= ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 544.31+536.422+661.718.4+539.232

ТЕРМОДИНАМИЧЕСКАЯ ХАРАКТЕРИЗАЦИЯ ЛЕТУЧИХ АЛКИЛАМИНБОРАНОВ КАК ПРЕКУРСОРОВ ФОРМИРОВАНИЯ ПЛЕНОК ВС_кN_v

© 2023 г. С. В. Сысоев^{а, *}, В. С. Суляева^а, М. Л. Косинова^а

^а Институт неорганической химии им. А.В. Николаева СО РАН, пр-т Академика Лаврентьева, 3, Новосибирск, 630090 Россия *e-mail: tv@niic.nsc.ru Поступила в редакцию 26.08.2022 г. После доработки 08.09.2022 г. Принята к публикации 12.09.2022 г.

В результате тензиметрических исследований установлены температурные зависимости давления насыщенного пара и рассчитаны термодинамические характеристики процессов парообразования алкиламинборанов $R_3N \cdot BH_3$ (R = Me, Et). Данные соединения обладают достаточной летучестью и термической устойчивостью для применения в качестве исходных веществ в процессах газофазного осаждения для получения пленок на основе фаз системы B-C-N. Триэтиламинборан использовали для синтеза пленок карбонитрида бора при температурах 773 и 873 К. Свойства полученных слоев изучены методами эллипсометрии, атомно-силовой и сканирующей электронной микроскопии, ИК-, КР- и энергодисперсионной спектроскопии. Определены условия получения сплошных однородных пленок, состоящих из наночастиц размером 20–60 нм, агрегированных в более крупные образования псевдогексагональной формы. Поверхность пленок имеет среднеарифметическую и среднеквадратичную шероховатость, равную 0.8 и 1.0 нм соответственно.

Ключевые слова: давление насыщенного пара, триметиламинборан, триэтиламинборан, химическое осаждение из газовой фазы, пленки карбонитрида бора **DOI:** 10.31857/S0044457X22601535, **EDN:** LPNYDA

ВВЕДЕНИЕ

Соединения системы В-С-N занимают важное место в современном материаловедении [1, 2]. Благодаря уникальным функциональным характеристикам бинарные соединения этой системы (карбид бора B₄C, гексагональный *h*-BN и кубический *с*-BN нитриды бора) давно изучаются и уже нашли применение в различных областях науки и техники. В последние десятилетия внимание исследователей привлекает тройное соединение $BC_x N_v$ (карбонитрид бора) [1]. Варьирование химического и фазового состава BC_xN_y приводит к изменению физико-химических (химическая инертность, термическая стабильность и др.), функциональных (механических, электрических, оптических и др.) и эксплуатационных характеристик этого материала.

Для получения тонких пленок и покрытий BC_xN_y активно используется метод химического осаждения из газовой фазы (**CVD** – chemical vapor deposition). Для синтеза применяют сложные газовые смеси: $BCl_3 + C_2H_2 + NH_3 + H_2$, $BCl_3 + CH_4 + N_2 + H_2$, $BF_3 + CH_4 + N_2 + H_2$, $BF_3 + C_2H_4 + N_2 + H_2$, $BBr_3 + C_2H_4$

 $+ NH_3$, $B_2H_6 + CH_4 + N_2 + H_2$ [3–7]. Существенным недостатком этих процессов является использование токсичных и пирофорных веществ, опасность которых возрастает в условиях высоких рабочих температур (1073-2273 К). Альтернативным методом формирования пленок BC_xN_v стало использование вместо галогенидов бора и диборана летучих боразотных соединений, что явилось значительным вкладом в упрощение технологии их получения [8-12]. Следует отметить, что парциальное давление этих веществ в исходной газовой смеси в процессах CVD можно регулировать, изменяя температуру испарителя. Одними из таких соединений являются алкиламинбораны $R_3N \cdot BH_3$ (R = Me, Et), содержащие все необходимые для синтеза пленки BC_xN_y атомы: бор, азот и углерод. Эти соединения негорючи и достаточно устойчивы к воздействию атмосферы, что значительно снижает опасность воспламенения по сравнению с гидридами бора. Следует также отметить, что продукты их разложения химически менее активны, чем в случае BHal₃. При этом, используя различные дополнительные газы (гелий, азот, аммиак или водород),

