СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК [536.2+536.4+536.6]:669.891

ПЛОТНОСТЬ, ТЕПЛОВОЕ РАСШИРЕНИЕ, ЭНТАЛЬПИЯ, ТЕПЛОЕМКОСТЬ И ТЕПЛОПРОВОДНОСТЬ КАЛЬЦИЯ В ИНТЕРВАЛЕ ТЕМПЕРАТУР 720–1290 К

© 2023 г. Р. Н. Абдуллаев^{а,} *, Р. А. Хайрулин^а, А. Ш. Агажанов^а, А. Р. Хайрулин^а, Ю. М. Козловский^а, Д. А. Самошкин^а

^аИнститут теплофизики им. С.С. Кутателадзе СО РАН, пр-т Академика Лаврентьева, 1, Новосибирск, 630090 Россия *e-mail: abdullaev.rasul88@gmail.com Поступила в редакцию 02.09.2022 г. После доработки 26.10.2022 г. Принята к публикации 27.10.2022 г.

Теплофизические свойства кальция (чистотой 99.75 вес. %) экспериментально исследованы с высокой точностью в интервале температур 720–1290 К твердого и жидкого состояний с использованием дилатометрического метода, метода просвечивания образцов узким пучком гамма-излучения, метода смешения и метода лазерной вспышки. Исследовано поведение плотности, энтальпии и коэффициента теплопроводности кальция в области плавления—кристаллизации. Измеренное значение теплоты плавления составило 8075 Дж/моль, относительного изменения плотности при плавлении – 3.3%, относительного изменения коэффициента теплопроводности при плавлении – 26%. Проведено сопоставление полученных результатов с литературными данными. Результаты измерений при температурах выше 720 К либо значительно уточняют имеющиеся литературные данные, либо являются единственными на настоящий момент. Подтверждено, что теплоемкость жидкого кальция постоянна в интервале 1115–1290 К. Построены аппроксимационные уравнения и разработана таблица рекомендуемых значений исследованных свойств кальция в интервале температур 720–1290 К, включающем твердое и жидкое состояния.

Ключевые слова: твердое состояние, жидкое состояние, плавление, теплофизические свойства **DOI:** 10.31857/S0044457X22601638, **EDN:** LRJQST

введение

Щелочноземельные металлы все чаще предлагаются в качестве корректирующих добавок в материалы, перспективные для использования в различных отраслях промышленности [1-7]. Однако вплоть до настоящего времени данные металлы остаются одними из наименее изученных (за исключением магния). Надежное исследование их теплофизических свойств проводилось лишь в небольшой области вокруг комнатной температуры [8-15]. При этом проблема состоит не только в существенном разбросе имеющихся в литературе данных, но и в характерных различиях предлагаемых температурных зависимостей [8, 9]. В пересмотре и уточнении в первую очередь нуждаются экспериментальные и расчетные данные, полученные при температурах выше ~700 К твердого и жидкого состояний, а также в области фазовых переходов.

Хорошим примером разброса, фрагментарности и противоречивости накопленных на сегодняшний день результатов служит обзор данных по теплофизическим свойствам одного из наиболее распространенных металлов в природе кальция [8–27]. Согласно [16–20], даже экспериментальные данные по плотности кальция в окрестности комнатной температуры имеют разброс более 3%, хотя обычно измерение данного параметра проводится наиболее точно по сравнению с другими теплофизическими свойствами. Далее до температуры ~716 К, где кальций существует в виде α-модификации с кубической гранецентрированной решеткой, рекомендуемые данные и температурные зависимости плотности, коэффициентов теплового расширения, энтальпии и теплоемкости [8-10, 13, 14] показывают неплохое согласие между собой. Однако выше ~716 К (в области существования В-модификации кальция с объемно-центрированной кубической решеткой, жидкого состояния, а также фазового перехода между ними) экспериментальные данные либо единичны, либо существенно отличаются друг от друга [8, 9, 21–25]. По коэффициенту теплопроводности кальция данные находятся в еще худшем состоянии. По мнению авторов настоящей работы, исследование теплопроводности этого металла проводилось лишь в работах [26, 27] до температур, не превышающих 500 К. При этом в [26, 27] не приводится чистота использованного кальция, а различие между результатами для разных образцов доходит до ~1.5 раз.

Столь скудное состояние имеющейся на настоящий момент информации о теплофизических свойствах кальция при температурах выше 720 К связано с рядом экспериментальных трудностей, общих для всех щелочноземельных металлов. Среди наиболее вероятных причин недостатка или отсутствия достоверных экспериментальных данных в первую очередь стоит выделить их высокую химическую активность, высокое давление паров в жидком состоянии, недостаточную чистоту исходного исследуемого металла и ее изменение во время эксперимента. Перечисленные проблемы могут быть решены путем использования дистиллированного кальция, проведения экспериментов в герметичных ячейках из не взаимодействующих с кальцием материалов (вакуумированных или заполненных высокочистым инертным газом) и путем применения бесконтактных методов исследования теплофизических свойств веществ (в частности, гамма-метода и флэш-метода). Такой подход уже использован при исследовании теплофизических свойств магния в твердом и жидком состояниях [28, 29].

