводили калибровку прибора по металлическим стандартам (In, Sn, Bi, Zn, Al, Ag, Au, Pd), соответствующую стандартам DIN 51007, ASTM E 967/DIN EN 10204-2.1. Предел допускаемых абсолютных погрешностей измерения температуры составлял до 3 К, удельной теплоты – до 3%, удельной теплоемкости – от 1 до 3.5%. Молекулярную массу гексаалюминатов рассчитывали с использованием величин из [17].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

По данным РФА, изученные образцы $LaMgAl_{11}O_{19}$ и SmMgAl_{11}O_{19} имеют структуру магнетоплюмбита с пр. гр. *Р*63/*mmc* (рис. 1). Параметры решеток этих гексаалюминатов приведены в табл. 1 в сравнении с данными из литературы.

После высокотемпературного отжига при 1600°С в течение 6 ч образцы имеют крупнозернистую поверхность (рис. 2). Образцы не являются наноразмерными и не требуют внесения поправок на размерность в данные по измерениям теплоемкости. Результаты определения элементного состава, полученные методом EDX, показали, что в пределах погрешностей эксперимента состав образцов соответствует стехиометрическому (табл. 2). Картирование поверхности образцов на распределение лантана, самария, магния и алюминия показало равномерность распределения элементов.

C	Крис	Π		
Соединение	<i>a</i> , Å <i>c</i> , Å		$V, Å^3$	Литература
	5.5909(2)	21.974(1)	594.86(4)	Наст. работа
	5.595	22.01	596.69	[18]
	5.5924	21.959	594.76	[19]
	5.582	21.963	592.65	[20]
	5.579	21.947	591.57	
LaMgAl ₁₁ O ₁₉	5.59	21.97	594.54	[21]
	5.589	22.02	595.68	[22]
	5.5893-5.6181	21.9038-21.9988	593.57-601.33	[23]
	5.594	22.095	598.2	[24]
	5.590(1)	21.968(8)	594.49	[25]
	5.5819(3)	21.868(1)	590.07(7)	Наст. работа
SmMgAl ₁₁ O ₁₉	5.572	21.981	591.1	[24]
	5.582	21.85	589.63	[26]

Таблица 1. Параметры решеток синтезированных образцов LaMgAl₁₁O₁₉ и SmMgAl₁₁O₁₉ в сравнении с литературными данными

Таблица 2. Содержание элементов в изученных образцах, определенное методом EDX, ат. %

Соединение	RE(RE = La, Sm)	Mg	Al	0
LaMgAl ₁₁ O ₁₉ *	3.76 ± 0.95	3.04 ± 0.22	34.34 ± 1.51	58.86 ± 2.44
SmMgAl ₁₁ O ₁₉ **	3.64 ± 1.17	3.18 ± 0.85	32.00 ± 2.41	59.65 ± 3.76
REMgAl ₁₁ O ₁₉ (reop.)	3.125	3.125	34.375	59.375

* Рассчитано из 22 измерений.

** Рассчитано из 13 измерений.

Процессы при нагревании исходных смесей

Последовательность процессов, протекающих при нагревании исходных смесей, полученных на начальных стадиях осаждения, изучали с использованием дифференциальной сканирующей калориметрии (ДСК) (DSC 404F1 Pegasus, Netzsch), синхронного термического (ДСК/ТГ) STA 449F1 Jupiter, Netzsch) и рентгенофазового анализа (РФА, BrukerD8 Advance). Массы изученных образцов, молекулярные массы и температурные интервалы исследования теплового поведения приведены в табл. 3. Температурные зависимости тепловых потоков и изменения массы образцов для LaMgAl₁₁O₁₉ приведены на рис. 3. Сравнение результатов, полученных на разных калориметрах, показывает удовлетворительное согласие в последовательности тепловых эффектов и их параметров (табл. 4).

Первые три эндоэффекта (рис. 3), лежащие в интервале температур 92–526°С, сопровождаются потерей массы и отвечают, по-видимому, удалению сорбированной воды и гидроксильных групп.

Таблица 3.	Методические па	раметры ДСК-изме	рений образцов	гексаалюминатов
------------	-----------------	------------------	----------------	-----------------

Прибор	Прибор Масса образца, мг		Интервал измерений, °C
	LaMgAl ₁₁ O ₁₉ (М.м	. = 763.981 г/моль)	
STA 449F1 Jupiter	17.24	20	32-1542
DSC 404F1 Pegasus 21.71		10 40–1470	
	SmMgAl ₁₁ O ₁₉ (М.м	и. = 775.436 г/моль)	
STA 449F1 Jupiter	9.02	20	32-1547
DSC 404F1 Pegasus	25.81	10	40-1470

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 11 2023

Рис. 2. РЭМ-изображения поверхности образцов $LaMgAl_{11}O_{19}$ (а) и SmMgAl_ $11O_{19}$ (б).

