– ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 544.3

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА РАСТВОРОВ В СИСТЕМЕ H₂O-Na₂SO₄-Al₂(SO₄)₃

© 2023 г. А. В. Нестеров^{*a*, *b*}, А. М. Демченко^{*b*}, А. А. Поташников^{*b*}, А. Л. Восков^{*b*}, Н. А. Коваленко^{*b*}, *, И. А. Успенская^{*b*}

^аУниверситет МГУ-ППИ в Шэньчжэне, факультет наук о материалах,

ул. Гоцзидасюеюань, 1, Даюньсиньчэн, район Лунган, Шэньчжэнь, провинция Гуандун, 518172 Китай ^bМосковский государственный университет имени М.В. Ломоносова, Химический факультет,

Ленинские горы, 1, Москва, 119991 Россия

*e-mail: kovalenko@td.chem.msu.ru Поступила в редакцию 24.09.2022 г. После доработки 20.10.2022 г. Принята к публикации 21.10.2022 г.

Статическим методом измерено давление пара в системе $H_2O-Na_2SO_4-Al_2(SO_4)_3$ при 15, 25 и 35°С. Методом точки росы исследованы термодинамические свойства растворов в системах $H_2O-Al_2(SO_4)_3$ и $H_2O-Na_2SO_4-Al_2(SO_4)_3$ при 25 и 50°С. Получен набор параметров модели Питцера–Симонсона–Клегга, адекватно описывающий парожидкостные равновесия в системах $H_2O-Al_2(SO_4)_3$ и $H_2O-Na_2SO_4-Al_2(SO_4)_3$ в диапазоне от 15 до 50°С.

Ключевые слова: активность воды, растворы электролитов, сульфат алюминия, сульфат натрия, термодинамическое моделирование, модель Питцера–Симонсона–Клегга **DOI:** 10.31857/S0044457X22601687, **EDN:** LRKRHX

введение

Особенностью теплоаккумулирующих материалов на основе фазовых переходов (**TAM**) является их способность запасать избыточное тепло в виде энергии фазового превращения и высвобождать его при заданной температуре. Такие материалы применяются для стабилизации перепадов температуры в разных сферах, например в городском строительстве [1], при производстве упаковки продуктов питания [2], одежды [3], асфальта [4], литий-ионных аккумуляторов [5] и т.д.

В настоящее время исследователи уделяют большее внимание органическим ТАМ [6-8], таким как н-алканы, парафины, жирные кислоты, многоатомные спирты и их смеси. В то же время неорганические ТАМ (например, гидраты неорганических солей) обладают такими ценными качествами, как более высокие значения энтальпии плавления (в пересчете на Дж/м³), негорючесть и низкая стоимость [9]. Существует большое количество гидратов неорганических солей с высокой энтальпией плавления [9], на основе которых потенциально можно создать солевые теплоаккумулирующие композиции с необходимыми температурами плавления для различного применения. Некоторые композиции гидратов солей уже рассматриваются как основа перспективных ТАМ [10-16].

Однако подбор состава, соответствующего заданной температуре фазового перехода, - длительный и трудоемкий процесс из-за нелинейной зависимости свойств системы от состава. Альтернативой эксперименту может стать предсказание инвариантных точек с требуемой температурой фазового перехода на основе термодинамического моделирования многокомпонентной системы, в которой несколько соединений могут рассматриваться в качестве потенциальных теплоаккумулирующих материалов. Построение термодинамической модели логично осуществлять с детального изучения систем меньшей размерности. В рамках данного исследования рассмотрена тройная система H₂O-Na₂SO₄-Al₂(SO₄)₃, в которой присутствуют три перспективных в качестве ТАМ соединения: Na₂SO₄ \cdot 10H₂O, Al₂(SO₄)₃ \cdot 18H₂O и $NaAl(SO_4)_2 \cdot 12H_2O[9].$

Подсистема $H_2O-Na_2SO_4$ подробно изучена и представлена в литературе. Много работ посвящено описанию свойств растворов данной системы с помощью различных термодинамических моделей, таких как модель Питцера [17, 18], eNRTL [19] и eUNIQUAC [20]. Но наиболее полный объем данных, включавший в себя осмотические коэффициенты, среднеионные коэффициенты активности, теплоту разбавления и растворимость, использован авторами [21] при параметризации модели Питцера-Симонсона-Клегга.