Существующие на настоящий момент знания о теплофизических свойствах кальция не позволяют адекватно оценить и спрогнозировать перспективы его практического применения (в сверхлегких конструкционных материалах, биосовместимых и биоразлагаемых сплавах, анодных материалах, материалах-абсорбентах водорода и др.), затрудняют установление общих закономерностей изменения макроскопических характеристик металлов в зависимости от положения в Периодической системе элементов, а также оптимизацию процессов синтеза соединений на их основе.

Цель настоящей работы — экспериментальное исследование плотности, теплового расширения, энтальпии, теплоемкости и теплопроводности кальция в интервале температур 720—1290 К конденсированного состояния.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Проведенные ранее исследования [17, 20, 26] сходятся в выводах о существенном влиянии примесей на качество измерений физических свойств кальция. В настоящей работе для приготовления образцов использовали дистиллированный кальций с чистотой не менее 99.75 вес. % (Fe < < 0.00056%, Cu < 0.0015%, Mg, Na < 0.018%, Mn <

< 0.0013%, Li < 0.001%, Ba < 0.00005%, Sr < 0.2%). Основной примесью оказался стронций, обладаюший схожими с кальшием свойствами и не образующий с ним каких-либо соединений [18]. Его доля не превышала 0.2 вес. %, что не должно оказывать заметного влияния на измерения. Для исследования термических, калорических и транспортных свойств кальция при высоких температурах были изготовлены измерительные ампулы из тантала марки ТВЧ-1 и молибдена марки МЧВП. Все детали измерительных ячеек предварительно отжигали в вакууме (при давлении не более 1 мПа) в течение 1 ч в области температур 800-1100 К. Известно [30], что молибден практически не взаимолействует с кальшием при температурах до 1300 К – растворимость молибдена в расплаве кальция при температуре 1200 К не превышает 0.00035 ат. % [30]. Опыт использования тантала в экспериментальных исследованиях жидкого кальция [23, 26] свидетельствует об отсутствии значительного взаимодействия между этими металлами. Следует отметить, что воспроизводимость результатов для различных термических циклов исследования теплофизических свойств расплава кальция в настоящей работе подтверждает химическую инертность этого металла по отношению к материалам ампул (танталу и молибдену). Заполнение измерительных ячеек образцами кальция проводили в перчаточном боксе в атмосфере высокочистого аргона (99.992 об. %). Герметизацию ампул с кальцием осуществляли аргонно-дуговой сваркой непосредственно в инертной атмосфере бокса.

Для исследования теплофизических свойств кальция в настоящей работе применяли экспериментальные установки и методы, использованные ранее при изучении свойств чистого магния [28, 29]. Измерение относительного удлинения є и линейного коэффициента теплового расширения α твердого кальция в интервале температур 780-950 К проводили дилатометрическим методом с применением дилатометра DIL-402C [31, 32]. Образец кальция — сплошной бездефектный слиток цилиндрической формы диаметром 6 мм и высотой 25 мм с отшлифованными плоскопараллельными торцами. Эксперименты на дилатометре DIL-402С проводили в атмосфере высокочистого гелия. Неопределенности данного метода были оценены ранее [31, 32] - ошибка измерения α составила 1-3%. Температурную зависимость плотности β -модификации кальция $\rho_c(T)$ рассчитывали с использованием данных о тепловом расширении, полученных на дилатометре, и значения плотности ρ_r при комнатной температуре T_r , измеренного методом Архимеда в силиконовом масле с точностью 0.05%.

Плотность и тепловое расширение кальция в области плавления-кристаллизации и в жидком

состоянии исследовали методом просвечивания образцов узким пучком монохроматического гамма-излучения на установке ГП-2 [32, 33]. В качестве источника гамма-квантов с энергией 662 кэВ использовали ампулу с изотопом цезия 137. На пути пучка гамма-квантов в печи ГП-2, заполненной аргоном, располагали образец кальция в цилиндрической молибденовой ампуле диаметром 39 мм и высотой 70 мм. В крышку ампулы вварена тонкостенная молибденовая гильза для хромельалюмелевой термопары (тип К), использованной для измерения температуры образца в гамма-экспериментах. Для расчетов плотности кальция в твердом ρ_c и жидком ρ_m состояниях применяли относительный вариант гамма-метода с использованием данных дилатометрических экспериментов и следующих формул:

160

$$\rho_{\rm c}(T) = \rho_{\rm r} \left\{ \frac{\ln \left[J_0(T) / J(T) \right]}{\ln \left[J_0(T_{\rm r}) / J(T_{\rm r}) \right]} \right\}^{3/2}, \tag{1}$$

$$\rho_{\rm m}(T) =$$

$$= \rho_{\rm m}(T_{\rm f}) \left\{ \frac{\ln \left[J_0(T) / J(T) \right]}{\ln \left[J_0(T_{\rm f}) / J_{\rm L} \right]} \right\} \left\{ \frac{1 + \overline{\alpha}_g(T_{\rm f})(T_{\rm f} - T_{\rm r})}{1 + \overline{\alpha}_g(T)(T - T_{\rm r})} \right\}, \quad (2)$$

где J и J_0 – интенсивности гамма-излучения, проходящего через ампулу с образцом и без него соответственно; J_L – интенсивность гамма-излучения, прошедшего через ампулу с жидким образцом при температуре плавления; T_f – температура плавления кальция; $\overline{\alpha}_g$ – средний линейный коэффициент теплового расширения молибдена. Значение относительного скачка плотности $\delta \rho_f$ кальция при плавлении рассчитывали из соотношения:

$$\delta \rho_{\rm f} = \frac{\rho_{\rm c}(T_{\rm f}) - \rho_{\rm m}(T_{\rm f})}{\rho_{\rm c}(T_{\rm f})} = \frac{\ln \left(J_{\rm L}/J_{\rm S}\right)}{\ln \left(J_{0}(T_{\rm f})/J_{\rm S}\right)},\tag{3}$$

где $J_{\rm S}$ – интенсивность гамма-излучения, прошедшего через ампулу с твердым образцом при температуре плавления. При построении итоговых температурных зависимостей плотности и коэффициентов теплового расширения кальция использовали как данные дилатометрических экспериментов, так и результаты измерений гаммаметодом с учетом их преимуществ и особенностей: в твердом состоянии предпочтение отдается дилатометрическому методу как более точному и чувствительному, в жидком состоянии и в области плавления-кристаллизации - гамма-методу. Неопределенности измеренных значений плотности и объемного коэффициента теплового расширения расплава кальция лежат в интервалах 0.3-0.5 и 3-4% соответственно.

Измерение инкремента энтальпии $H_T - H_{298}$ и теплоемкости C_p твердого и жидкого кальция проводили методом смешения на массивном

изотермическом калориметре, подробное описание которого приведено в [34, 35]. Герметичная танталовая ампула с образцом подвешивается в электропечи калориметра, заполненной атмосферой высокочистого аргона (99.992 об. %). Температура образца измеряется Pt/Pt-Rh-термопарой (тип S), которая находится непосредственно внутри измерительной ячейки в защитной танталовой гильзе. Перед основными экспериментами с кальшием на калориметре проводили серии тарировочных экспериментов: определение коэффициента теплоотдачи калориметрического блока и его теплового эквивалента, измерение массовой энтальпии пустой танталовой ампулы. Условия проведения тарировочных экспериментов с пустой ампулой были идентичны основным. Одним из преимуществ сконструированного в ИТ СО РАН калориметра является предусмотренный автоматический режим сброса ампулы, что позволяет компенсировать погрешности, связанные с потерями тепла ампулой в тарировочных и основных экспериментах. Апробация экспериментальной установки на сапфире [34] показала, что данное преимущество с рядом других позволяет ограничить относительную погрешность измерения энтальпии и теплоемкости до значений, не превышающих 0.2 и 4% соответственно.

Исследование тепло- и температуропроводности кальция проводили методом лазерной вспышки [36] на установке LFA-427. В интервале температур 720-900 К измерения проводили с использованием стандартного варианта флэш-метода на однородном и бездефектном образце кальция в форме таблетки диаметром 12 мм и высотой 1.5 мм с плоскопараллельными отшлифованными торцами (далее цилиндрический образец). Нижняя сторона таблетки кальция нагревается коротким (<1 мс) лазерным импульсом, при этом с помощью ИК-детектора регистрируется временная зависимость температуры ее верхней поверхности. Из вида данной зависимости с использованием двумерной радиационной модели [37, 38] определяется температуропроводность aобразца. Общая погрешность определения температуропроводности данным способом лежит в интервале 2–4%. Теплопроводность λ кальция рассчитывали по результатам измерений температуропроводности, удельной массовой теплоемкости C_{P} , и плотности ρ , используя соотношение:

$$\lambda = a\rho C_P. \tag{4}$$

В области плавления—кристаллизации и жидкого состояния измерение коэффициента теплопроводности кальция проводили модифицированным вариантом метода лазерной вспышки [39], приспособленным для исследования жидких и пластичных материалов. Образец кальция располагался в герметичной молибденовой ампуле

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 2 2023

1480

1440

1400

Плотность, кг/м³

R

Рис. 1. Температурная зависимость плотности кальция в твердом состоянии (*BS*), в области плавления кристаллизации (*SL*) и в области жидкого состояния (*LA*): *1* – данные гамма-экспериментов; *2* – результаты дилатометрических измерений; *3* – зависимость (6); *4* – экспериментальные данные [21]; *5* – рекомендованная зависимость [21]; *6* – данные [22]; *7* – данные [23]; *8* – данные [24]; *9* – данные [18]; *10* – данные [17] для кальция чистотой 99.96 вес. %; *11* – данные [17] для кальция чистотой 99.66 вес. %; *12* – данные [19].