Экзоэффект в области 800° С может быть связан с увеличением размера частиц и формированием кристаллов. Последний эндоэффект с максимумом при $1215 \pm 5^{\circ}$ С также сопровождается потерей массы и может отвечать удалению остаточных гидроксильных групп, имеющих большие энергии связи.

При охлаждении образца тепловых эффектов не наблюдалось и изменения массы не происходило.

Результаты изучения теплового поведения гексаалюмината магния-самария показаны на рис. 4. Температурные интервалы эффектов на кривых ДСК SmMgAl₁₁O₁₉ приведены в табл. 5. Как и в случае гексаалюмината лантана-магния, обший вил кривых нагревания. полученных на разных калориметрах и с разными скоростями сканирования, удовлетворительно согласуется (рис. 3, 4). При охлаждении каких-либо эффектов не выявлено. Идентификация протекающих процессов, ответственных за наблюдаемые эффекты на кривых ДСК, приведена в табл. 6. Некоторое несоответствие величин может быть объяснено небольшим различием содержания воды в исходных образцах, а также точностью определения и формой базовой линии.

Рентгенофазовый анализ, выполненный после проведения измерений методом ДСК, показал, что при нагревании образцов исходных смесей до 1500°С образования однофазных образцов со структурой магнетоплюмбита (пр. гр. *P*63*mmc*) не происходит, и образцы представляют собой безводную плохо закристаллизованную смесь простых и сложных оксидов. Продолжительный отжиг при 1500°С (>10 ч) не приводит к образованию однофазного образца. Для завершения процесса требуется длительный отжиг при более высоких температурах. Для получения однофазных образцов гексаалюминатов окончательный отжиг проводили в течение 6 ч при максимально доступной для нас температуре ~1600°С.

Температурные зависимости теплоемкости гексаалюминатов лантана-магния и самария-магния

Теплоемкости LaMgAl₁₁O₁₉ и SmMgAl₁₁O₁₉ в области температур 317—1817 К измерены в 151 температурной точке на образцах массой 34.64 и 35.13 мг соответственно. Температурные зависимости теп-

Рис. 3. Результаты ДСК (Pegasus) и синхронного термического анализа (Jupiter) образца LaMgAl11019.

Прибор	Эффект	$T_{\rm on}$, °C	$T_{\text{peak}}, ^{\circ}\text{C}$	$T_{\rm end}$, °C	ΔH , Дж/г
STA 449F1 Jupiter	a+b+c	92.6	_	516.1	-369.8
DSC 404F1 Pegasus	a+b+c	103.2	_	526.8	-372.9
STA 449F1 Jupiter	d	758.8	811.8	887.0	+59.31
DSC 404F1 Pegasus	d	724.0	803.3	887.2	+59.84
STA 449F1 Jupiter	е	1174.9	1188.3	1197.3	+20.37
DSC 404F1 Pegasus	е	1161.9	1173.6	1185.0	+20.16
STA 449F1 Jupiter	f	1197.3	1220.6	1237.7	-31.12
DSC 404F1 Pegasus	f	1185.0	1210.3	1226.2	-29.53

Таблица 4. Параметры тепловых эффектов при нагревании LaMgAl₁₁O₁₉ по данным синхронного термического анализа (STA) и дифференциальной сканирующей калориметрии (DSC)

Таблица 5. Параметры тепловых эффектов при нагревании SmMgAl₁₁O₁₉ по данным ДСК

Прибор	Эффект	$T_{\rm on}$, °C	$T_{\text{peak}}, ^{\circ}\text{C}$	$T_{\rm end}$, °C	ΔH , Дж/г
STA 449F1 Jupiter	a+b	159.2	_	391.9	-634.3
DSC 404F1 Pegasus	a+b+c	158.5	—	400.1	-604.19
STA 449F1 Jupiter	d	729.9	795.6	856.1	+44.89
DSC 404F1 Pegasus	d	727.2	782.6	874.3	+44.81
STA 449F1 Jupiter	f	1243.2	1253.9	1265.7	—
DSC 404F1 Pegasus	f	1205.1	1226.3	1238.3	-13.65

