ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 544.34:546.47.546.712.546.713.546.28+543.422.2+543.57

ФАЗОВЫЕ РАВНОВЕСИЯ И ХИМИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ В СИСТЕМАХ Mn₂O₃-ZnO-SiO₂, Mn₃O₄-ZnO-SiO₂ и MnO-ZnO-SiO₂

© 2023 г. Н. А. Зайцева^{а, b,} *, Р. Ф. Самигуллина^а, И. В. Иванова^а, Т. И. Красненко^а

^аИнститут химии твердого тела УрО РАН, ул. Первомайская, 91, Екатеринбург, 620990 Россия ^bУральский государственный горный университет, ул. Куйбышева, 30, Екатеринбург, 620144 Россия

*e-mail: natalzay@yandex.ru Поступила в редакцию 29.06.2023 г. После доработки 26.07.2023 г. Принята к публикации 27.07.2023 г.

Работа посвящена триангуляции систем Mn_2O_3 –ZnO– SiO_2 , Mn_3O_4 –ZnO– SiO_2 и MnO–ZnO– SiO_2 и установлению фазовых превращений при формировании твердого раствора $Zn_{2-2x}Mn_{2x}SiO_4$. Диаграммы фазовых равновесий построены с учетом температур существования каждого из оксидов марганца, фазового состава двойных систем и контрольных точек, фазовый состав которых позволил выявить положение вторичных треугольников. Фазовый состав продуктов взаимодействия исходных оксидов и последовательность фазовых превращений при синтезе $Zn_{2-2x}Mn_{2x}SiO_4$ контролировали методами рентгенофазового и термического анализа. Установлено, что соотношения фаз в системе MnO_x –ZnO– SiO_2 обусловлены изменением зарядовых состояний ионов марганца с ростом температуры. Показано, что триангуляция системы Mn_2O_3 –ZnO– SiO_2 при 800°C определена конодой $ZnMn_2O_4$ – Zn_2SiO_4 и разбивает систему на элементарные треугольники ZnO– Zn_2SiO_4 – $ZnMn_2O_4$, Zn_2SiO_4 – $ZnMn_2O_4$ – SiO_2 и $ZnMn_2O_4$ – SiO_2 – Mn_2O_3 . Установлено, что при температурах выше 1000°C образуется твердый раствор Zn_2 – $2xMn_2xSiO_4$, ограниченный составом $Zn_{1.6}Mn_{0.4}SiO_4$. Триангуляция тройной системы MnO–ZnO– SiO_2 определена элементарным треугольником $Zn_{1.6}Mn_{0.4}SiO_4$ –ZnO–MnSiO_3.

Ключевые слова: Zn₂SiO₄ : Mn, виллемит, гетеролит, твердый раствор **DOI:** 10.31857/S0044457X23601347, **EDN:** RMQNLO

введение

Интерес к фазовым равновесиям и химическим взаимодействиям оксидов марганца, цинка и кремния обусловлен прежде всего необходимостью совершенствования технологий получения функциональных материалов для современных практических приложений: перспективного материала для электрохимических устройств ZnMn₂O₄ [1-3] и люминофора зеленого свечения Zn₂SiO₄: Mn [4-6]. Люминофор Zn₂SiO₄: Мп представляет собой твердый раствор Zn_{2 – 2x}Mn_{2x}SiO₄ со структурой виллемита [7], где ионы Mn²⁺ замещают часть ионов цинка. Синтез образцов этого твердого раствора выполняют как керамическим способом [4], так и методами "мягкой химии", но и во втором случае процесс синтеза включает в себя стадию высокотемпературного отжига [8, 9]. Однако существует противоречивая информация о том, какие примесные фазы могут быть обнаружены при синтезе образцов Zn_{2-2x}Mn_{2x}SiO₄ после их финальных отжигов: в работах [6, 8] примесной фазой был гетеролит ZnMn₂O₄, в работе [9] – родонит MnSiO₃,

авторы [10] утверждают, что после отжига при 1150°С примесью является тефроит Mn_2SiO_4 .