Экспериментальные исследования подсистемы $H_2O-Al_2(SO_4)_3$ немногочисленны. Данные по осмотическим коэффициентам при 25 и 37°С представлены в работах [22, 23] соответственно. В работе [24] измерено давление пара над концентрированными растворами сульфата алюминия в диапазоне температур от 9 до 43°С (там же приведены результаты аппроксимации данных от 5 до 50° C), но полученные значения заметно отличаются от результатов работы [22]. В справочнике [25] даны сглаженные значения теплоемкости растворов сульфата алюминия. Также в литературе широко представлены данные по равновесию твердое-жидкость [26-32]. В работе [33] результаты измерений осмотических коэффициентов описаны моделью Питцера, но только при одной температуре 25°С. Свойства растворов этой системы моделировали с помощью расширенной модификации модели UNIQUAC, результаты представлены в докладах коммерческих компаний Aqueous Solutions Aps [34] и OLI Systems Inc. [35]. Однако стоит отметить, что сами параметры моделей в этих публикациях не приведены.

В литературе отсутствуют результаты исследования термодинамических свойств жидкой фазы в системе $H_2O-Na_2SO_4-Al_2(SO_4)_3$, которые необходимы для построения надежной термодинамической модели этой системы, но есть данные по равновесию твердое—жидкость [31, 36–39]. В работе [40] определены параметры модели Питцера для описания трехкомпонентных растворов, но авторы ограничились рассмотрением только одной температуры – 25°С. Как показано в докладе OLI Systems Inc. [35], расширенная модификация UNIQUAC позволяет описать растворимость солей в этой системе в диапазоне от 0 до 30°С, но параметры модели не опубликованы.

С учетом изложенного выше целесообразно провести дополнительные экспериментальные исследования термодинамических свойств растворов в системах $H_2O-Na_2SO_4-Al_2(SO_4)_3$ и $H_2O-Al_2(SO_4)_3$ с последующим определением численных значений параметров термодинамической модели жидкости; в качестве последней выбрана модель Питцера–Симонсона–Клегга (ПСК).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В настоящей работе термодинамические свойства растворов исследовали двумя независимыми методами. В системах $H_2O-Al_2(SO_4)_3$ и $H_2O-Na_2SO_4-Al_2(SO_4)_3$ значения активности воды в растворе получали методом точки росы на приборе Aqualab 4TE при температурах 25 и 50°C. Согласно паспорту данного прибора, погрешность измерения активности составляет 0.003. В системе $H_2O-Na_2SO_4-Al_2(SO_4)_3$ парциальное давление пара воды над раствором дополнительно измеряли статическим методом на оригинальной установке [41, 42] при температурах 15, 25 и 35°С. Ошибка измерения датчика давления, используемого в данной установке, составляет 0.5%.

Для приготовления исследуемых растворов использовали дистиллированную воду, концентрированную серную кислоту (СигмаТек, 96%), Na₂SO₄ (Баум-Люкс и ЛабТех, 99.5%) и кристаллогидрат Al₂(SO₄)₃ · nH₂O (Баум-Люкс, 99.5%). За исключением сульфата алюминия, который был очищен с помощью перекристаллизации, реактивы использовали без дополнительной очистки.

Перед приготовлением растворов сульфат натрия отжигали при температуре 150° С в течение 2 ч, чтобы удалить адсорбированную воду; ее отсутствие подтверждали термогравиметрическим методом с использованием термовесов TG 209 F1 Iris (NETZSCH, Германия) в интервале температур 30–500°С. Таким же способом предварительно определяли содержание воды в кристаллогидрате Al₂(SO₄)₃ · *n*H₂O, проводя измерения в интервале температур 30–900°С.

