СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.881.31:022.532

ВЛИЯНИЕ УСЛОВИЙ ОБРАЗОВАНИЯ НА ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА Cs_xV₂O₅ · *n*H₂O

© 2023 г. Н. В. Подвальная^{а, *}, Г. С. Захарова^а

^аИнститут химии твердого тела УрО РАН, ул. Первомайская, 91, Екатеринбург, 620990 Россия *e-mail: podnat@inbox.ru Поступила в редакцию 15.08.2022 г. После доработки 14.10.2022 г.

Принята к публикации 17.10.2022 г.

Гидротермальным, гидролитическим и золь-гель методами синтезированы цезийсодержащие соединения на основе гидратированного оксида ванадия(V) общей формулы $C_{s_x}V_2O_5 \cdot nH_2O$, где $0.1 \le x \le 0.6, 0.8 \le n \le 1.2$. Установлено, что область гомогенности по катиону внедрения Cs^+ , а также содержание четырехвалентного ванадия определяются условиями получения образцов. Основные физико-химические характеристики полученных соединений изучены с помощью ИК-спектроскопии, рентгенофазового и термогравиметрического анализа, сканирующей электронной микроскопии и низкотемпературной адсорбции азота. Наибольшей удельной поверхностью, равной 34.0 и $16.5 \text{ м}^2/\text{г}$, обладают соединения $Cs_xV_2O_5 \cdot nH_2O$ стержневой морфологии, полученные гидролитическим и гидротермальным методами синтеза соответственно. Температурные зависимости электропроводности $Cs_xV_2O_5 \cdot nH_2O$ позволили оценить энергию активации проводимости соединений, различающихся содержанием четырехвалентного ванадия. Показано, что только в высокотемпературной области энергия активации проводимости зависит от содержания V^{4+} в образцах, наименьшее значение которой имеет $Cs_0 K_2O_5 \cdot H_2O$, синтезированный гидротермальным методом.

Ключевые слова: гидратированный оксид ванадия(V), цезий, гидротермальный метод, гидролитическое осаждение, золь-гель метод, морфология, удельная поверхность, электропроводность **DOI:** 10.31857/S0044457X22601389, **EDN:** JCUAQO

ВВЕДЕНИЕ

Гидратированный оксид ванадия(V) V2O5 · · *n*H₂O привлекает внимание исследователей благодаря уникальной слоистой структуре, позволяющей легко проводить процессы интеркаляции/деинтеркаляции катионов различных металлов, а также молекул органических соединений [1]. Это свойство способствует использованию данных соединений в качестве катодных материалов химических источников тока [2], тонкопленочных материалов термоэлектрических приборов [3], газовых сенсоров для определения триэтиламина $C_6H_{15}N$ и монооксида углерода CO [4]. Высокая интеркаляционная емкость гидратированного оксида ванадия объясняется его химической природой. Он представляет собой поливанадиевую кислоту $H_2V_{12}O_{31} \cdot nH_2O$, содержащую обменно-активные протоны [5].

На основе $V_2O_5 \cdot nH_2O$ могут быть получены твердые растворы внедрения общей формулы $M_xV_2O_5 \cdot nH_2O$ с широкой областью гомогенности по внедряемому катиону [6]. Известно, что для соединений $M_xV_2O_5 \cdot nH_2O$ (M = Li, Na, K, Rb, Cs) величина межслоевого расстояния пропорциональна размеру гидратированного катиона и увеличивается в ряду от Cs⁺ к Li⁺, оказывая влияние на физико-химические свойства соединения. В литературе имеется большое количество публикаций, посвященных $M_x V_2 O_5 \cdot n H_2 O (M = Li, Na, K)$ [2, 3, 6-8], при этом сведения по $Cs_{x}V_{2}O_{5} \cdot nH_{2}O_{5}$ весьма малочисленны. Соединения на основе гидратированного оксида ванадия(V), содержащие цезий, могут быть синтезированы методом ионного обмена [9, 10]. Наличие ионообменных протонов в структуре гидратированного оксида ванадия позволяет получить $Cs_{0.28}V_2O_5 \cdot 0.8H_2O$ с межслоевым расстоянием ~11 Å [10]. Высокая селективность $V_2O_5 \cdot nH_2O$ к катионам Cs⁺ способствует синтезу $Cs_rV_2O_5 \cdot nH_2O$ даже из высококонцентрированных растворов щелочных и щелочноземельных металлов. Такая высокая избирательность может быть использована при извлечении ионов цезия из растворов [11]. Проведение синтеза методом ионного обмена в атмосфере азота с использованием в качестве растворителя ацетона приводит к повышению содержания цезия в образцах с образованием соединений состава $Cs_{0.41}V_2O_5 \cdot nH_2O$ [12]. Традиционным способом синтеза $Cs_xV_2O_5 \cdot nH_2O$ является золь-гель метод, при котором для получения ксерогеля $(H_3O)_{0.15}Cs_{0.18}V_2O_{5.1} \cdot 0.65H_2O$ используется раствор пероксованадата цезия [13]. Следует отметить, что в литературе практически отсутствуют сведения о простых и надежных гидрохимических методах синтеза $Cs_xV_2O_5 \cdot nH_2O$, позволяющих регулировать его морфологию, размер частиц, а также содержание четырехвалентного ванадия в конечном продукте.