Подробное исследование процессов фазообразования при керамическом синтезе $Zn_{2-2x}Mn_{2x}SiO_4$ показало [4], что на промежуточных стадиях синтеза образуются фазы ZnMn₂O₄ и MnSiO₃ и исчезают при выходе системы на равновесие, а их наличие в образце свидетельствует о незавершенности процесса синтеза. Эта информация также говорит о том, что в последовательности фазообразования $Zn_{2-2x}Mn_{2x}SiO_4$ участвуют двойные соединения, располагающиеся на сторонах фазовых треугольников, образованных простыми оксидами марганца, цинка и кремния. Следовательно, построение фазовых равновесий в системах из простых оксидов должно базироваться на учете этих двойных соединений и на понимании того, что оксид марганца при различных температурах существует в различных фазовых модификациях. Так, при выходе за границу твердого раствора Zn_{2 – 2x}Mn_{2x}SiO₄ примеси в образцах должны были бы определяться фазовыми равновесиями в системе MnO-ZnO-SiO₂, однако из-за термической неустойчивости оксида MnO [11] в зависимости от температур отжига определяющими также могут быть фазовые равновесия в тройной системе Mn₂O₃-ZnO-SiO₂ или Mn₃O₄-ZnO-SiO₂. Следует отметить, что фазовые равновесия в двойных системах $ZnO-SiO_2$ [12–14], $ZnO-MnO_x$ [15, 16] и SiO₂-MnO_x [17-19], образующих фазовые треугольники ZnO-SiO₂-MnO₂, изучены достаточно хорошо. В этих системах обнаружены соединения Zn₂SiO₄, ZnMn₂O₄, Mn₇SiO₁₂, MnSiO₃ и Mn₂SiO₄, устойчивые в различных температурных интервалах. В системах, образованных тремя оксидами, известен лишь твердый раствор $Zn_{2-2x}Mn_{2x}SiO_4$ на основе виллемита. Эта информация позволяет сформулировать цель настоящей работы – исследование фазовых равновесий и химических взаимодействий исходных оксидов и продуктов их реакций на воздухе в тройных системах Mn_2O_3 -ZnO-SiO₂, Mn_3O_4 -ZnO-SiO₂ и MnO-ZnO-SiO₂. Для построения фазовых диаграмм трехкомпонентных оксидных систем использованы данные о двухкомпонентных системах и результаты фазового анализа термообработанных трехкомпонентных образцов, позволившие выявить границы вторичных треугольников, входящих в состав тройных диаграмм.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных реагентов использовали ZnO (ч. д. а), SiO₂ (ч. д. а), Mn₂O₃ (х. ч.), предварительно отожженные при 650°С в течение 5 ч, и MnO (ч.). Образцы синтезировали из стехиометрической смеси исходных оксидов, которую гомогенизировали перетиранием в агатовой ступке в среде этанола и отжигали ступенчато в интервале температур 800-1250°С. Охлаждение образцов проводили в муфельной печи. Фазовый состав образцов контролировали рентгенографически (Shimadzu XRD-7000S, Cu K_{α} -излучение, 2 $\theta = 10^{\circ}$ -60°, шаг сканирования 0.02°), сопоставляя данные РФА с рентгенометрическими характеристиками исходных оксидов, силикатов цинка и марганца и ZnMn₂O₄ (база порошковых стандартов PDF2, ICDD USA, release 2009). Совмещенный термогравиметрический (ТГ) и дифференциальный термический анализ (ДТА) выполняли в атмосфере воздуха в режиме нагрева (термоанализатор Setsys Evolution (Setaram), скорость сканирования 10 град/мин, стандарт — Al_2O_3). Сканирующую электронную микроскопию (СЭМ) осуществляли на микроскопе JEOL JSM 6390LA (коэффициент увеличения от ×5 до ×300000, разрешающая способность 3.0 нм при 30 кВ). Энергодисперсионный рентгеновский анализ (ЭДА) проводили на анализаторе EX-23010BU.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Термическое поведение исходных оксидов

Первым шагом исследования было уточнение температурных областей существования каждого из оксидов марганца. Для этого был выполнен термогравиметрический и дифференциальный термический анализ оксида MnO в режиме непрерывного нагревания (рис. 1). В интервале температур 120–600°С происходит рост массы образца, причем наиболее интенсивно процесс идет в интервале температур 450–600°С и сопровождается экзотермическим эффектом. Экспериментально определенная прибыль массы составляет 10.9%, что близко к теоретической величине 11.1%, обусловленной протеканием реакции окисления:

$$2MnO + 1/2O_2 \rightarrow Mn_2O_3$$

В интервале температур 700–900°С масса образца оксида марганца остается неизменной. При нагревании >900°С наблюдается резкая потеря массы, обусловленная выходом кислорода в газовую фазу при превращении оксида Mn_2O_3 в оксид Mn_3O_4 по реакции:

$$3Mn_2O_3 \rightarrow 2Mn_3O_4 + 1/2O_2$$

что подтверждается близкими значениями теоретически рассчитанной убыли массы ($\Delta m = 3.6\%$) с экспериментально зафиксированной ($\Delta m = 3.9\%$) и согласуется с данными работ [3, 20]. При повышении температуры до 1250°С масса образца практически не изменятся. Наблюдаемый при 1180°С эндотермический эффект без изменения массы соответствует структурному фазовому переходу $\alpha \rightarrow \beta$ -Mn₃O₄, описанному в работе [21]. При нагревании >1250°С происходит постепенная убыль массы образца до возвращения к исходному значению, что указывает на разложение оксида Mn₃O₄ на исходный оксид MnO и кислород:

$$Mn_3O_4 \rightarrow 3MnO + 1/2O_2$$
.

Температурная зависимость массы оксида цинка приведена на рис 16. При нагреве до температуры 1200°С масса образца неизменна. При более высоких температурах происходит некоторая потеря массы образца, обусловленная испарением оксида цинка [22, 23]. Оксид кремния, согласно диаграмме Феннера, в интервале температур 500–1300°С стабилен [24].

Проведенный анализ термического поведения исходных оксидов позволил выделить температурные интервалы, в которых рассмотрены их фазовые равновесия: $800-900^{\circ}$ С для тройной системы Mn_2O_3 -ZnO-SiO₂; 950-1200°С для системы Mn_3O_4 -ZnO-SiO₂, а при температурах от 1250°С целесообразно рассматривать тройную систему MnO-ZnO-SiO₂.

Рис. 1. Кривые нагревания ТГ и ДТА MnO (а) и ZnO (б).

 $ZnMn_{2}O_{4}[3].$

Химические взаимодействия и фазовые равновесия в системе Mn_2O_3 -ZnO-SiO₂

Тройная система Mn₂O₃-ZnO-SiO₂ включает в себя индивидуальные соединения виллемит Zn₂SiO₄ [12–14] и гетеролит ZnMn₂O₄ [15, 16]. Виллемит Zn₂SiO₄ образуется при термоактивации смеси ZnO и SiO₂ в диффузионном режиме [13]. Манганит ZnMn₂O₄ со структурой шпинели принадлежит бинарной системе ZnO-Mn₂O₃. Эволюция фазового состава эквимолярной смеси ZnO и Mn₂O₃ при твердофазном синтезе ZnMn₂O₄ на воздухе происходит в несколько этапов. На первом этапе образуется твердый раствор $Zn_{1-x}Mn_x^{2+}Mn_2^{3+}O_4$ с градиентом x по толщине продукта реакции, что обусловлено большей химической активностью Mn₂O₃ по сравнению с ZnO. Этот процесс идет по "принципу домино" с постоянным ростом х до полного исчерпания Mn₂O₃, если температуры отжига <900°С. Параллельно с этим процессом в области температур 800-850°С на границе $Zn_{1-x}Mn_x^{2+}Mn_2^{3+}O_4$ (при x = 0) с ZnO образуется неустойчивое соединение ZnMnO₃. При нагревании до более высоких температур не успевший вступить в реакцию Mn_2O_3 переходит в Mn_3O_4 , который быстро взаимодействует с ZnO с образованием ZnMn₂O₄. Завершающей стадией процесса синтеза является взаимодействие образовавшегося в начале процесса твердого раствора $Zn_{1-x}Mn_x^{2+}Mn_2^{3+}O_4$ с оставшимся ZnO до полно-

фазы установлено методом СЭМ при съемке в отраженных электронах [25]. На снимках видно негомогенное распределение рентгеновского контраста, характерное для неоднофазных образцов (рис. 4). Результаты энергодисперсионного анализа подтверждают исходную мольную пропорцию марганца, цинка и кремния Mn : Zn : Si = 4 : 2 : 1 и показывают наличие двух фаз разного элементного состава (табл. 1).

го превращения в стехиометричный гетеролит

ме Mn₂O₃-ZnO-SiO₂ представлены на рис. 2а.

Для определения истинного хода конод был выпол-

нен рентгенофазовый анализ образца, состав кото-

рого соответствует точке пересечения альтернатив-

ных равновесий Mn_2O_3 - Zn_2SiO_4 и SiO_2 - $ZnMn_2O_4$.