так, что в расплавленном состоянии металл заполнял тонкую (толщиной 2.5 мм) плоскопараллельную область между тиглем ампулы и ее крышкой. В данном случае ИК-детектор снимает термограмму с верхней поверхности молибденовой крышки измерительной ячейки. При обработке полученных данных проведено численное решение двумерного нестационарного уравнения теплопроводности в цилиндрических координатах с использованием разработанного пакета программ [39], реализующего трехслойную модель тигель-расплав-крышка. Данная модель учитывает геометрию измерительной ячейки, а также начальные и граничные условия задачи, подробно описанные в [39, 40]. Входящие в расчетную модель данные по теплофизическим свойствам материала ячейки были взяты из следующих источников: линейный коэффициент теплового расширения молибдена и плотность молибдена из работы [41], коэффициент температуропроводности молибдена – из [42], теплоемкость молибдена – из [41]. Оценка полученных данных вариантом флэш-метода экспериментальных данных по коэффициентам теплопроводности и температуропроводности расплавов варьирует от 4 до 6% [29, 40].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Проведены дилатометрические исследования относительного удлинения и линейного коэффициента теплового расширения β-кальция в интервале 780—950 К. Результаты, полученные в ходе двух циклов нагрева—охлаждения образца, совпали друг с другом в пределах погрешностей измерений, что указывает на отсутствие существенного загрязнения исследуемого кальция атмосферой печи дилатометра. Совместная обработка экспериментальных значений *а* методом наименьших квадратов дает следующую температурную зависимость:

$$\alpha = 12.89 + 0.016715T, \tag{5}$$

где *а* в 10⁻⁶ К⁻¹, *Т* в К.

При комнатной температуре 293.15 К проводили измерение плотности кальция методом Архимеда в силиконовом масле. Измеренное значение плотности $\rho_r = 1535.8 \pm 0.8 \text{ кг/м}^3$ лежит примерно в середине разброса имеющихся в литературе экспериментальных данных [16–20]. С использованием ρ_r и уравнения (5) построена температурная зависимость плотности β -кальция, изображенная на рис. 1.

В более широком интервале температур 730– 1290 К исследование плотности кальция проведено гамма-методом. На рис. 1 видно, что результаты дилатометрических и гамма-экспериментов совпадают друг с другом в пределах случайных погрешностей последних. Сравнение значений плотности β -кальция, рассчитанных из параметров кристаллической решетки [17–19], с нашими данными показывает их хорошее согласие между собой, особенно с результатом [17] для кальция чистотой 99.96 вес. %.

Измеренное гамма-методом значение скачка плотности при плавлении—кристаллизации кальция составило $3.3 \pm 0.2\%$. В литературе не удалось обнаружить сведений о прямых измерениях скачков объема кальция при плавлении. В работе [43] приведено значение $\delta \rho_f = 4.26\%$, рассчитанное по уравнению Клапейрона—Клаузиуса. Такое отличие рассчитанной величины $\delta \rho_f$ от экспериментальной, вероятно, указывает на недостаточную надежность литературных данных о наклоне линии равновесия твердой и жидкой фаз на P-Tдиаграмме этого металла.

Аппроксимация полученных гамма-методом экспериментальных данных по плотности расплава кальция методом наименьших квадратов дает следующую температурную зависимость:

$$\rho_{\rm m} = 1569.7 - 0.1596T, \tag{6}$$

где ρ_m в кг/м³.

На рис. 1 приведено сравнение зависимости (6) с имеющимися в литературе данными [21–24]. Значительный разброс результатов [21–24] по

плотности и коэффициентам теплового расширения жидкого кальция связан с недостатками высокотемпературных исследований плотности химически активных расплавов стандартными методами, использованными в [21-24]: недостаточная чистота используемых образцов или их загрязнение в ходе экспериментов, наличие газовых включений в образце или на границе расплав-тигель (пикнометрический метод [24]) или расплав-пробное тело (метод Архимеда [22]), ошибки в определении глубины погружения капилляра в исследуемую жидкость (метод максимального давления в газовом пузырьке [21, 23]) и др. Несовершенства примененных в [21-24] методик удалось избежать в настоящей работе путем использования герметичной молибденовой ампулы для защиты дистиллированного кальция от загрязнений и бесконтактного гамма-метода, исключающего также ошибки, связанные с массой и геометрическими размерами образца. С учетом вышесказанного полученные в настоящей работе результаты по плотности (в том числе по скачку плотности) и коэффициентам теплового расширения твердого β-кальция и расплава этого металла могут быть рекомендованы в качестве справочных как наиболее надежные или единственные на данный момент.