лоемкостей обоих соединений не имеют аномалий во всем изученном диапазоне температур, что свидетельствует об отсутствии фазовых превращений. Сопоставление полученных величин с данными, рассчитанными по методу Неймана—Коппа [27] как сумма теплоемкостей простых оксидов (La_2O_3 , Sm_2O_3 , MgO, Al_2O_3), заимствованных из [28–30], с соответствующими коэффициентами

$$C_{p}(\text{LaMgAl}_{11}\text{O}_{19}) = 0.5C_{p}(\text{La}_{2}\text{O}_{3}) + C_{p}(\text{MgO}) + 5.5C_{p}(\text{Al}_{2}\text{O}_{3}),$$

$$C_{p}(\text{SmMgAl}_{11}\text{O}_{19}) = 0.5C_{p}(\text{Sm}_{2}\text{O}_{3}) + C_{p}(\text{MgO}) + 5.5C_{p}(\text{Al}_{2}\text{O}_{3}),$$

показало, что экспериментальные кривые $C_p(T)$ и зависимости по Нейману–Коппу симбатны и сдвинуты при температуре 298.15 К на -2.8 Дж/(моль K)

Рис. 4. Результаты ДСК (Pegasus) и синхронного термического анализа (Jupiter) образца SmMgAl₁₁O₁₉.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 11 2023

Рис. 5. Теплоемкость LaMgAl₁₁O₁₉: точки – экспериментальные данные, линия – описание по методу Неймана–Коппа.

(-0.5%) для LaMgAl₁₁O₁₉ и -6.77 Дж/(моль K) (-1.3%) для SmMgAl₁₁O₁₉. Необходимо отметить, что различие в величинах много меньше ошибки определения теплоемкости по данным производителя Netzsch (3%). Вид полученных температурных зависимостей молярных теплоемкостей LaMgAl₁₁O₁₉ и SmMgAl₁₁O₁₉ представлен на рис. 5 и 6.

Сглаживание полученных величин теплоемкости с помощью уравнения Майера—Келли [31] показало, что разброс экспериментальных точек составляет менее 0.8% во всем диапазоне от 317 до 1817 К (рис. S5). Коэффициенты уравнения Майера—Келли $C_p = A + B \cdot T - C \cdot T^{-2}$ для LaMgAl₁₁O₁₉ и SmMgAl₁₁O₁₉ приведены в табл. 7.

Рис. 6. Теплоемкость SmMgAl₁₁O₁₉: точки – экспериментальные данные, линия – описание по уравнению Майера–Келли.

В отличие от гексаалюмината лантана-магния, на теплоемкость соединения самария должны влиять два разнонаправленных фактора. С одной стороны, решеточная теплоемкость в ряду лантаноидов должна уменьшаться из-за лантаноидного сжатия, а с другой — увеличиваться за счет разницы в массах лантана и самария, кроме того, в теплоемкости большинства соединений лантаноидов имеется дополнительный вклад, связанный с расщеплением 4-электронных уровней под действием электрического поля кристалла (аномалия Шоттки). Полученные нами данные показывают, что во всем изученном температурном диапазоне теплоемкость SmMgAl₁₁O₁₉ превышает теплоемкость LaMgAl₁₁O₁₉. Можно также отметить,

Таблица 6. Температурные интервалы эффектов на кривых нагревания, по данным ДСК, при скорости сканирования 10 град/мин

Соетицение	Удаление воды		Кристаллизация		Потеря массы	
Сосдинение	интервал, °С	ΔH , Дж/г	интервал, °С	ΔH , Дж/г	интервал, °С	ΔH , Дж/г
LaMgAl ₁₁ O ₁₉	103.2-526.8	-372.87	724.0-887.2	+59.84	1185.0-1226.2	-29.53
SmMgAl ₁₁ O ₁₉	158.5-400.1	-398.23	727.2-782.6	+44.81	1205.1-1238.3	-13.65

Таблица 7. Коэффициенты уравнения Майера–Келли $C_p = A + BT - CT^{-2}$ (317–1817 K)

Вещество	А	В	С	R^2
LaMgAl ₁₁ O ₁₉	732.767	0.08958382	20956313.8	0.9992
SmMgAl ₁₁ O ₁₉	743.107	0.08792164	21929029.2	0.9987

что в области самых высоких температур экспериментальные данные по теплоемкости, полученные методом ДСК, отклоняются от модельных, хотя величина отклонения не превышает 3%.