На первом этапе раздельно готовили концентрированные растворы сульфата алюминия и сульфата натрия. Поскольку сульфат алюминия в водной среде склонен к гидролизу [43], в исследуемые образцы добавляли малое количество серной кислоты для создания pH около 2. Итоговое содержание кислоты в приготовленных растворах было пренебрежимо мало, кислота вносит погрешность в определение состава около 0.027 мол. %. Поэтому в дальнейшем при построении термодинамической модели присутствием в растворах серной кислоты пренебрегали.

Для приготовления исследуемых растворов смешивали полученные на первом этапе концентрированные растворы сульфата алюминия и сульфата натрия, после чего разбавляли их водой до заданной концентрации. При разбавлении рН полученных растворов не превышал 3, что было достаточно для предотвращения гидролиза [43, 44].

Составы растворов рассчитывали исходя из концентраций исходных концентрированных растворов, а также их масс при разбавлении.

Содержание сульфата натрия в исследуемых растворах рассчитывали исходя из масс исходных навесок. Концентрацию сульфата алюминия в исходном концентрированном растворе, из которого готовили растворы для измерения активности воды на приборе Aqualab 4TE, определяли несколькими способами. Содержание сульфат-ионов находили гравиметрически с помощью раствора хлорида бария по методике [45]. Содержание ионов алюминия определяли гравиметрически с помощью 8-оксихинолина [46] и с

Рис. 1. Активность воды (*a*_w) в растворах H₂O−Al₂(SO₄)₃ при различных температурах. Символы обозначают экспериментальные данные: ◆◆ – данные, полученные в настоящей работе, при 25 и 50°С; ◆ – [22] при 25°С; ▼ – [23] при 37°С; х – [24] при 25, 37.5 и 50°С. Линии соответствуют расчету по модели ПСК: красная сплошная – при 25°С; зеленая штриховая – при 37°С; синяя пунктирная – при 50°С. Для наглядности графики смещены вверх относительно графика при 25°С: на 0.1 для 37°С, на 0.2 для 50°С.

применением обратного титрования раствором сульфата цинка в избытке ЭДТА в присутствии ксиленолового оранжевого [45]. Относительная стандартная неопределенность в содержании сульфата алюминия в итоговых растворах по нашим оценкам составила 1.5%.

Концентрацию сульфата алюминия в исходном концентрированным растворе, из которого готовили растворы для измерения давления пара статическим методом, определяли только обратным титрованием раствором сульфата цинка в избытке ЭДТА в присутствии ксиленолового оранжевого. Относительную стандартную неопределенность в содержании сульфата алюминия в итоговых растворах, приготовленных для измерения давления пара статическим методом, оцениваем в 2%.

РАСЧЕТНАЯ ЧАСТЬ

Выражение для избыточной энергии Гиббса (G^{ex}) водного раствора в предположении полной диссоциации соли в модели ПСК, так же как выражения для коэффициентов активности компонентов, кажущихся энтальпии и теплоемкости, представлены в работах [47, 48].

Для описания тройной системы $H_2O-Na_2SO_4-Al_2(SO_4)_3$ моделью ПСК требуется 18 параметров (ρ , α_{Na,SO_4} , α_{Na,SO_4}^l , B_{Na,SO_4} , B_{Na,SO_4}^l , W_{l,Na,SO_4} , U_{1,Na,SO_4} , V_{1,Na,SO_4} , α_{Al,SO_4} , α_{Al,SO_4}^l , B_{Al,SO_4} , B_{Al,SO_4}^l , B_{Al,SO_4}^l , W_{1,Al,SO_4} , U_{1,Al,SO_4} , V_{1,Al,SO_4} , W_{Na,Al,SO_4} , U_{Na,Al,SO_4} , Q_{1,Na,Al,SO_4}). В настоящей работе некоторые параметры модели ПСК, как в оригинальной работе [48],

принимались постоянными ($\rho = 13$, $\alpha_{Al,SO_4} = 13$, $\alpha_{Al,SO_4}^1 = 2$). Параметры модели ПСК для подсистемы $H_2O-Na_2SO_4$ были взяты из работы [21].