можно получить слои различного химического и фазового состава. При нормальных условиях $Me_3N \cdot BH_3$ является твердым веществом (T_{III} = = 366.5 K), $Et_3N \cdot BH_3 - жидкостью (T_{пл} = 271 K)$ [13]. Соединения, используемые как прекурсоры в процессах CVD, должны иметь высокую степень химической чистоты, обладать достаточной летучестью, чтобы обеспечить приемлемую скорость роста пленки при умеренных температурах, быть термически устойчивыми к разложению при испарении, иметь значительную разницу между температурами испарения и разложения, быть стабильными при хранении и (желательно) иметь низкую степень опасности [14]. Учитывая, что процессы CVD являются многопараметрическими, при их разработке исследуют влияние условий осаждения, таких как геометрия реактора, тип и состав прекурсора, температура синтеза, давление и соотношение компонентов исходной газовой смеси (прекурсор и дополнительные газы), способы активации газовой фазы, мощность плазмы в случае плазмостимулированных процессов, на свойства пленок. Знание температурной зависимости пара исходного вещества является важной предпосылкой успешной разработки и оптимизации процессов CVD [15].

Настоящая работа посвящена изучению температурной зависимости давления насыщенного пара над кристаллическим триметиламинбораном $Me_3N \cdot BH_3$ и жидким триэтиламинбораном $Et_3N \cdot BH_3$ (ТЭАБ) с использованием метода потока и статического метода. Показана возможность синтеза однородных пленок BC_xN_y при разложении триэтиламинборана в процессе химического осаждения из газовой фазы при пониженном давлении.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали триметиламинборан и триэтиламинборан фирмы Sigma-Aldrich (Германия) без дополнительной очистки. По данным элементного CHN-анализа (анализатор Euro EA 3000, погрешность 0.5%), состав вещества до и после экспериментов по измерению давления пара статическим методом соответствует заявленной брутто-формуле. Получены ИК-спектры исходного вещества и продукта его конденсации при определении давления пара методом потока, которые показали их идентичность.

Тензиметрическое изучение процессов парообразования. Зависимость давления насыщенного пара от температуры над кристаллическим $Me_3N \cdot BH_3$ и жидким $Et_3N \cdot BH_3$ определена методом потока (переноса) с использованием осушенного инертного газа-носителя гелия (скорость потока $F_{He} = 0.5-2.0$ л/ч; ошибка в измерении расхода газа-носителя ±2%) [16, 17]. Экспериментально было показано, что определяемое давление пара не зависит от скорости потока гелия в этом диапазоне, т.е. процессы протекают в квазиравновесных условиях. Метод потока позволяет определить низкие значения давления пара (до 7.5 × 10⁻⁴ Торр) на фоне частичного разложения вещества, однако, являясь косвенным, требует знания состава газовой фазы. Давление насыщенного пара $p_{\rm нас}$ рассчитывали по формуле:

$$p_{\rm Hac} = \frac{n_{\rm l}}{N + n_{\rm l}} p_{\rm obm},\tag{1}$$

где $p_{\text{общ}}$ – общее давление в системе, $n_1 = \Delta m/M_{\text{газ}}$ – количество молей вещества, перешедшего в газовую фазу или сконденсированного в холодной зоне, Δm – изменение массы вещества в источнике или приемнике, $M_{\text{газ}}$ – средняя молярная масса газовой фазы, N – число молей газа-носителя гелия. Массу вещества, перешедшего в газовую фазу в источнике и сконденсированного в приемнике при понижении температуры до комнатной, определяли взвешиванием с точностью ±0.0005 г. Общая относительная погрешность метода не превышала ±10% при точности поддержания и измерения температуры ±0.5 К.

Прямое измерение давления насыщенного пара Et₃N · BH₃ в интервале температур 312-361 К проведено статическим методом с применением стеклянного мембранного нуль-манометра [16]. Аналогичная методика была использована, например в [18], для определения давления пара кремнийорганических соединений. Ошибка измерения давления этим методом не превышала ±1 Торр при точности поддержания и измерения температуры ±0.5 К. Для соединения проведено три серии экспериментов: начиная от комнатной температуры в режимах нагрева и охлаждения. При частичном разложении вещества в процессе испарения вводили специальную поправку на "балластное" давление. Использование двух разных методов позволяет сделать вывод о составе равновесной газовой фазы и механизме процесса парообразования.