Цель настоящей работы — изучение условий образования цезийсодержащих соединений на основе гидратированного оксида ванадия(V) состава $Cs_xV_2O_5 \cdot nH_2O$ гидролитическим (**Hyd**), гидротермальным (**AC**) и золь-гель (**SG**) методами синтеза. Дополнительно проведен сравнительный анализ структуры, морфологии, текстурных характеристик и электропроводности $Cs_xV_2O_5 \cdot nH_2O$, синтезированных в Hyd-, AC- и SG-условиях. Впервые для получения $Cs_xV_2O_5 \cdot nH_2O$ применен гидротермальный метод синтеза.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных вешеств использовали метаванадат цезия CsVO₃ марки "ос. ч.", сульфат ванадила гидрат VOSO₄ · 3H₂O "ч. д. а.", оксид ванадия(V) V₂O₅ "ос. ч.", 30%-ный раствор пероксида водорода Н₂О₂ марки "ос. ч.". Сульфат ванадила гидрат применяли для регулирования кислотности реакционных растворов. Соединения $Cs_{r}V_{2}O_{5} \cdot nH_{2}O$ синтезировали тремя способами. При гидролитическом методе 50 мл реакционного раствора с молярным соотношением исходных компонентов $0.1 \le C_{sVO_3}/VOSO_4 \cdot 3H_2O \le 2$ и $1.9 \le$ $\leq pH \leq 3.6$ нагревали до $80^{\circ}C$ и выдерживали в течение 2 ч. В результате были получены темнозеленые осадки, маркированные как $Cs_xV_2O_5$ · $\cdot nH_2O$ -Hyd, которые затем отфильтровывали, промывали водой и сушили на воздухе при комнатной температуре. При гидротермальном методе синтеза 30 мл реакционного раствора с $2.5 \le pH \le 2.8$, содержащего исходные соединения в молярном соотношении $0.03 \le C_{sVO_{3}}/VOSO_{4} \cdot 3H_{2}O \le 0.1$, загружали в автоклав объемом 50 мл, нагревали до 180°C со скоростью 5 град/мин и выдерживали в течение 24 ч. Образовавшиеся темно-зеленые осадки отфильтровывали, промывали водой и сушили на воздухе при комнатной температуре. Полученные соединения обозначены как $Cs_xV_2O_5 \cdot nH_2O$ -AC. Пероксидные растворы, содержащие исходные компоненты в соотношении $0 < C_{s}VO_{3}/V_{2}O_{5} \le 0.3$, были использованы для получения образцов золь-гель методом [13]. Реакционную массу медленно нагревали до 60°С и выдерживали при перемешивании в течение 1 ч. При этом происходило интенсивное разложение пероксидных соединений ванадия с

образованием геля, который затем сушили при 60° С на воздухе с получением темно-бурого продукта. Синтезированные по золь-гель технологии ванадаты цезия обозначены как Cs_xV₂O₅ · *n*H₂O-SG.