синтезированного виллемита Zn₂SiO₄ в мольном

соотношении 2 : 1 выдержали при температуре

800°С в течение 10 ч. На рис. 3 представлены ди-

фрактограммы смеси Mn_2O_3 и Zn_2SiO_4 до и после ее

термообработки. На дифрактограмме отожженного образца отсутствуют дифракционные максиму-

мы, соответствующие фазам Mn₂O₃ и Zn₂SiO₄.

Все зарегистрированные максимумы относятся к

структуре гетеролита ZnMn₂O₄, что свидетель-

 $2Mn_2O_3 + Zn_2SiO_4 \rightarrow 2ZnMn_2O_4 + SiO_2$

с образованием гетеролита ZnMn₂O₄ и рентге-

ноаморфного оксида кремния. Наличие второй

ствует о протекании твердофазной реакции:

Смесь оксида марганца Mn₂O₃ и предварительно

Возможные варианты конод в тройной систе-

ЗАЙЦЕВА и др.

Рис. 2. Фазовые равновесия в системе Mn_2O_3 -ZnO-SiO₂ при 800°С на воздухе: предполагаемые (а) и установленные (б).

Отжиг искусственной смеси $ZnMn_2O_4$ и SiO₂ в мольном соотношении 2 : 1 при 800°С в течение 10 ч подтвердил наличие равновесия $ZnMn_2O_4$ —SiO₂, так как рентгенограмма образца после отжига полностью совпала с рентгенограммой на рис. 36. Таким образом, тройная система Mn_2O_3 — $ZnO-SiO_2$ разбивается конодами $ZnMn_2O_4$ —SiO₂ и Zn_2SiO_4 — $ZnMn_2O_4$ на три элементарных треугольника: $ZnO-Zn_2SiO_4$ — $ZnMn_2O_4$, Zn_2SiO_4 — $ZnMn_2O_4$ —SiO₂ и Zn_2SiO_4 — $ZnMn_2O_4$ —SiO₂ и Zn_2SiO_4 — $ZnMn_2O_4$ —SiO₂ и Zn_2O_4 —SiO₂ и $ZnMn_2O_4$ —SiO₂

Рис. 3. Дифрактограммы смеси $2Mn_2O_3 + Zn_2SiO_4$ до и после термообработки.

Химические взаимодействия и соотношение фаз в системе Mn₃O₄-ZnO-SiO₂

Установленное при температуре 800° С равновесие фаз в тройной системе Mn_2O_3 –ZnO– SiO_2 не сохраняется при более высокой температуре, так как при 900° С оксид Mn_2O_3 переходит в оксид Mn_3O_4 , и при температурах выше 900° С необходимо рассматривать тройную систему Mn_3O_4 –ZnO– SiO_2 .

Эта система включает браунит Mn_7SiO_{12} [19], виллемит Zn_2SiO_4 и гетеролит $ZnMn_2O_4$, образующий непрерывный твердый раствор с Mn_3O_4 со структурой шпинели [16]. Авторами [26] показано, что браунит стабилен на воздухе в температурном интервале 1000—1100°С и при дальнейшем нагревании разлагается на $MnSiO_3$ и Mn_3O_4 с вы-

Рис. 4. СЭМ-изображения образца, полученного термообработкой при 800° С смеси $2Mn_2O_3 + Zn_2SiO_4$.

Точка	Элемент, мас. %			
	0	Si	Mn	Zn
001	31.8	0.9	42.6	24.7
002	33.9	5.3	38.4	22.4
003	31.5	0.9	41.1	26.5
004	33.9	5.7	37.5	22.9
005	42.7	23.4	23.1	10.7
006	49.1	38.2	7.4	5.3
007	47.4	34.5	11.0	7.1

Таблица 1. Элементный состав образца 2Mn₂O₃ + Zn₂SiO₄ в различных точках после его отжига при 800°C по результатам ЭДА