Синтез и исследование пленок BC_xN_y . Синтез слоев осуществляли методом химического осаждения из газовой фазы при пониженном давлении (LPCVD) и температурах 773 и 873 К. Экспериментальная установка описана в работе [19]. Полупроводниковые пластины Si(100) *n*-типа (КЭФ-4.5) размером 10 × 10 × 0.47 мм³ после предварительной обработки (обезжиривание, травление, сушка) использовали в качестве подложек. Триэтиламинборан (содержание основного вещества 97%) использовали в качестве прекурсора. Исходное вещество термостатировали при 291 К, при этом парциальное давление паров ТЭАБ в реакторе составляло 3 × 10⁻² Торр. Эксперименты по осаждению проводили из смеси ТЭАБ + N_2 , парциальное давление азота при этом было равно 4 × 10⁻³ Торр. Остаточное давление в реакторе составляло 3 × 10⁻³ Торр.

Топологию поверхности пленок изучали методом атомно-силовой микроскопии (АСМ) (сканирующий зондовый микроскоп NanoScope, Bruker, ФРГ). Электронно-микроскопические исследования проводили на микроскопе Jeol JSM 6700F (Jeol, Япония), оснащенном детектором для энергодисперсионного анализа (EDX) EX-23000BU (Jeol, Япония). Определение толщины полученных образцов осуществляли исследованием поперечных сечений структур пленка/подложка. ИК-спектры пленок регистрировали в диапазоне от 375 до 4000 см⁻¹ с использованием спектрофотометра Scimitar FTS 2000 (Digilab, США). Спектры комбинационного рассеяния света снимали на КРспектрометре LabRAM HR Evolution (Horiba, Япония).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты тензиметрических экспериментов. Для определения возможности использования соединения в качестве прекурсора в процессах CVD и выбора оптимальных условий формирования пленок с необходимыми характеристиками требуются данные по давлению насыщенного пара, термической устойчивости и составу паровой фазы. Температурные зависимости давления насыщенного пара при сублимации триметиламинборана $Me_3N \cdot BH_3$, полученные из данных метода потока и при испарении триэтиламинборана $Et_3N \cdot BH_3$ (данные статического метода и метода потока), приведены на рис. 1.

Совпадение результатов для Me₃N · BH₃, pacсчитанных из данных по количеству сублимированного вещества и количеству осажденного в холодной зоне, указывает на то, что исследуемый комплекс обладает хорошей термической стабильностью в исследованном диапазоне температур. Расчет давления пара, который, согласно уравнению (1), включает в себя значение средней молярной массы газовой фазы, проводили в предположении мономолекулярного состава газовой фазы. На рис. 1 приведены также литературные данные по давлению пара для Me₃N · BH₃ [20], полученные другим косвенным методом – эффузионным методом Кнудсена. В этом случае также предполагалось существование в газе комплекса 1: 1, а расчет величины давления пара включал значение квадратного корня из средней молярной массы газовой фазы. Хорошее согласие результатов двух разных методов позволяет считать предположение о мономолекулярном составе паровой фазы вполне обоснованным.

Измерено давление насыщенного пара жидкого Et₃N · BH₃ статическим методом с мембранным

Рис. 1. Температурные зависимости давления насыщенного пара соединений $Me_3N \cdot BH_3$, метод потока (*I*); $Me_3N \cdot BH_3$, литературные данные [20], метод Кнудсена (*2*); $Et_3N \cdot BH_3$, статический метод (*3*); $Et_3N \cdot BH_3$, метод потока, $M_{cp, ra3} = 57.5$ г/моль (*4*); $Et_3N \cdot BH_3$, метод потока, $M_{cp, ra3} = 115$ г/моль (*5*). Сплошные символы – из данных по количеству перешедшего в пар вещества, светлые символы – из данных по количества.