Содержание ионов цезия определяли методом атомно-абсорбционной спектроскопии в пламени ацетилен-воздух на приборе Atomic Absorption Spectrophotometer 503 (Perkin-Elmer). Onpeделение суммарного содержания ванадия проводили титрованием солью Мора в присутствии фенилантраниловой кислоты, концентрации ва-Hagus(IV) — титрованием перманганатом калия. Рентгенофазовый анализ (РФА) выполняли на лифрактометре Shimadzu XRD 7000. Исследования образцов методом ИК-Фурье-спектроскопии проводили на спектрометре Spectrum One (Perkin-Elmer). Текстурные характеристики (удельную поверхность, пористость) определяли методом низкотемпературной адсорбции азота на анализаторе Gemini VII (Micromeritics). Исследование морфологии образцов осуществляли на сканирующем электронном микроскопе (СЭМ) JEOL JSM 6390 LA, интегрированном с энергодисперсионным рентгеновским анализатором EX-23010BU. Термический анализ проводили в атмосфере воздуха на анализаторе STA 449 F₃ Jupiter (Netzsch), совмещенном с масс-спектрометром QMC 403 (ТГ-ДСК-МС). Электросопротивление образцов измеряли двухконтактным методом цифровым прибором Е7-14 на переменном токе с частотой 1 МГц в режимах нагревания (скорость нагрева 2 град/мин) и естественного охлаждения. Образцы готовили в виде таблеток прессованием порошков синтезированных соединений под давлением 10⁸ Па с последующим нанесением на их поверхность слоя графита.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В результате использования гидротермального, гидролитического и золь-гель методов синтеза получено три типа цезийсодержащих соединений. Соединения имеют общую формулу $Cs_xV_2O_5 \cdot nH_2O$ и являются твердыми растворами внедрения на основе $V_2O_5 \cdot nH_2O$. Фазовый состав синтезированных осадков установлен с помощью ИК-спектроскопии как наиболее информативного метода для гидратированных ванадатов. В гидротермальных условиях образование $Cs_{0.6}V_{0.6}^{4+}V_{1.4}^{5+}O_5 \cdot nH_2O-AC$ происходит в очень узком интервале молярного соотношения исходных компонентов $0.04 \leq CsVO_3/VOSO_4$ · \cdot 3H₂O \leq 0.05 при pH 2.8. ИК-спектр синтезированного соединения в области колебаний связей V–O подобен спектру $V_2O_5 \cdot 0.6H_2O$ (рис. 1a, кривая 1) [14]. Интенсивная узкая полоса при 1012 см⁻¹ обусловлена валентными колебаниями кратных связей V=O, полоса при 766 см $^{-1}$ характеризует асимметричные валентные колебания

мостиковых связей V-O-V, а полоса при 540 см $^{-1}$ валентные колебания связей V-O кристаллической решетки $Cs_{0.6}V_2O_5 \cdot nH_2O$ -АС. Отличительной особенностью ИК-спектра Cs0.6V2O5 · nH2O-AC является отсутствие характерной полосы поглощения при ~924 см⁻¹, ответственной за валентные колебания связей V...OH [15]. Это свидетельствует о переходе части ионов ванадия(IV) из ванадий-кислородных слоев (анионная подрешетка) в межслоевое пространство в виде ванадил-ионов VO²⁺ (катионная подрешетка) [16]. Очевидно, что введение в реакционную массу сульфата ванадила гидрата в виде ионов VO²⁺ позволяет целенаправленно изменять концентрацию четырехвалентного ванадия в конечном продукте. По-видимому, катионы VO²⁺ стимулируют полимеризацию анионов $H_2V_{10}O_{28}^{4-}$, создавая благоприятные условия для образования $Cs_xV_2O_5 \cdot nH_2O$, а проведение синтеза в условиях автоклавной обработки, вероятно, способствует восстановлению пятивалентного ванадия до четырехвалентного и его частичному переходу в катионную подрешетку. Деформационные колебания молекул воды в Cs_{0.6}V₂O₅ · · *n*H₂O-AC соответствуют полосам в области ~1615-1616 см⁻¹, а полосы, отвечающие валентным колебаниям Н–О–Н, проявляются в интервале 3544-3582 см⁻¹. При молярном соотношении CsVO₃/VOSO₄ · $3H_2O < 0.04$ осадок не образуется. С ростом молярного соотношения $CsVO_3/VOSO_4 \cdot 3H_2O > 0.05$ в продуктах реакции помимо основной фазы Cs_xV₂O₅ · *n*H₂O дополнительно фиксируется в качестве примеси триванадат цезия CsV₃O₈ [17]. При этом в ИК-спектрах наряду с полосами основной фазы Cs_{0.6}V₂O₅ · *n*H₂O-AC наблюдается слабое плечо при ~952-967 см⁻¹, свидетельствующее о присутствии в качестве примеси CsV₃O₈ (рис. 1а, кривая 2).