делением кислорода. Силикат Zn₂SiO₄ устойчив до температуры плавления 1512°С [14]. Гетеролит ZnMn₂O₄ существует как индивидуальное вещество до температуры 1300°С, при которой разлагается на ZnO и твердый раствор $Zn_{1-x}Mn_x^{2+}Mn_2^{3+}O_4$ [3]. Совместное нагревание $ZnMn_2O_4$ с оксидом кремния приводит к их химическому взаимодействию уже при 1000°С, что установлено по результатам ТГА и ДТА эквимолярной смеси ZnMn₂O₄ и SiO₂ (рис. 5). При ее нагревании $>1000^{\circ}$ C наблюдается убыль массы, что связано с выходом кислорода в газовую фазу при восстановлении части ионов Mn³⁺ до Mn²⁺. При 1180°С падение массы интенсифицируется и сопровождается эндотермическим эффектом, который соответствует температуре фазового перехода в родоните MnSiO₃ [27]. Для проверки факта образования родонита был проведен модельный эксперимент: эквимолярную смесь ZnMn₂O₄ и SiO₂ отжигали при температуре 1200 С в течение 10 ч. Рентгенофазовый анализ этого образца выявил наличие двух фаз: виллемита и родонита (рис. 6). Следовательно, ускорение химического взаимодей-

Рис. 5. Фрагменты кривых нагревания ТГ и ДТА смеси $ZnMn_2O_4 + SiO_2$ (*1*, *2*) и индивидуального $ZnMn_2O_4$ (*3*, *4*).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 12 2023

ствия ZnMn₂O₄ и SiO₂ обусловлено фазовым переходом в образующемся MnSiO₃ (эффект Хедвалла). Методом люминесцентного анализа [4] показано, что образующаяся в этой смеси при температурах >900°С фаза со структурой виллемита является не индивидуальным соединением Zn₂SiO₄, а твердым раствором Zn_{2 – 2x}Mn_{2x}SiO₄. Таким образом, при температурах >1000°С происходит взаимодействие между ZnMn₂O₄ и SiO₂ с образованием MnSiO₃ и Zn_{2 – 2x}Mn_{2x}SiO₄, принадлежащих тройной системе MnO–ZnO–SiO₂, что делает невозможным триангуляцию фазовых равновесий в системе Mn₃O₄–ZnO–SiO₂.

Фазовые равновесия в системе $MnO-ZnO-SiO_2$

В рассматриваемой тройной системе кроме простых исходных оксидов присутствуют силикаты марганца MnSiO₃, Mn₂SiO₄ [17, 27] и твердый раствор $Zn_{2-2x}Mn_{2x}SiO_4$ ($x \le 0.2$) [28]. Возможные варианты хода соединяющих их конод представлены на рис. 7а. Для экспериментального определения элементарных треугольников был исследован фазовый состав образцов, принадлежащих

Рис. 6. Дифрактограмма смеси $ZnMn_2O_4 + SiO_2$ после термической обработки при 1200°С.

ЗАЙЦЕВА и др.

Рис. 7. Фазовые равновесия в системе MnO-ZnO-SiO₂ при 1250°С на воздухе: предполагаемые (а) и установленные (б).

квазибинарной системе $Mn_2SiO_4 - Zn_2SiO_4$ (метод изоформульного сечения [29, 30]). Ключевым вопросом триангуляции системы $MnO-ZnO-SiO_2$ является определение фазового состава отожженной при 1250°С смеси оксидов ZnO, MnO и SiO₂, взятых в мольном соотношении 1.2 : 0.8 : 1.0 (точка 1). Состав отожженного образца, согласно данным РФА (рис. 8), представлен фазами со структурой виллемита, родонита и вюрцита. На основании полученных результатов установлен элементарный треугольник Zn₁₆Mn_{0.4}SiO₄-MnSiO₃-ZnO.

Следующим шагом была проверка реализации одного из двух альтернативных предполагаемых равновесий: Zn_{1.6}Mn_{0.4}SiO₄-SiO₂ или Zn₂SiO₄-MnSiO₃. Для этого смесь Zn_{1.6}Mn_{0.4}SiO₄ и SiO₂ в

Рис. 8. Дифрактограмма смеси оксидов ZnO, MnO и SiO₂, взятых в мольном соотношении 1.2:0.8:1.0 после ее термообработки при 1250° C.