нуль-манометром (рис. 1), которое показало, что испарение вещества протекает на фоне частичного разложения. Несмотря на введение поправки на "балластное" давление, погрешность несколько превышает возможности данного метода вследствие накопления в замкнутом объеме продуктов разложения. Для уточнения механизма испарения были проведены эксперименты по переносу вещества в потоке гелия с последующей конденсацией при комнатной температуре. Результаты показали, что наблюдается разложение соединения, но в пределах погрешности метода потока. Сравнение данных по прямому измерению давления пара статическим методом (рис. 1, линия 3) и методом потока в расчете на мономолекулярный состав пара по соотношению (1) при M_{ras} = = 115 г/моль (линия 5) показало, что результаты первого метода в два раза превосходят результаты второго метода. Из этого следует, что процесс испарения Et₃N · BH₃ в основном протекает с образованием двух газовых молей ($M_{ras} = 57.5$ г/моль). Результаты расчета давления пара методом потока в этом случае (линия 4) согласуются с данными статического метода (3). С учетом идентичности исходного вещества и конденсата в экспериментах, проведенных с помощью метода потока, при испарении устанавливается обратимое равновесие с образованием промежуточного газообразного продукта ВН₃:

$$Et_{3}N \cdot BH_{3(\mathsf{жидк})} = Et_{3}N_{(\mathsf{ras})} + BH_{3(\mathsf{ras})}.$$
 (2)

Вещество	Процесс	Метод	Δ <i>Τ</i> , Κ	n	$\ln(p/p^\circ) = \mathbf{A} - \mathbf{B}/T$		$\Delta H(T^*),$	$\Delta S^{\circ}(T^*),$
					А	В	кДж/моль	Дж/(моль К)
$Me_3N \cdot BH_3$	Сублимация	Потока	314-357	15	17.33	7209	60 ± 2	144 ± 6
$Me_3N \cdot BH_3$ [20]	*	Кнудсена	273-363		16.15	6820	57 ± 1	134 ± 3
$Et_3N \cdot BH_3$	Испарение	Статический	312-361	16	14.76	6665	55 ± 4	123 ± 11
$Et_3N \cdot BH_3$	»	Потока	296-361	13	12.03	5753	48 ± 2	100 ± 4
$M_{\rm cp} = 57.5$ г/моль								
$Et_3N \cdot BH_3$	»	Потока +	296-361	29	13.32	6171	51 ± 3	111 ± 6
$M_{ m cp} = 57.5$ г/моль		+ статический						

Таблица 1. Температурные зависимости давления насыщенного пара и термодинамические характеристики процессов парообразования алкиламинборанов

Примечание. n – число экспериментальных точек, T^* – средняя температура исследованного интервала.

Выполнена статистическая обработка экспериментальных данных путем минимизации суммы квадратов стандартизованных уклонений в давлениях [21] в виде линейной зависимости $\ln(p/p^\circ) = -\Delta_{\rm ucn}H(T)/RT + \Delta_{\rm ucn}S^\circ(T)/R$. Рассчитаны термодинамические характеристики процессов парообразования алкиламинборанов для средней температуры исследованного интервала. Результаты приведены в табл. 1.

Синтез пленок BC_xN_y . Проведено осаждение пленок BC_xN_y при разложении паров ТЭАБ методом LPCVD. Получены слои толщиной 670 и 710 нм, скорость осаждения которых составила 6 и 8 нм/мин для температур синтеза 773 и 873 К соответственно.

Электронно-микроскопические изображения поверхности и поперечного сечения структур $BC_x N_v/Si(100)$, синтезированных при $T_{ocax} = 773$ и 873 К, представлены на рис. 2а, 2б, 2д, 2е. Поверхность полученных образцов сплошная, однородная, не содержит видимых пор и трещин и образована зернами округлой формы размером до 60 нм. Изменение температуры процесса осаждения не оказывает существенного влияния на морфологию пленок и качество их поверхности (рис. 2а, 2д). Из изображений поперечного сечения образцов также видно, что пленки однородны, не содержат каких-либо дефектов (неровностей, трещин, пор и т.п.) и имеют хорошую границу раздела с подложкой (рис. 26, 2е). Согласно данным АСМ (рис. 2в, 2г, 2ж, 2з), обнаружена сложная зернистая структура с фрагментацией более крупных зерен (до

Таблица 2. Элементный состав пленок ВС_{*x*}N_{*v*}

Т К	В	С	Ν	0				
- ocax, 12	ат. %							
773	53.8	35.5	10.0	0.7				
873	50.9	40.0	8.7	0.4				

500 нм) на субзерна (20–60 нм), где более крупные образования представляют собой упорядоченные структуры псевдогексагональной формы.

Для пленки, синтезированной при 873 К, получены следующие параметры шероховатости поверхности: среднеарифметическая и среднеквадратичная шероховатость составляет 0.8 и 1.0 нм соответственно. Таким образом, частицы, которыми представлена поверхность пленки, являются плоскими.