Для корректного описания термодинамических свойств при различных температурах требуется учитывать зависимость избыточной энергии от температуры. Для этого, как правило, вводят различные эмпирические температурные зависимости для параметров модели. В данной работе использовали функции вида:

$$P_{i} = P_{i,0} + P_{i,1}(T - T_{r}) + P_{i,2}(T^{2} - T_{r}^{2}), \qquad (1)$$

где T – абсолютная температура (К), T_r – референсная температура, равная 298.15 К, P_i – параметр модели ПСК и $P_{i,j}$ (j = 0, 1, 2) – оптимизируемые параметры.

Оптимизацию параметров модели осуществляли минимизацией целевой функции методом наименьших квадратов с использованием алгоритма Левенберга—Марквардта, реализованного в программном пакете MATLAB[®] R2021b.

Выбор целевой функции и методика расчета аналогичны подходам, представленным в работах [49, 50].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты измерений активности воды в системе $H_2O-Al_2(SO_4)_3$ представлены на рис. 1 и в табл. 1. Полученные данные об активности воды в системе $H_2O-Al_2(SO_4)_3$ при 25°C расходятся с приведенными в работе [24], но хорошо согласуются с данными [22], что показано на рис. 1. С уче-

$w(Al_2(SO_4)_3), \%^*$	w(H ₂ SO ₄), %	<i>a</i> _w (25°C)	$\Delta(a_{\rm w}), \%^{**}$	<i>a</i> _w (50°C)	$\Delta(a_{\rm w}), \%$
11.93	0.035	0.985	0.1	0.990	0.0
16.75	0.048	0.972	0.0	0.978	0.0
21.18	0.061	0.952	0.0	0.962	0.0
25.28	0.073	0.920	-0.1	0.938	-0.1

Таблица 1. Активности воды в растворе H₂O-Al₂(SO₄)₃ при 25 и 50°C, полученные методом точки росы

*Относительные стандартные неопределенности $u_r(w(Al_2(SO_4)_3)) = 0.015$, $u_r(w(H_2SO_4)) = 0.01$; абсолютная стандартная неопределенность $u(a_w) = 0.003$, где a_w – экспериментальное значение активности воды.

** $\Delta(a_{\rm w}), \% = \left(1 - a_{\rm w}/a_{\rm w}^{\rm calc}\right) \times 100\%$, где $a_{\rm w}^{\rm calc}$ – значение активности, рассчитанное по модели ПСК.

Таблица 2. Параметры модели ПСК для раствора системы $H_2O-Na_2SO_4-Al_2(SO_4)_3$

P_i^*	$P_{i,0}$	$P_{i,1}$	$P_{i,2}$	
$\mathbf{B}_{\mathrm{Al},\mathrm{SO}_4}^{\mathrm{l}}$	514.80	0.4031	-0.00010629	
$U_{1,Al,SO_4} \\$	81.120	0	0	
V_{1,Al,SO_4}	-150.36	0	0	
$\overline{C}_{p,2}^{\circ}$ **	-156.45	5.979	0	
W _{Na,Al,SO4}	98.043	0	-0.00051443	
Q_{1,Na,Al,SO_4}	-63.278	0	0	

*См. уравнение (1).

**Стандартная парциальная теплоемкость сульфата алюминия.

том этого данные по давлению пара из работы [24] не учитывались при параметризации модели. Чтобы подтвердить, что модель может описывать не только активности воды, но и термохимические свойства, в оптимизацию были включены значения кажущейся теплоемкости раствора при 15, 25 и 50°C. В итоге для оценки параметров модели ПСК в системе $H_2O-Al_2(SO_4)_3$ использовали данные об активности воды, полученные в настоящей работе при 25 и 50°С, осмотические коэффициенты при 25 [22] и 37°С [23] и данные по теплоемкостям раствора при 15, 25 и 50°С [25].

В табл. 2 приведены значения параметров температурно-зависимого варианта модели ПСК. Можно видеть, что результаты моделирования хорошо согласуются с экспериментальными данными по активности воды (рис. 1) и по теплоемкости раствора (рис. 2). Отклонение между значениями активности воды (a_w) , полученными экспериментально и рассчитанными по модели, не превышает ошибку эксперимента (табл. 1).