Инкремент энтальпии $H_T - H_{298}$ кальция измеряли методом смешения в ходе 15 экспериментов: 8 в твердом состоянии и 7 в жидком. Соответствующие экспериментальные точки представлены на рис. 2. Аппроксимация данных по энтальпии β -кальция полиномом второй степени методом наименьших квадрат (с учетом значения $H_T - H_{298} = 0$ Дж/моль при T = 298.15 K) дала следующую температурную зависимость энтальпии магния в области твердого состояния:

$$H_T - H_{298} = -5389 + 21.986T + 6.719 \times 10^{-3}T^2$$
, (7)

где $H_T - H_{298}$ в Дж/моль. В отдельном эксперименте в ходе охлаждения жидкого кальция было проведено измерение температуры фазового перехода расплав-твердое состояние – $T_f = 1114.9 \pm 1.5$ К. Затвердеванию расплава в танталовых ампулах предшествовало небольшое переохлаждение. Значение T_f в пределах погрешностей измерений совпадает с рекомендуемыми значениями температуры плавления-кристаллизации 1115 ± 2 [8] и 1114 ± 3 К [9]. Данное наблюдение указывает на отсутствие значительного количества гидридов, оксидов и нитридов в исследованных образцах, поскольку их содержание в кальции в качестве примесей оказывает существенное влияние на температуру ликвидуса [30].

В жидком состоянии проводили аппроксимацию линейной зависимостью:

$$H_T - H_{298} = 35550 + 38.34 (T - T_f).$$
(8)

Рис. 2. Температурная зависимость энтальпии кальция в области твердого (*BS*) и жидкого (*LA*) состояний: 1 -экспериментальные данные настоящей работы; 2 -зависимости (7), (8); 3 -данные [8]; 4 -данные [9].

Для расчета теплоты плавления кальция $\Delta H_f = 8075 \pm 30 \, \text{Дж/моль}$ зависимости (7), (8) экстраполировали к температуре плавления. Полученное ΔH_f значение оказалось ниже рекомендованных 8540 \pm 200 [8] и 8510 \pm 160 Дж/моль [9] даже с учетом суммарных погрешностей, однако согласуется с экспериментальным результатом 8340 \pm \pm 250 Дж/моль [25].

Температурная зависимость теплоемкости β-кальция, приведенная на рис. 3, получена дифференцированием уравнения (7):

$$C_P = 21.99 + 13.44 \times 10^{-3} T, \tag{9}$$

где C_P в Дж/(моль К). В жидком состоянии, согласно выражению (8), теплоемкость кальция постоянна до 1280 К и равна:

$$C_P = 38.3 \pm 1.5 \ \text{Дж} / (\text{моль K}).$$
 (10)

Таким образом, результаты настоящей работы подтверждают выводы [8] о независимости теплоемкости расплава кальция от температуры в интервале $T_{\rm f}$ —1280 K (рис. 3), а значение теплоемкости (10) немного превышает рекомендованную в [8] величину $C_P = 38 \text{ Дж}/(\text{моль K})$.

На рис. 2, 3 представлены рекомендованные [8, 9] температурные зависимости энтальпии и теплоемкости кальция при T > 720 К. Сравнение рекомендаций [8, 9] демонстрирует разные подходы авторов данных обзоров к анализу надежности имевшихся к тому времени экспериментальных работ по исследованию калорических свойств кальция при высоких температурах. До

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 2 2023

Рис. 3. Температурная зависимость теплоемкости кальция в области твердого (*BS*) и жидкого (*LA*) состояний: 1 – зависимости (9), (10); 2 – данные [8]; 3 – данные [9]; пунктирная линия соответствует температуре плавления кальция.

~715 К выводы [8, 9] для α-кальция хорошо согласуются друг с другом. Однако, как видно из рис. 2, 3, выше 720 К авторы [8, 9] отдают предпочтение разным экспериментальным работам при построении рекомендуемых таблиц и температурных зависимостей калорических свойств жидкого и β-кальция. Так, в обзоре [9] при построении $C_{P}(T)$ в интервале 717—1830 К в основном использовали результаты [25], полученные импульсно-дифференциальным методом. Однако авторы [8] посчитали данные [25] недостаточно надежными, обладающими значительными измерительными ошибками. По этой причине в [8] отдали предпочтение результатам измерений, выполненным методом смешения. Как видно из рис. 3, полученная в настоящей работе зависимость теплоемкости (9) от температуры для β-кальция лежит между рекомендациями [8, 9], представляясь неким компромиссом между ними, а в жидком состоянии определенное нами значение С_Р (10) подтверждает оценку [8].