Исследование элементного состава методом EDX показало наличие атомов следующих элементов: B, C, N и O, причем содержание кислорода в пленках не превышает 1 ат. %. Как видно из табл. 2, основными компонентами являются атомы бора и углерода, в то время как содержание азота не превышает 10 ат. %.

В ИК-спектрах (рис. 3а) полученных пленок присутствует широкая полоса поглощения в области 600-1500 см⁻¹ с максимумом при 1220 см⁻¹. Согласно литературным данным, полоса валентных колебаний связи B-N в h-BN наблюдается при 1370-1400 см⁻¹ [22], для t-BN ее положение смешается в область низких частот [23]. полоса поглощения аморфного нитрида бора a-BN лежит в области 1263-1350 см⁻¹ [24]. В ИК-спектре ромбоэдрического карбида бора В₄С наблюдаются две полосы около 1090 и 1560 см⁻¹ [25], аморфный карбид бора имеет полосу при 1100 см⁻¹, которая смещается к 1200 см⁻¹ для пленок, обога-щенных углеродом $a-B_{1-x}C_x$ [26]. Для оксида бора характерны полосы при 1460, 1260 и 720-780 см⁻¹. соответствующие валентным и деформационным колебаниям связи В-О [27]. Наблюдаемый нами максимум основной полосы со смещением в область больших частот (по сравнению с ИК-спектром В₄С) и значительной шириной полосы типичен для аморфного или сильно разупорядоченного BC_x, возможно, из-за наличия в пленках некоторого количества азота [28]. Эти данные

Рис. 2. СЭМ- (а, б, д, е) и АСМ-изображения (в, г, ж, з) поверхности пленок BC_xN_y , осажденных из смеси ТЭАБ + N_2 при температуре 773 (а, б, в, г) и 873 К (д, е, ж, з) с площади сканирования 5 × 5 (в, г) и 10 × 10 мкм² (ж, з).

подтверждаются исследованием химического состава пленок, рассмотренным выше, и данными КР-спектроскопии (рис. 3б), которые показывают наличие особенностей (уширенных полос при 980, 1150 см⁻¹), характерных для аморфной или частично разориентированной структуры карбида бора [29]. Также в спектрах КР наблюдается фон люминесценции.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 2 2023

Рис. 3. ИК- (а) и КР-спектры (б) пленок BC_xN_v , осажденных из смеси ТЭАБ + N_2 при температурах 773 и 873 К.