Результаты измерений активности воды в системе $H_2O-Na_2SO_4-Al_2(SO_4)_3$ методом точки росы приведены в табл. 3, статическим методом – в табл. 4; на рис. 3 сопоставлены результаты измерений, полученных двумя методами при 25°C.

Использование только бинарных параметров (т.е. полученных при описании бинарных подсистем) приводило к тому, что отклонение между значениями активности воды, полученными экспериментально и рассчитанными по модели, до-

Таблица 3. Значения активности воды в растворе $H_2O-Na_2SO_4-Al_2(SO_4)_3$, полученные при 25 и 50°C методом точки росы

N⁰	$w(Na_2SO_4),\%^*$	$w(Al_2(SO_4)_3), \%$	<i>w</i> (H ₂ SO ₄), %	$a_{\rm w}(25^{\circ}{ m C})$	$\Delta(a_{\rm w}), \%^{**}$	<i>a</i> _w (50°C)	$\Delta(a_{\rm w}), \%$
1.1	1.97	5.31	0.016	0.991	0.0	0.993	0.2
1.2	3.69	9.95	0.030	0.981	0.2	0.983	0.1
1.3	5.17	13.92	0.042	0.959	-0.3	0.967	0.1
1.4	6.50	17.50	0.053	0.931	0.1	0.941	0.3
2.1	4.45	2.12	0.006	0.990	0.3	0.990	0.2
2.2	8.30	3.95	0.012	0.977	0.1	0.978	0.1
2.3	11.76	5.60	0.017	0.959	-0.2	0.963	-0.1
2.4	14.81	7.04	0.021	0.940	-0.1	0.944	-0.2

* Относительные стандартные неопределенности $u_r(w(Al_2(SO_4)_3)) = 0.015, u_r(w(H_2SO_4)) = 0.01, u_r(w(Na_2SO_4)) = 0.003; абсолютная стандартная неопределенность <math>u(a_w) = 0.003$, где a_w – экспериментальное значение активности воды.

** $\Delta(a_w), \% = (1 - a_w/a_w^{calc}) \times 100\%$, где a_w^{calc} – значение активности, рассчитанное по модели ПСК.

Рис. 2. Удельная теплоемкость водных растворов сульфата алюминия при различных температурах. Символы – данные [25], линии – расчет по модели ПСК: красная сплошная – при 25°С; зеленая штриховая – при 15°С; синяя пунктирная – при 50°С. Для наглядности графики смещены вверх относительно графика при 15°С: на 200 Дж/(г °С) для 25°С, на 400 Дж/(г °С) для 50°С.

стигало 1.6%. Для повышения качества описания понадобилось ввести параметры тройных взаимодействий, значения которых приведены в табл. 2. При оптимизации параметров учитывали значения активности, полученные методом точки росы при 25 и 50°С и статическим методом при 15, 25 и 35°С.

Для большинства составов отклонения между экспериментальными и рассчитанными по модели значениям свойств находятся в пределах ошибок эксперимента. Исключением являются только два состава при 15°С (3.1 и 4.2), измерения которых проводили статическим методом. В этом случае отклонение между экспериментом и расчетом составило 0.6 и 0.9% соответственно.

Рис. 3. Активность воды (a_w) в растворе $H_2O-Na_2SO_4-Al_2(SO_4)_3$ при 25°С. Символы – экспериментальные данные, полученные в данной работе: • и • – статический метод, о и \Box – метод точки росы. Линии – расчет по модели ПСК с различным отношением $x(Na_2SO_4)/x(Al_2(SO_4)_3)$: зеленая штрихпунктирная (1) - 0.895; синяя пунктирная (2) - 5.06; черная сплошная (3) - 0.612; красная штриховая (4) - 5.50.