Гидролитическим методом синтеза в интервале молярных соотношений $0.5 \leq C_{sVO_3}/VOSO_4$ · $\cdot 3H_2O \le 1.5$ получены цезийсодержащие соединения на основе гидратированного оксида ванадия(V) общей формулы $Cs_xV_2O_5 \cdot nH_2O$ -Hyd ($0.2 \le x \le 0.3$). Соединение состава $Cs_{0.3}V_{0.3}^{4+}V_{1.7}^{5+}O_5 \cdot nH_2O$ -Hyd, характеризующееся максимальным содержанием четырехвалентного ванадия, получено при молярном соотношении $0.5 \le CsVO_3/VOSO_4 \cdot 3H_2O \le 1.0$ и $2.8 \le pH \le 3.0$. Соединение $Cs_{0.2}V_2O_5 \cdot nH_2O$ -Hyd, отличающееся минимальным содержанием четырехвалентного ванадия, формируется при молярном соотношении $1.0 < C_{sVO_3}/VOSO_4 \cdot 3H_2O \le 1.5$. Дальнейшее увеличение концентрации цезия в исходном pactbope (CsVO₃/VOSO₄ · $3H_2O > 1.5$) приводит к образованию смеси Cs_xV₂O₅ · *n*H₂O как основной фазы и CsV₃O₈ в качестве примеси. При $CsVO_3/VOSO_4 \cdot 3H_2O < 0.5$ осадок практически не

Рис. 1. ИК-спектры соединений, полученных гидротермальным методом (а) при молярном соотношении исходных компонентов $0.04 \le CsVO_3/VOSO_4 \cdot 3H_2O \le \le 0.05$ (*I*) и CsVO₃/VOSO₄ $\cdot 3H_2O > 0.05$ (*2*), гидролитическим методом (б) при $0.5 \le CsVO_3/VOSO_4 \cdot 3H_2O \le \le 1.5$ (*I*) и CsVO₃/VOSO₄ $\cdot 3H_2O > 1.5$ (*2*), золь-гель методом (в) при молярном соотношении при CsVO₃/V₂O₅ = 0 (*I*), 0 < CsVO₃/V₂O₅ ≤ 0.2 (*2*) и CsVO₃/V₂O₅ > 0.2 (*2*) и CsVO₃/V₂O₅ > 0.2 (*3*). Полосы вазелинового масла обозначены звездочкой.

образуется. На рис. 16 (кривая *I*) приведен ИКспектр $C_{s_{0.3}}V_2O_5 \cdot nH_2O$ -Нуd, полученного при молярном отношении CsVO₃/VOSO₄ · 3H₂O = 1.0. При CsVO₃/VOSO₄ · 3H₂O > 1.5 наряду с полосами основной фазы $C_{s_x}V_2O_5 \cdot nH_2O$ -Нуd наблюдается полоса при 680 см⁻¹, характеризующая асимметричные валентные колебания мостиковых связей V–O–V, и слабое плечо при ~960–968 см⁻¹, относящееся к валентным колебаниям связей V–O и свидетельствующее о присутствии в качестве примеси CsV₃O₈ (рис. 16, кривая *2*) [14].

Золь-гель методом при молярном соотношении компонентов реакционной смеси 0 < $< C_{sVO_{3}}/V_{2}O_{5} \le 0.2$ синтезировано соединение $Cs_xV_2O_5 \cdot nH_2O$ -SG, где $0.1 \le x \le 0.18$. С ростом отношения $C_{s}VO_{3}/V_{2}O_{5} > 0.2$ в осадках фиксируется примесь CsV_3O_8 . При $CsVO_3/V_2O_5 = 0$ образуется $V_2O_5 \cdot nH_2O$ (рис. 1в, кривая *1*). На рис. 1в (кривая *2*) представлен ИК-спектр $Cs_rV_2O_5 \cdot nH_2O$ -SG, синтезированного при соотношении $0 < C_{sVO_3}/V_2O_5 \le$ ≤0.2. Содержание цезия в образце хорошо согласуется с результатами, приведенными в работе [13]. При молярном отношении $C_{sVO_3}/V_2O_5 > 0.2$ помимо основной фазы Cs_xV₂O₅ · *n*H₂O-SG обнаружена примесь CsV₃O₈, что подтверждается наличием в ИК-спектрах полосы при 675 см⁻¹, отвечающей асимметричным валентным колебаниям мостиковых связей V–O–V (рис. 1в, кривая 3).