Имеющаяся в литературе информация о транспортных свойствах кальция куда более скудная, чем сведения о его термических и калорических свойствах. Так, известно лишь о двух экспериментальных работах [26, 27], где было проведено исследование теплопроводности α-кальция (чистота, к сожалению, не приведена) до ~470 К. Поэтому, согласно нашим сведениям, полученные в настоящей работе методом лазерной вспышки экспериментальные данные по коэффициентам теплои температуропроводности жидкого и β-кальция являются первыми и единственными. Результаты

Рис. 4. Температурная зависимость температуропроводности кальция в области твердого (*BS*) и жидкого (*LA*) состояний: 1 – экспериментальные данные, полученные на цилиндрическом образце; 2 – экспериментальные данные, полученные на образце в герметичной молибденовой ампуле; 3 – зависимости (12), (14); 4 – данные для расплава чистого магния [29].

измерений для цилиндрического образца кальция и образца в герметичной молибденовой ампуле приведены на рис. 4, 5. Воспроизводимость полученных в различных циклах нагрева-охлаждения результатов подтверждает отсутствие сушественного загрязнения образцов в ходе экспериментов. Более того, из рис. 4, 5 видно, что полученные различными вариантами флэш-метода данные по коэффициентам тепло- и температуропроводности твердого кальция совпадают друг с другом в пределах суммарных погрешностей измерений. Совместная обработка методом наименьших квадратов результатов по теплопроводности λ и температуропроводности а для цилиндрического и загерметизированного в молибденовой ампуле (вблизи температуры плавления) твердых образцов кальция дает следующие зависимости:

$$\lambda = 61.68 + 73.53 \times 10^{-3} T - 3.492 \times 10^{-5} T^2, \quad (11)$$

$$a = 96.22 - 18.42 \times 10^{-3}T, \tag{12}$$

где λ в Вт/(м К), *а* в мм²/с. Как видно из рис. 4 и 5, при плавлении кальция значения его коэффициентов тепло- и температуропроводности уменьшаются на ~26%. Аппроксимация результатов для жидкого состояния дает следующие линейные температурные зависимости:

$$\lambda = 51.05 + 20.69 \times 10^{-3}T, \tag{13}$$

$$a = 30.67 + 22.41 \times 10^{-3} T.$$
 (14)

Фаза	<i>Т</i> , К	ρ, кг/м ³	$\beta \times 10^{-5}, \mathrm{K}^{-1}$	<i>H_T – H₂₉₈,</i> Дж/моль	<i>С_Р</i> , Дж/(моль К)	λ, Вт/(м К)	<i>а</i> , мм²/с
Твердое	720	1487.1	7.4	13924	31.7	96.5	82.1
состояние	750	1483.8	7.5	14880	32.1	97.2	81.9
β-фаза	800	1478.1	7.8	16500	32.7	98.2	81.3
ОЦК	850	1472.3	8.0	18154	33.4	99.0	80.7
	900	1466.3	8.3	19841	34.1	99.6	79.9
	950	1460.2	8.5	21 562	34.8	100.0	79.0
	1000	1453.9	8.7	23316	35.4	100.3	78.0
	1050	1447.5	9.0	25104	36.1	100.4	77.0
	1100	1441.0	9.2	26926	36.8	100.3	75.9
	1114.9	1439.0	9.3	27475	37.0	100.3	75.6
Жидкое	1114.9	1391.7	11.5	35550	38.3	74.1	55.7
состояние	1150	1386.1	11.5	36896	38.3	74.8	56.4
	1200	1378.1	11.6	38813	38.3	75.9	57.6
	1250	1370.2	11.6	40730	38.3	76.9	58.7
	1290	1363.8	11.7	42263	38.3	77.7	59.6

Таблица 1. Сглаженные значения теплофизических свойств кальция

В связи с отсутствием литературных данных на рис. 4 и 5 для сравнения приведены полученные ранее результаты [29] по коэффициентам температуропроводности и теплопроводности расплава другого щелочноземельного металла — магния. Видно, что зависимости температуропроводности жидких магния и кальция удивительным обра-

Рис. 5. Температурная зависимость теплопроводности кальция в области твердого (*BS*) и жидкого (*LA*) состояний: 1 – экспериментальные данные, полученные на цилиндрическом образце; 2 – экспериментальные данные, полученные на образце в герметичной молибденовой ампуле; 3 – зависимости (11), (13); 4 – данные для расплава чистого магния [29].

зом совпали друг с другом в интервале $T_{\rm f}$ —1250 К (рис. 4). Для коэффициента теплопроводности, согласно рис. 5, ситуация обратная — в жидком состоянии наблюдается сильное расхождение данных для чистых магния и кальция. Проведение анализа вероятных причин такого расхождения пока не представляется возможным в связи с отсутствием надежных данных по электропроводности расплавов этих металлов.