ЗАКЛЮЧЕНИЕ

В настоящей работе двумя независимыми методами получены экспериментальные данные об активности воды в растворах $H_2O-Na_2SO_4-Al_2(SO_4)_3$, хорошо согласующиеся между собой. Рассчитаны параметры модели Питцера—Симонсона—Клегга, адекватно описывающие имеющиеся экспериментальные данные о парожидкостных равновесиях и теплоемкости трехкомпонентных растворов. Рекомендуемые параметры могут быть в дальнейшем использованы для расчета фазовых равновесий в системе $H_2O-Na_2SO_4-Al_2(SO_4)_3$, а также в многокомпонентных систе-

Таблица 4. Значения активности воды в растворе $H_2O-Na_2SO_4-Al_2(SO_4)_3$, полученные при 15, 25 и 35°C статическим методом давления пара

N⁰	w(Na ₂ SO ₄), %*	$w(Al_2(SO_4)_3), \%$	$w(H_2SO_4), \%$	$a_{\rm w}(15^{\circ}{\rm C})$	$\Delta(a_{\rm w}), \%^{**}$	$a_{\rm w}(25^{\circ}{ m C})$	$\Delta(a_{\rm w}), \%$	$a_{\rm w}(35^{\circ}{\rm C})$	$\Delta(a_{\rm w}), \%$
3.1	1.68	6.63	0.102	0.982	-0.6	0.986	-0.4	0.986	-0.4
3.2	3.15	12.36	0.113	0.966	-0.5	0.970	-0.5	0.975	-0.2
3.3	4.17	16.39	0.117	0.948	0.2	0.954	-0.1	0.960	0.2
4.1	5.02	2.20	0.093	0.984	-0.1	0.984	-0.2	0.987	0.1
4.2	9.10	3.99	0.094	0.979	0.9	0.977	0.4	0.976	0.1
4.3	14.33	6.24	0.103	0.941	0.4	0.945	-0.3	0.950	-0.2

*Относительные стандартные неопределенности $u_r(w(Al_2(SO_4)_3)) = 0.02$, $u_r(w(H_2SO_4)) = 0.01$, $u_r(w(Na_2SO_4)) = 0.003$; абсолютная стандартная неопределенность $u(a_w) = 0.005$, где a_w – экспериментальное значение активности воды.

** $\Delta(a_{\rm w}), \% = \left(1 - a_{\rm w}/a_{\rm w}^{\rm calc}\right) \times 100\%$, где $a_{\rm w}^{\rm calc}$ – значение активности, рассчитанное по модели ПСК.

мах, в которых исследуемая тройная система является подсистемой.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке РФФИ и Правительства Москвы в рамках научного проекта № 21-33-70031, а также частично в рамках темы "Химическая термодинамика и теоретическое материаловедение" (№ 121031300039-1).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ИНФОРМАЦИЯ О ВКЛАДЕ АВТОРОВ

А.В. Нестеров и Н.А. Коваленко разработали методику эксперимента. А.М. Демченко и А.В. Нестеров получили экспериментальные результаты. А.Л. Восков подготовил программную реализацию модели ПСК. А.М. Демченко, А.А. Поташников и А.В. Нестеров провели теоретические расчеты. А.В. Нестеров подготовил первоначальный текст статьи. Н.А. Коваленко и И.А. Успенская подготовили концепцию исследования, осуществляли общее руководство и редактировали текст статьи. Все авторы участвовали в обсуждении результатов.

СПИСОК ЛИТЕРАТУРЫ

1. *Xu L., Dai L., Yin L. et al.* // Energy Build. 2020. V. 226. P. 110398.

https://doi.org/10.1016/j.enbuild.2020.110398

- Fernandes B.C.N., Paulo B.B., Guimarães M.C. et al. // Compr. Rev. Food Sci. Food Saf. 2022. V. 21. № 3. P. 2309. https://doi.org/10.1111/1541-4337.12933
- 3. *Yang K., Venkataraman M., Zhang X. et al.* // J. Mater. Sci. 2022. V. 57. № 2. P. 798. https://doi.org/10.1007/s10853-021-06641-3
- Guo M., Liang M., Jiao Y. et al. // Constr. Build. Mater. 2020. V. 258. P. 119565. https://doi.org/10.1016/j.conbuildmat.2020.119565
- Liu C., Xu D., Weng J. et al. // Materials. 2020. V. 13. № 20. P. 4622.
- https://doi.org/10.3390/ma13204622
- 6. *Kenisarin M.M.* // Sol. Energy. 2014. V. 107. P. 553. https://doi.org/10.1016/j.solener.2014.05.001
- Sharma R.K., Ganesan P., Tyagi V.V. et al. // Energy Convers. Manag. 2015. V. 95. P. 193. https://doi.org/10.1016/j.enconman.2015.01.084
- Magendran S.S., Khan F.S.A., Mubarak N.M. et al. // Nano-Structures Nano-Objects. 2019. V. 20. P. 100399.