мольном соотношении 1 : 0.2, соответствующую точке пересечения этих конод (точка 2), отжигали при температуре 1250°С в течение 10 ч для проверки протекания реакции:

SiO₂

Zn_{1.6}Mn_{0.4}SiO₄

Zn₂SiO₄

ZnO

$$Zn_{1.6}Mn_{0.4}SiO_4 + 0.2SiO_2 \rightarrow 0.8Zn_2SiO_4 + 0.4MnSiO_3.$$

Оказалось, что дифракционная картина образца остается неизменной, максимумы, соответствующие фазе MnSiO₃, после отжига не фиксируются. Следовательно, равновесие между Zn₂SiO₄ и MnSiO₃ не реализуется. Полученные результаты позволили выделить еще два элементарных треугольника: SiO₂-Zn₂SiO₄-Zn₁₆Mn₀₄SiO₄ и SiO₂-MnSiO₃-Zn_{1.6}Mn_{0.4}SiO₄ (рис. 76). Логично предположить, что должна существовать конода, соединяющая Mn₂SiO₄ и ZnO. Для проверки этого предположения были исследованы составы. принадлежащие квазбинарному разрезу $Mn_2SiO_4 - Zn_2SiO_4$ (точки 3, 4, 5 на рис. 7а). Однако уже при нагревании до 1200°С происходит плавление образцов, что, вероятно, обусловлено плавлением MnSiO₃-Mn₂SiO₄, ZnO-MnSiO₃, ZnO-Mn₂SiO₄ или тройных эвтектик [18]. На рис. 76 приведена итоговая триангуляция системы MnO-ZnO-SiO₂, выполненная на основе полученных экспериментальных данных.

ЗАКЛЮЧЕНИЕ

Рассмотрены химические взаимодействия и фазовые равновесия в трех тройных системах, в каждой из которых неизменными участниками являются оксиды ZnO и SiO₂, а третьим — переменным компонентом — один из оксидов марганца (MnO, Mn_2O_3 , Mn_3O_4). Химические взаимодействия и ФАЗОВЫЕ РАВНОВЕСИЯ И ХИМИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ

равновесия фаз в системах MnO_x-ZnO-SiO₂ обусловлены изменением степеней окисления марганца при изменении температуры.

Тройная система Mn₂O₃-ZnO-SiO₂ при 800°C на воздухе разбивается на три элементарных треугольника: ZnO-Zn₂SiO₄-ZnMn₂O₄, Zn₂SiO₄- $ZnMn_2O_4$ —SiO₂ и $ZnMn_2O_4$ —SiO₂—Mn₂O₃.

Диаграмма фазовых равновесий в тройной системе MnO-ZnO-SiO₂ ограничена областью ZnO-SiO₂-MnSiO₃, которая разбивается на четыре элементарных треугольника: ZnO-Zn₂SiO₄- $Zn_2SiO_4 - Zn_{16}Mn_{04}SiO_4 - SiO_2$, $Zn_{16}Mn_{04}SiO_4$, $Zn_{16}Mn_{04}SiO_4$ -SiO₂-MnSiO₃, $Zn_{16}Mn_{04}SiO_4$ -MnSiO₃–ZnO.

Найденные равновесия служат основой для контроля полноты протекания реакций при синтезе кристаллофосфора $Zn_{2-2x}Mn_{2x}SiO_4$.

БЛАГОДАРНОСТЬ

Авторы благодарят к. х. н. О.И. Гырдасову за проведение сканирующей электронной микроскопии и энергодисперсионного рентгеновского анализа.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в соответствии с государственным заданием Института химии твердого тела УрО РАН (грант № АААА-А19-119031890026-6).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wei Ch., Yu J., Qiu G. et al. // J. Alloys Compd. 2023. V. 938. P. 168554. https://doi.org/10.1016/j.jallcom.2022.168554
- 2. Chen J., Zuo H., Wang Ch.-Q. et al. // Electrochim. Acta. 2022. V. 426. P. 140780. https://doi.org/10.1016/j.electacta.2022.140780
- 3. Ivanova I.V., Zaitseva N.A., Samigullina R.F. et al. // Solid State Sci. 2023. V. 136. P. 107110. https://doi.org/10.1016/j.solidstatesciences.2023.107110
- Samigullina R.F., Ivanova I.V., Zaitseva N.A. et al. // Opt. Mater. 2022. V. 132. P. 112788. https://doi.org/10.1016/j.optmat.2022.112788
- 5. Krasnenko T.I., Samigullina R.F., Zaitseva N.A. et al. // J. Alloys Compd. 2022. V. 907. P. 164433. https://doi.org/10.1016/j.jallcom.2022.164433
- 6. Krasnenko T.I., Enyashin A.N., Zaitseva N.A. et al. // J. Alloys Compd. 2020. V. 820. P. 153129. https://doi.org/10.1016/j.jallcom.2019.153129
- 7. Симонов М.А., Сандомирский П.А., Егоров-Тис-