В соответствии с полученными результатами, а также с данными по ионному состоянию ванадия(V) в растворах в слабокислой области pH [18], создаваемой VOSO₄ \cdot 3H₂O, процесс образования цезийсодержащего соединения на основе гидратированного оксида ванадия(V) при гидротермальном и гидролитическом методах синтеза может быть представлен реакцией:

$$\frac{1/3Cs^{+} + 1/6H_{2}V_{10}O + 1/3VO^{2+} + nH_{2}O}{= Cs_{0.33}V_{2}O_{5} \cdot nH_{2}O + 1/3H^{+}}.$$
(1)

Формирование $Cs_xV_2O_5 \cdot nH_2O$ в условиях зольгель метода описывается приведенными ниже химическими реакциями. На первой стадии при растворении оксида ванадия(V) в пероксиде водорода образуется красно-коричневая монопероксованадиевая кислота [19]:

$$V_2O_5 + 2H_2O_2 \rightarrow 2HVO_2(O_2) + H_2O.$$
 (2)

Согласно диаграмме ионного состояния ванадия(V) в кислой среде в рабочем диапазоне концентраций ванадия последний существует в виде иона VO_2^+ [18], образование которого может быть представлено реакцией:

$$HVO_2(O_2) + H^+ \rightarrow VO_2^+ + H_2O + 1/2O_2.$$
 (3)

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 3 2023

При введении CsVO₃ происходит формирование Cs_xV₂O₅ · nH₂O-SG:

$$2VO_{2}^{+} + xCs^{+} + (1 + n + 0.5x)H_{2}O \rightarrow$$

$$\Rightarrow Cs_{x}V_{2}O_{5} \cdot nH_{2}O + (2 + x)H^{+} + 0.25xO_{2}.$$
 (4)

Соединения $Cs_xV_2O_5 \cdot nH_2O$, синтезированные различными методами и характеризующиеся повышенным содержанием четырехвалентного ванадия, были подробно изучены с помощью РФА (рис. 2). Соединения кристаллизуются в моноклинной сингонии (пр. гр. C12/m1). На дифрактограммах всех синтезированных $Cs_xV_2O_5 \cdot nH_2O$ аналогично $V_2O_5 \cdot nH_2O$ фиксируются рефлексы от плоскостей (001), подтверждающие их слоистое строение. Наличие рефлексов *hkl* в образцах свидетельствует о частичной потере слоистой ориентации слоев V–O при внедрении Cs⁺ в межслоевое пространство. Подобное разупорядочение слоистой структуры отмечено при интеркаляции

 $V_2O_5 \cdot nH_2O$ катионами NH⁺₄ [20], Na⁺, тетраметиламмония (CH₃)₄N⁺ [21] и K⁺ [22]. Межслоевое расстояние в $Cs_{0.6}V_2O_5 \cdot nH_2O$ -AC ($d_{001} = 11.15$ Å) меньше аналогичного значения для Cs0.3V2O5 · $\cdot nH_2$ O-Hyd ($d_{001} = 11.58$ Å) и Cs_{0.18}V₂O₅ $\cdot nH_2$ O-SG $(d_{001} = 11.54 \text{ Å})$. Вероятно, это связано с увеличением электростатического взаимодействия катионов цезия и ионов ванадила VO²⁺, расположенных в межслоевом пространстве, с отрицательно заряженными слоями V–O $Cs_{0.6}V_2O_5 \cdot nH_2O$ -AC [20]. Межслоевое расстояние в $Cs_{0.6}V_2O_5 \cdot nH_2O_5$ АС также меньше, чем в $V_2O_5 \cdot 1.6H_2O$, где оно составляет 11.57 Å [23]. Очевидно, что значение межслоевого расстояния зависит не только от электростатического взаимодействия между Cs⁺, VO²⁺, находящимися в межслоевом пространстве, и отрицательно заряженными слоями V-O, сжимающего межслоевое расстояние, но и от степени гидратации соединений. приводящей к расширению межслоевого расстояния. Значение межслоевого расстояния для ванадатов, синтезированных гидролитическим и золь-гель методами. близко к величине межслоевого расстояния для $V_2O_5 \cdot 1.6H_2O_5$. Оценка среднего размера кристаллитов $Cs_{r}V_{2}O_{5} \cdot nH_{2}O_{5}$, полученных различными методами синтеза, была проведена с использованием уравнения Шеррера [24]. Средний размер кристаллитов равен ~16.4, 6.0 и 7.4 нм для $Cs_{0.6}V_2O_5 \cdot nH_2O$ -AC, $Cs_{0.3}V_2O_5 \cdot nH_2O$ -Hyd и $Cs_{0.18}V_2O_5 \cdot nH_2O$ -SG соответственно. Увеличение размера частиц при формировании Cs_{0.6}V₂O₅ · · *n*H₂O-AC, вероятно, обусловлено процессами агрегации частиц под действием более высоких температур, используемых при проведении синтеза в гидротермальных условиях.