В табл. 1 собраны сглаженные и согласованные друг с другом значения исследованных в настоящей работе теплофизических свойств кальция в твердом и жидком состояниях: плотность ρ в кг/м³, объемный коэффициент теплового расширения $\beta = -(1/\rho)(\partial \rho/\partial T)$ в 10^{-5} K⁻¹, энтальпия $H_T - H_{298}$ в Дж/моль, теплоемкость C_P в Дж/(моль K), коэффициент теплопроводности λ в Вт/(м K) и коэффициент температуропроводности *а* в мм²/с. Значения *а* в табл. 1 рассчитаны с использованием уравнения (4) и данных по ρ , C_P и λ .

ЗАКЛЮЧЕНИЕ

Получены новые надежные экспериментальные данные по плотности, коэффициентам теплового расширения, энтальпии, теплоемкости, коэффициентам теплопроводности и температуропроводности кальция в интервале температур 720–1290 К твердого (для β-фазы кальция с ОЦК решеткой) и жидкого состояний. Анализ литературы демонстрирует, что результаты проведенных измерений либо значительно уточняют имеющиеся на настоящее время сведения, либо получены впервые. Предложены рекомендуемые температурные зависимости и справочная таблица исследованных теплофизических свойств кальция. Выводы настоящей работы вместе с комплексом полученных ранее результатов для чистого магния [28, 29] могут быть использованы для разработки и оптимизации технологий производства и применения материалов на основе этих металлов, а также для установления закономерностей изменения макроскопических свойств щелочных и щелочноземельных металлов (*s*-элементов Периодической таблицы).

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 20-79-10025).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Song J., She J., Chen D. et al.* // J. Magnesium Alloys. 2020. V. 8. № 1. P. 1. https://doi.org/10.1016/j.jma.2020.02.003
- 2. *Aljarrah M., Medraj M.* // Calphad. 2008. V. 32. № 2. P. 240.
 - https://doi.org/10.1016/j.calphad.2007.09.001
- Deng M., Höche D., Lamaka S.V. et al. // J. Power Sources. 2008. V. 396. P. 109. https://doi.org/10.1016/j.jpowsour.2018.05.090
- Li Z., Gu X., Lou S. et al. // Biomaterials. 2008. V. 29. № 10. P. 1329. https://doi.org/10.1016/j.biomaterials.2007.12.021
- Terashita N., Akiba E. // Mater. Trans. 2004. V. 45. № 8. P. 2594. https://doi.org/10.2320/matertrans.45.2594
- Chino Y., Ueda T., Kado M. et al. // Mater. Trans. 2011.
 V. 52. № 9. P. 1840. https://doi.org/10.2320/matertrans.M2011109
- 7. Terada Y., Tsukahara M., Shibayama A. et al. // Scr. Mater. 2011. V. 64. № 11. P. 1039. https://doi.org/10.1016/j.scriptamat.2011.02.016
- Alcock C.B., Chase M.W., Itkin V. // J. Phys. Chem. Ref. Data. 1993. V. 22. № 1. P. 1. https://doi.org/10.1063/1.555935
- 9. Шпильрайн Э.Э., Каган Д.Н., Ульянов С.Н. Термодинамические функции элементов подгруппы щелочноземельных металлов (теплоемкость, энтальпия, энтропия энергия Гиббса). Обзоры по теплофизическим свойствам веществ. № 3(59). М.: ИВТАН, 1986. 77 с.
- Touloukian Y.S., Kirby R.K., Taylor R.E. Thermophysical properties of matter. V. 12. N.Y.: Plenum Press, 1975. 1442 p.
- Touloukian Y.S., Powell R.W., Ho C.Y., Nicolaou M.C. Thermophysical properties of matter. V. 10. N.Y., Washington: Plenum Press, 1973. 748 p.