https://doi.org/10.1016/j.nanoso.2019.100399

- 9. *Cabeza L.F., Castell A., Barreneche C. et al.* // Renew. Sustain. Energy Rev. 2011. V. 15. № 3. P. 1675. https://doi.org/10.1016/j.rser.2010.11.018

№ 3. P. 550.

29. *Henry J.L., King G.B.* // J. Am. Chem. Soc. 1949. V. 71. № 4. P. 1142. https://doi.org/10.1021/ja01172a002

https://doi.org/10.1021/ja01270a013

 Kremann R., Huttinger K. // Jahrb. K. K. Geol., Reichsan. 1908. V. 58. P. 637.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 2 2023

- Kistanova N.S., Mukminova A.R., Koneva I.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1736. https://doi.org/10.1134/S0036023621110127
- 11. *Marcus Y., Minevich A., Ben-Dor L.* // Thermochim. Acta. 2004. V. 412. № 1–2. P. 163. https://doi.org/10.1016/j.tca.2003.09.019
- 12. *Marcus Y.* // J. Solution Chem. 2005. V. 34. № 3. P. 307. https://doi.org/10.1007/s10953-005-3051-2
- 13. *Liu Y., Yang Y. //* Appl. Therm. Eng. 2017. V. 112. P. 606. https://doi.org/10.1016/j.applthermaleng.2016.10.146
- 14. Graham M., Coca-Clemente J.A., Shchukina E. et al. // J. Mater. Chem. A. 2017. V. 5. № 26. P. 13683. https://doi.org/10.1039/C7TA02494K
- Pichandi R., Murugavel Kulandaivelu K., Alagar K. et al. // Energy Sources, Part A Recover. Util. Environ. Eff. 2020. P. 1. https://doi.org/10.1080/15567036.2020.1817185
- Khan A.R., Khan M., Rehman A.U. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1125. https://doi.org/10.1134/S0036023622070129
- 17. *Marion G.M., Farren R.E.* // Geochim. Cosmochim. Acta. 1999. V. 63. № 9. P. 1305. https://doi.org/10.1016/S0016-7037(99)00102-7
- Toner J.D., Catling D.C. // J. Chem. Eng. Data 2017. V. 62. № 10. P. 3151. https://doi.org/10.1021/acs.jced.7b00265
- Yan Y., Chen C.-C. // Fluid Phase Equilib. 2011. V. 306. № 2. P. 149. https://doi.org/10.1016/j.fluid.2011.03.023
- Hingerl F.F., Wagner T., Kulik D.A. et al. // Chem. Geol. 2014. V. 381. P. 78. https://doi.org/10.1016/j.chemgeo.2014.05.007
- 21. *Li D., Zeng D., Yin X. et al.* // Calphad. 2018. V. 60. P. 163.

https://doi.org/10.1016/j.calphad.2018.01.002

- 22. Robinson R.A. // J. Am. Chem. Soc. 1937. V. 59. № 1. P. 84. https://doi.org/10.1021/ja01280a019
- 23. *Burge D.E.* // J. Phys. Chem. 1963. V. 67. № 12. P. 2590. https://doi.org/10.1021/j100806a021
- 24. Apelblat A., Korin E. // J. Chem. Thermodyn. 2002. V. 34. № 12. P. 1919. https://doi.org/10.1016/S0021-9614(02)00188-X
- 25. Зайцев И.Д., Асеев Г.Г. Физико-химические свойства бинарных и многокомпонетных растворов неорганических веществ. М.: Химия, 1988. 416 с.
- 26. *Taylor D., Bassett H.* // J. Chem. Soc. 1952. V. 1. P. 4431. https://doi.org/10.1039/JR9520004431
- 27. *Smith N.O., Walsh P.N.* // J. Am. Chem. Soc. 1954. V. 76. № 8. P. 2054. https://doi.org/10.1021/ja01637a007