- 8. Петровых К.А., Кортов В.Г., Гапоненко Н.В. и др. // Физика тв. тела. 2016. Т. 58. № 10. С. 2062.
- 9. Abo-Naf S.M., Marzouk M.A. // Nano-Structures & Nano-Objects. 2021. V. 26. P. 100685. https://doi.org/10.1016/j.nanoso.2021.100685
- 10. Park K.W., Lim H.S., Park S.W. et al. // Chem. Phys. Lett. 2015. V. 636. P. 141. https://doi.org/10.1016/j.cplett.2015.07.032
- 11. Huebner J.S., Sato M. // Am. Mineral. 1970. V. 55. P. 934.
- 12. Bunting E.N. // J. Am. Ceram. Soc. 1930. V. 13. P. 5. https://doi.org/10.1111/j.1151-2916.1930.tb16797.x
- 13. Isomaki I., Zhang R., Xia L. et al. // Trans. Nonferrous Metals Soc. China. 2018. V. 28. P. 1869. https://doi.org/10.1016/S1003-6326(18)64832-0
- 14. Samigullina R.F., Krasnenko T.I. // Mater. Res. Bull. 2020. V. 129. P. 110890. https://doi.org/10.1016/j.materresbull.2020.110890
- 15. Driessens F.C.M.. Rieck G.D. // J. Inorg. Nucl. Chem. 1966. V. 28. P. 1593.
- https://doi.org/10.1016/0022-1902(66)80056-8 16. Nadherný L., Jankovsky O., Sofer Z. et al. // J. Eur. Ce-
- ram. Soc. 2015. V. 35. P. 555. https://doi.org/10.1016/j.jeurceramsoc.2014.09.008
- 17. Glasser F.P. // Am. J. Sci. 1958. V. 256. P. 398. https://doi.org/10.2475/ajs.256.6.398
- 18. *Morris A.E., Muan A.* // JOM. 1966. V. 18. № 8. P. 957. https://doi.org/10.1007/bf03378486
- 19. Abs-Wurmbach I. // Contrib. Mineral. Petrol. 1980. V. 71. P. 393.
- 20. Cao Q.-S., Lu W.-Zh., Zou Zh.-Y. et al. // J. Alloys Compd. 2016. V. 661. P. 196. https://doi.org/10.1016/j.jallcom.2015.11.198
- Троянчук И.О., Акимов А.И., Каспер Н.В. и др. // Физика тв. тела. 1994. Т. 36. № 11. С. 3263. https://journals.ioffe.ru/articles/16709
- 22. Казенас Е.К., Звиададзе Г.Н., Больших М.А. // Изв. АН СССР. Металлы. 1984. № 2. С. 67.
- 23. Грибченкова Н.А., Смирнова А.С., Сморчкова К.Г. и др. // Журн. неорган. химии. 2021. Т. 66. № 12. C. 1754. https://doi.org/10.31857/S0044457X21120047
- 24. Fenner C.N. // J. Wash. Acad. Sci. 1912. V. 2. № 20. P. 471.
- 25. Гырдасова О.И., Степанов А.Е., Наумов С.В. и др. // Физико-химические аспекты изучения кластеров. наноструктур и наноматериалов. 2022. № 14. С. 583. https://doi.org/10.26456/pcascnn/2022.14.583
- 26. Huang J.-H., Rosen E. // Phys. Chem. Miner. 1994. V. 21. P. 228.
- 27. Liebau F., Sprung M., Thilo E. // Z. Anorg. Allg. Chem. 1958. V. 297. P. 213. https://doi.org/10.1002/zaac.19582970310
- 28. Онуфриева Т.А., Красненко Т.И., Зайцева Н.А. и др. // Физика тв. тела. 2019. Т. 61. № 5. С. 908. Onufrieva T.A., Krasnenko T.I., Zaitseva N.A. et al. // J. Phys. Solid State. 2019. V. 61. № 5. P. 806. https://doi.org/10.1134/S1063783419050238
- 29. Слободин Б.В., Красненко Т.И., Добрынин Б.Е. и др. // Журн. неорган. химии. 2001. Т. 46. №11. С.1922.
- 30. Ахмедов Э.Дж., Алиев З.С., Бабанлы Д.М. и др. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 498. https://doi.org/10.31857/S0044457X21040024