ЗАКЛЮЧЕНИЕ

Гексаалюминаты лантана-магния и самариямагния получены методом обратного осаждения. С применением РФА и ДСК, ДСК/ТГ изучена последовательность протекающих при синтезе процессов и показано, что при температуре 1500°С происходит образование алюминатов и шпинелей, а для полного взаимодействия оксидов с образованием однофазных LaMgAl₁₁O₁₉ и SmMgAl₁₁O₁₉ необходим отжиг при 1600°С. Синтезированные образцы исследованы методами РФА, РЭМ и EDX, впервые выполнены измерения изобарных теплоемкостей LaMgAl₁₁O₁₉ и SmMgAl₁₁O₁₉. Структурные превращения в этих соединениях отсутствуют в изученном интервале температур. Полученные данные могут быть использованы для термодинамического моделирования высокотемпературных процессов с участием изученных веществ.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при поддержке Российского научного фонда (грант № 23-13-00051), https://rscf.ru/project/23-13-00051/, с использованием оборудования ЦКП ФМИ ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Онлайн-версия содержит дополнительные материалы, доступные по адресу: https://doi.org/S0044457X23601062.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Bansal N.P., Zhu D. //* Surf. Coat. Technol. 2008. V. 202. P. 2698.
- Gadow R., Lischka M. // Surf. Coat. Technol. 2002. V. 151–152. P. 392.
- 3. Friedrich C., Gadow R., Schirmer T. // J. Therm. Spray Technol. 2010. V. 10. P. 592.
- 4. Zhang Y., Wang Y., Jarligo M.O. et al. // Opt. Lasers Eng. 2008. V. 46. P. 601.
- Cao X.Q., Zhang Y.F., Zhang J.F. et al. // J. Eur. Ceram. Soc. 2008. V. 28. P. 1979.

 Iyi N., Takekawa S., Kimura S. // J. Solid State Chem. 1989. V. 83. P. 8.

- Liu Z.-G., Ouyang J.-H., Zhou Y. et al. // J. Eur. Ceram. Soc. 2009. V. 29. P. 647.
- Liu Z.-G., Ouyang J.-H., Zhou Y. et al. // J. Alloys Compd. 2009. V. 472. P. 319.
- Liu Z.-G., Ouyang J.-H., Zhou Y. et al. // Phil. Magazine. 2009. V. 89. P. 553.
- Xu Z., He L., Mu R. et al. // J. Alloys Compd. 2009. V. 473. P. 509.
- 11. Xu Z., He L., Zhong X. et al. // J. Alloys Compd. 2009. V. 480. P. 220.
- Lu H., Wang C.-A., Zhang C. et al. // Ceram. Int. 2014. V. 140. P. 16273.
- Lu X., Yuan J., Xu M. et al. // Ceram. Int. 2021. V. 47. P. 28892.
- 14. Wang Y.-H., Ouyang J.-H., Liu Zh.-G. // J. Alloys Compd. 2009. V. 485. P. 734
- 15. Guskov V.N., Tyurin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822.
- Tyurin A.V., Khoroshilov A.V., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 1599.
- 17. *Meija J., Coplen T.B., Berglund M. et al.* // Pure Appl. Chem. 2016. V. 88. P. 265.
- Lefebvre D., Thery J., Vivien D. // J. Am. Ceram. Soc. 1986. V. 69. P. 289.
- 19. Schönwelski W., Haberey F., Leckebuch R. et al. // J. Am. Ceram. Soc. 1986. V. 69. P. 7.
- 20. Арзуманян Г.А., Багдасаров К.С., Цорикишвили Н.Г. и др. // Неорган. материалы. 1987. Т. 23. С. 1051.
- 21. Brandt R., Muller Buschbaum H.K. // Z. Anorg. Allg. Chem. 1984. V. 510. P .163.
- 22. Kahn A., Lejus A.M., Madsac M. et al. // J. Appl. Phys. 1981. V. 52. P. 6864.
- Doležala V., Nádhernýa L., Rubešováa K. et al. // Ceram. Int. 2019. V. 45. P. 11233.
- 24. *H. Lu K., Wang C-A., Zhang C. et al.* // J. Eur. Ceram. Soc. 2015. V. 35. P. 1297.
- 25. Ефремов В.А., Черная Н.Г., Трунов В.К., Писаренко В.Ф. // Кристаллография. 1988. Т. 33. С. 38.
- 26. Peter E.D., Morgan F., Jamie A. // J. Am. Ceram. Soc. 1986. V. 69. P. 157.
- 27. Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7.
- 28. Термические константы веществ. Справ. / Под ред. Глушко В.П. М.: Изд-во АН СССР, ВИНИТИ, 1965–1982. http://www.chem.msu.ru
- 29. Chase M.W. Jr. // J. Phys. Chem. Data. 1998. № 9. P. 1951.
- 30. Konings R.J.M., Beneš O., Kovács A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101.
- 31. *Maier C.G., Kelley K.K.* // J. Am. Chem. Soc. 1932. V. 54. P. 3243.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 11 2023