Рис. 2. Дифрактограммы порошков $Cs_{0.3}V_2O_5 \cdot nH_2O-$ Нуd (1), $Cs_{0.6}V_2O_5 \cdot nH_2O-AC$ (2), $Cs_{0.18}V_2O_5 \cdot nH_2O-$ SG (3) и позиции брегговских пиков $V_2O_5 \cdot 1.6H_2O$ по данным ICSD № 74-3093.

Электронно-микроскопические исследования показали, что метод синтеза определяет морфологию конечного продукта. Соединение $Cs_{0.3}V_2O_5$ · · *n*H₂O-Hyd образовано частицами стержневой морфологии диаметром 30-45 нм и длиной 0.3-0.5 мкм, агломерированными в ансамбли, подобные цветам диаметром 1-3 мкм (рис. 3). Cs_{0.6}V₂O₅ · · *n*H₂O-AC также имеет морфологию стержней диаметром 70-170 нм и длиной 5-10 мкм (рис. 4). Цезийсодержащее соединение на основе гидратированного оксида ванадия(V), синтезированное зольгель методом, состоит из частиц размером до 120 мкм, образованных сросшимися пластинами неправильной формы (рис. 5). Чистота синтезированных продуктов и отсутствие посторонних примесей подтверждены энергодисперсионным рентгеновским микроанализом (рис. 3в-5в). Как показывают экспериментальные данные, в формировании морфологии частиц Cs_rV₂O₅ · nH₂O сульфат ванадила гидрат выполняет роль покрывающего areнта (capping agent). Вероятно, ионы

 SO_4^{2-} селективно адсорбируясь на гранях продуктов синтеза, могут координироваться ионами VO^{2+} или способствовать их селективной адсорбции на гранях кристалла, приводя к формированию $Cs_xV_2O_5 \cdot nH_2O$ стержневой морфологии. Следует отметить, что явление "сарріпд agent" в последние десятилетия получает все большую популярность для синтеза веществ с преимущественной ориентацией или заданной морфологией [25, 26].

Рис. 3. СЭМ-изображения и спектр рентгеновского энергодисперсионного микроанализа $Cs_{0.3}V_2O_5$ · nH_2O -Нуd. Дополнительный пик от углерода обусловлен подложкой, применяемой для фиксации образца.

На рис. 6 представлены результаты исследования удельной поверхности и пористости синтезированных цезийсодержащих соединений на основе гидратированного оксида ванадия(V). Согласно классификации ИЮПАК [27], изотермы сорбции гидратов $Cs_xV_2O_5 \cdot nH_2O$ относятся к IV типу с петлей гистерезиса H3. Такое поведение ассоциируется с наличием в соединениях пор щелевидной формы. Установлено, что удельная поверхность образцов $Cs_{0.3}V_2O_5 \cdot nH_2O$ -Hyd, $Cs_{0.6}V_2O_5 \cdot nH_2O$ -AC и $Cs_{0.18}V_2O_5 \cdot nH_2O$ -SG равна 34.0, 16.5 и 1.78 м²/г соответственно. В этой же по-

ВЛИЯНИЕ УСЛОВИЙ ОБРАЗОВАНИЯ

Рис. 4. СЭМ-изображения и спектр рентгеновского энергодисперсионного микроанализа Cs_{0.6}V₂O₅ · · *n*H₂O-AC. Дополнительный пик от углерода обусловлен подложкой, применяемой для фиксации образца.