ЗАКЛЮЧЕНИЕ

Изучены свойства триметиламинборана Me₃N · BH₃ и триэтиламинборана Et₃N · BH₃ с точки зрения их использования в качестве исходных веществ в процессах CVD для получения слоев функциональных материалов на основе фаз в системе В-С-N. В ходе тензиметрических исследований показано, что оба рассматриваемых соединения обладают достаточной летучестью и термической устойчивостью для осуществления синтеза пленок методом CVD. Установлен механизм процессов парообразования изученных соединений. Экспериментально полученные температурные зависимости давления насыщенного пара алкиламинборанов и термодинамические характеристики процессов их парообразования дают возможность контролировать процесс парообразования исходного вещества в источнике СVD-реактора и его перенос в зону осаждения в течение процесса синтеза пленок. С использованием триэтиламинборана при температуре 773 и 873 К синтезированы однородные слои карбонитрида бора BC_xN_v с низкой шероховатостью. Слои имеют сложную зернистую структуру с фрагментацией более крупных зерен (размер до 500 нм) на субзерна (20-60 нм). Следует подчеркнуть, что более крупные образования представляют собой упорядоченные структуры псевдогексагональной формы.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Министерства науки и высшего образования РФ (проект № 121031700314-5).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы не имеют конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Nehate S.D., Saikumar A.K., Prakash A., Sundaram K.B. // Mater. Today Adv. 2020. V. 8. P. 100106. https://doi.org/10.1016/j.mtadv.2020.100106
- Козлов Д.А., Артамонов К.А., Ревенко А.О. и др. // Журн. неорган. химии. 2022. Т. 67. № 5. С. 646. https://doi.org/10.31857/S0044457X22050105
- Puyoo G., Teyssandier F., Pailler R. et al. // Carbon. 2017. V. 122. P. 19. https://doi.org/10.1016/j.carbon.2017.06.024
- Kimura C., Sota H., Aoki H., Sugino T. // Diam. Relat. Mater. 2009. V. 18. P. 478. https://doi.org/10.1016/j.diamond.2008.12.004
- Qin L., Yu J., Kuang S. et al. // Nanoscale. 2012. V. 4. P. 120. https://doi.org/10.1039/c1nr11387a
- Kumar N., Raidongia K., Mishra A.K. et al. // J. Solid State Chem. 2011. V. 184. P. 2902. https://doi.org/10.1016/j.jssc.2011.08.034
- Bai X.D., Yu J., Liu S., Wang E.G. // Chem. Phys. Lett. 2000. V. 325. P. 485.
- Суляева В.С., Кеслер В.Г., Косинова М.Л. // Журн. структур. химии. 2021. Т. 62. С. 1736. https://doi.org/10.26902/JSC_id87084
- Zhou X., Zhang L., Zhang X. et al. // Appl. Surf. Sci. 2022. V. 583. P. 152502. https://doi.org/10.1016/j.apsusc.2022.152502
- Seo T.H., Lee W., Lee K.S. et al. // Carbon. 2021. V. 182. P. 791. https://doi.org/10.1016/j.carbon.2021.06.080
- Katsuia H., Harada K., Kondo N., Hotta M. // Surf. Coat. Technol. 2020. V. 394. P. 125851. https://doi.org/10.1016/j.surfcoat.2020.125851
- Souqui L., Palisaitis J., Hogberg H., Pedersen H. // J. Mater. Chem. C. 2020. V. 8. P. 4112. https://doi.org/10.1039/d0tc00616e
- 13. Волков В.В., Мякишев К.Г. // Изв СО АН СССР. Сер. хим. наук. 1989. № 1. Р. 23.
- Chemical vapour deposition. Precursors, processes and application / Ed. Jones A.C., Hitchman M.L. RSC Publishing, 2009. 582 p.

- 15. Жерикова К.В., Макаренко А.М., Караковская К.И. и др. // Жур. общ. химии. 2021. Т. 91. № 10. С. 1479. https://doi.org/10.31857/S0044460X21100103
- 16. *Суворов А.В.* Термодинамическая химия парообразного состояния. Л.: Химия, 1970.
- Vikulova E.S., Zhericova K.V., Sysoev S.V. et al. // J. Therm. Anal. Calorim. 2019. V. 137. P. 923. https://doi.org/10.1007/s10973-018-07991-y
- Сысоев С.В., Мареев А.В., Цырендоржиева И.П. и др. // Журн. общ. химии. 2021. Т. 91. С. 1511. https://doi.org/10.31857/S0044460X2110005X
- Kosinova M.L., Fainer N.I., Rumyantsev Yu.M. et al. // J. Phys. IV. France. 1999. V. 9. P. 8.
- 20. Alton E.R., Brown R.D., Carter J.C., Taylor R.C. // J. Am. Chem. Soc. 1959. V. 81. P. 3550.
- Титов В.А., Коковин Г.А. // Математика в химической термодинамике. Сб. науч. тр. Новосибирск: Наука, 1980. С. 98.

- Brame E.G., Margrave J.L., Meloche V.W. // J. Inorg. Nucl. Chem. 1957. V. 5. P. 48.
- Rozenberg A.S., Sinenko Y.A., Chukanov N.V. // J. Mater. Sci. 1993. V. 28. P. 5675.
- 24. *Tolstoy V.P., Chernyshova I.V., Skryshevsky V.A.* Handbook of infrared spectroscopy of ultrathin films. Hoboken: John Wiley & Sons, 2003. 710 p.
- 25. Werheit H., Aupt H.H. // Z. Naturforsch. 1987. V. 42a. P. 925.
- Shirai K., Emura S., Gonda S.I., Kumashiro Y. // J. Appl. Phys. 1995. V. 78. P. 3392.
- 27. Shin W.G., Calder S., Ugurlu O., Girshick S.L. // J. Nanoparticle Res. 2011. V. 13. P. 7187.
- Essafti A., Ech-chamikh E., Azizan M. // Spectrosc. Lett. 2008. V. 41. P. 57. https://doi.org/10.1080/00387010801938228
- Tallant D.R., Aselage T.L., Campbell A.N., Emin D. // Phys. Rev. B. 1989. V. 40. P. 5649. https://doi.org/10.1103/PhysRevB.40.5649