- Touloukian Y.S., Powell R.W., Ho C.Y., Nicolaou M.C. Thermophysical properties of matter. V. 1. N.Y., Washington: Plenum Press, 1970. 1595 p.
- Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. М.: Металлургия, 1989. 384 с.
- 14. *Новикова С.И*. Тепловое расширение твердых тел. М.: Наука, 1974. 294 с.
- Ho C.Y., Powell R.W., Liley P.E. // J. Phys. Chem. Ref. Data. 1972. V. 1. P. 279. https://doi.org/10.1063/1.3253100
- Bridgman P.W. // Proc. Am. Acad. Arts Sci. 1923. V. 58. № 5. P. 1153. https://doi.org/10.4159/harvard.9780674287815.c14
- 17. Smith J.F., Carlson O.N., Vest R.W. // J. Electrochem. Soc. 1956. V. 103. № 7. P. 409. https://doi.org/10.1149/1.2430364
- 18. Schottmiller J.C., King A.J., Kanda F.A. // J. Phys. Chem. 1958. V. 62. № 11. P. 1446–1449. https://doi.org/10.1021/j150569a024
- Bernstein B.T., Smith J.F. // Acta Crystallogr. 1959.
 V. 12. № 5. P. 419. https://doi.org/10.1107/S0365110X59001268
- 20. Peterson D.T., Fattore V.G. // J. Phys. Chem. 1961. V. 65. № 11. P. 2062. https://doi.org/10.1021/j100828a034
- 21. Шпильрайн Э.Э., Фомин В.А., Качалов В.В. // ТВТ. 1986. Т. 24. № 2. С. 259.
- 22. *Hiemstra S., Prins D., Gabrielse G. et al.* // Phys. Chem. Liq. 1977. V. 6. № 4. P. 271. https://doi.org/10.1080/00319107708084145
- 23. Bohdansky J., Schins H.E.J. // JINC. 1968. V. 30. № 9. P. 2331. https://doi.org/10.1016/0022-1902(68)80241-6
- 24. Culpin M. F. // Proc. Phys. Soc. 1957. V. 70. № 11. P. 1079.
 - https://doi.org/10.1088/0370-1301/70/11/308
- 25. Ульянов С.Н. Термодинамические свойства щелочноземельных металлов при высоких температурах (разработка метода, экспериментальное исследование, таблицы рекомендуемых данных в твердой и жидкой фазах). Автореф. дис. М.: ИВТАН, 1985.
- 26. Cook J.G., Laubitz M.J., Meer M.P.V. // Can. J. Phys. 1975. V. 53. № 5. P. 486. https://doi.org/10.1139/p75-062
- Cook J.G., Meer M.P.V. // J. Phys. F: Metal Phys. 1973.
 V. 3. P. L130. https://doi.org/10.1088/0305-4608/3/8/002
- Abdullaev R.N., Khairulin R.A., Kozlovskii Yu.M. et al. // Trans. Nonferrous Met. Soc. China. 2019. V. 29. № 3. P. 507–514. https://doi.org/10.1016/S1003-6326(19)64959-9
- 29. *Abdullaev R.N., Agazhanov A.Sh., Khairulin A.R. et al.* // J. Eng. Thermophys. 2022. V. 31. № 3. P. 384. https://doi.org/10.1134/S181023282203002X
- 30. SpringerMaterials-properties of materials, https://materials.springer.com/
- Kozlovskii Yu.M., Stankus S.V. // High Temp. 2014.
 V. 52. № 4. P. 536. https://doi.org/10.1134/S0018151X1403016X

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 2 2023

- 32. Abdullaev R.N., Kozlovskii Yu.M., Khairulin R.A. et al. // Int. J. Thermophys. 2015. V. 36. № 4. P. 603. https://doi.org/10.1007/s10765-015-1839-x
- Stankus S.V., Khairulin R.A. // High Temp. 1992. V. 30. № 3. P. 386.
- 34. *Stankus S.V., Savchenko I.V., Yatsuk O.S.* // Instrum. Exp. Tech. 2017. V. 60. № 4. P. 608. https://doi.org/10.1134/S0020441217030265
- 35. *Stankus S.V., Savchenko I.V., Yatsuk O.S.* // High Temp. 2018. V. 56. № 1. P. 33. https://doi.org/10.1134/S0018151X18010170
- 36. Parker W.J., Jenkins R.J., Butler C.P. et al. // J. Appl. Phys. 1961. V. 32. № 9. P. 1679. https://doi.org/10.1063/1.1728417
- 37. Cape J.A., Lehman G.W. // J. Appl. Phys. 1963. V. 34. № 7. P. 1909. https://doi.org/10.1063/1.1729711
- 38. *Blumm J.*, *Opfermann J.* // High Temp.-High Press. 2002, V. 34. № 5. P. 515.

- Stankus S.V., Savchenko I.V. // Thermophys. Aeromech. 2009. V. 16. № 4. P. 585. https://doi.org/10.1134/S0869864309040076
- 40. Agazhanov A.Sh., Abdullaev R.N., Samoshkin D.A. et al. // Fusion Eng. Des. 2020. V. 152. P. 111456-1. https://doi.org/10.1016/j.fusengdes.2020.111456
- Пелецкий В.Э., Чеховской В.Я., Латыев Л.Н. и др. Теплофизические свойства молибдена и его сплавов: Справочник / Под ред. Шейндлина А.Е. М.: Металлургия, 1990. 302 с.
- 42. Савченко И.В. Измерение температуропроводности твердых материалов методом лазерной вспышки // Материалы 12-ой Всероссийской научной конференции студентов-физиков и молодых ученых (ВНКСФ-12), АСФ России, Екатеринбург, Новосибирск, 2006, С. 287.
- 43. Тонков Е.Ю. Фазовые диаграммы элементов при высоком давлении. М.: Наука, 1979. 192 с.