28. Hill A.E., Kaplan N. // J. Am. Chem. Soc. 1938. V. 60.

- Skarulis J.A., Horan H.A., Maleeny R. // J. Am. Chem. Soc. 1954. V. 76. № 5. P. 1450. https://doi.org/10.1021/ja01634a096
- 32. Horan H.A., Skarulis J.A. // J. Am. Chem. Soc. 1939. V. 61. № 10. P. 2689. https://doi.org/10.1021/ja01265a032
- 33. *Christov C.* // Calphad 2001. V. 25. № 3. P. 445. https:// doi.org/10.1016/S0364-5916(01)00063-3
- Thomsen K. Modeling systems containing aluminum in addition to H₂O-(K⁺, Na⁺, H⁺, Ca²⁺)-(F⁻, Cl⁻, HSO₄⁻, SO₄²⁻, OH⁻, CO₂, HCO₃⁻, CO₃²⁻, H₃PO₄, H₂PO₄⁻, HPO₄²⁻, PO₄³⁻), Søborg: Aqueous Solutions Aps, 2009, 23 p.
- 35. *Wang P., Anderko A., Young R.D. et al.* A comprehensive model for calculating phase equilibria and thermophysical properties of electrolyte systems. N.J.: OLI Systems Inc., 2008. 15 p.
- Dobbins J.T., Addleston J.A. // J. Phys. Chem. 1935.
 V. 39. № 5. P. 637. https://doi.org/10.1021/j150365a007
- Dobbins J. T., Byrd R.M. // J. Phys. Chem. 1931. V. 35. № 12. P. 3673. https://doi.org/10.1021/j150330a018
- Лайнер А.И., Пустильник Г.Л., Пустильник А.И. // Журн. прикл. химии. 1970. Т. 43. № 8. С. 1970.
- Mousseron M.M., Gravier P. // Bull. Soc. Chim. Fr. 1932. V. 51. P. 1382.
- 40. *Christov C.* // Calphad. 2002. V. 26. № 1. P. 85. https://doi.org/10.1016/S0364-5916(02)00026-3

- 41. *Kovalenko N.A., Pustovgar E.A., Uspenskaya I.A.* // J. Chem. Eng. Data. 2013. V. 58. № 1. P. 159. https://doi.org/10.1021/je301087w
- 42. Kosova D.A., Voskov A.L., Kovalenko N.A. et al. // Fluid Phase Equilib. 2016. V. 425. P. 312. https://doi.org/10.1016/j.fluid.2016.06.021
- 43. *Baes C.F., Mesmer R.E.* The Hydrolysis of Cations. N.Y.: John Wiley & Sons, Inc, 1976. 489 p.
- 44. *Martin R.B.* // J. Inorg. Biochem. 1991. V. 44. № 2. P. 141. https://doi.org/10.1016/0162-0134(91)84026-6
- 45. Фадеева В.И., Шеловцова Т.Н., Иванов В.М. Основы аналитической химии. Практическое руководство / Под ред. Золотова Ю.А. М.: Высш. шк., 2003. 463 с.
- 46. *Hillebrand W.F., Lundell G.E.F.* // Applied inorganic analysis: with special reference to the analysis of metals, minerals, and rocks. N.Y.: John Wiley & Sons, Inc, 1953. 1034 p.
- Clegg S.L., Pitzer K.S. // J. Phys. Chem. 1992. V. 96. № 8. P. 3513. https://doi.org/10.1021/j100187a061
- 48. *Clegg S.L., Pitzer K.S., Brimblecombe P.* // J. Phys. Chem. 1992. V. 96. № 23. P. 9470. https://doi.org/10.1021/j100202a074
- 49. Novikov A.A., Dzuban A.V., Kovalenko N.A. et al. // J. Chem. Eng. Data 2021. V. 66. № 5. P. 1839. https://doi.org/10.1021/acs.jced.1c00102
- 50. Dzuban A.V., Novikov A.A., Nesterov A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 2. https://doi.org/10.31857/S0044457X22601419