следовательности, по данным СЭМ, увеличивается размер частиц $Cs_xV_2O_5 \cdot nH_2O$ (рис. 3–5). Дополнительно изменяется и морфология частиц $Cs_xV_2O_5 \cdot nH_2O$. Низкая величина удельной поверхности соединения $Cs_xV_2O_5 \cdot nH_2O$ -SG обусловлена формой частиц, состоящих из сильно агломерированных хаотичных пластин. Для образцов $Cs_{0.3}V_2O_5 \cdot nH_2O$ -Нуд и $Cs_{0.6}V_2O_5 \cdot nH_2O$ -АС наблюдается широкое распределение пор по раз-

Рис. 5. СЭМ-изображения и спектр рентгеновского энергодисперсионного микроанализа $Cs_{0.18}V_2O_5$ · nH_2O -SG. Дополнительный пик от углерода обусловлен подложкой, применяемой для фиксации образца.

мерам с преимущественным размером пор 270 и 330 нм соответственно, свидетельствующее о наличии макропор в структуре соединений (рис. 6а, 6б). Распределение пор по размерам для $Cs_{0.18}V_2O_5$ · nH_2O -SG описывается тремя характеристическими максимумами (рис. 6в). Преимуществен-

ный размер пор, вычисленный для первого и второго экстремумов на кривой распределения, составляет 22 и 43 нм соответственно и подтверждает наличие мезопор в структуре $Cs_{0.18}V_2O_5 \cdot nH_2O$ -SG. Третий экстремум на кривой распределения указывает на присутствие макропор в образцах, преимущественный размер которых равен 85 нм. Очевидно, что, используя различные методы синтеза, можно регулировать текстурные свойства $Cs_xV_2O_5 \cdot nH_2O$.

Термическая стабильность образцов Cs_vV₂O₅ · $\cdot nH_2O$ изучена методом ТГ–ДСК–МС (рис. 7). Согласно ТГ-кривой, дегидратация Cs_{0.3}V₂O₅ · $\cdot nH_2O$ -Hyd и Cs_{0 18}V₂O₅ $\cdot nH_2O$ -SG происходит в одну стадию (рис. 7а, 7б). Основная потеря массы наблюдается в интервале температур 50-300°С и соответствует удалению кристаллогидратной воды. Процесс сопровождается ярко выраженным эндоэффектом при 104 и 113°С для Cs_{0.3}V₂O₅ · $\cdot nH_2O$ -Hyd и Cs_{0.18}V₂O₅ $\cdot nH_2O$ -SG соответственно. Одновременно на МС-кривых регистрируются широкие и размытые пики, характерные для молекулярного иона H_2O^+ , с m/z = 18 а.е.м. Наличие кристаллогидратной воды также подтверждено данными ИК-спектроскопии. При дальнейшем повышении температуры происходит термическое разложение образцов, сопровождаемое экзотермическими эффектами с максимумами при 322°С для Cs_{0.3}V₂O₅ · *n*H₂O-Hyd и 336, 367°С для $Cs_{0.18}V_2O_5 \cdot nH_2O$ -SG. Отнесение всех последующих термических эффектов, зафиксированных на ДСК-кривых, проведено на основании диаграммы состояния системы Cs₂O-V₂O₅ [28]. Повышение температуры отжига до ~490 ± 2°C приводит к инконгруэнтному плавлению ванадата цезия состава $Cs_2V_8O_{20.8}$ с образованием V_2O_5 и Сs₂V₆O₁₆. Плавлению Сs₂V₆O₁₆ соответствует эндоэффект при 537 \pm 3°С. Термолиз $Cs_{0.3}V_2O_5$ · · nH₂O-Hyd заканчивается эндоэффектом при 576°С, соответствующим образованию эвтектики $CsVO_3$ с $Cs_4V_2O_7$, и сопровождается прибылью массы на ТГ-кривой. Конгруэнтным плавлением CsVO₃ при 636°C завершается термолиз Cs_{0.18}V₂O₅ \cdot · nH₂O-SG. Различие в температурных эффектах на ДСК-кривых для Cs_{0.3}V₂O₅ · *n*H₂O-Hyd и $Cs_{0.18}V_2O_5 \cdot nH_2O$ -SG обусловлено, по-видимому, содержанием цезия в синтезированных образцах.

Дегидратация $Cs_{0.6}V_2O_5 \cdot H_2O$ -AC, в отличие от $Cs_{0.3}V_2O_5 \cdot nH_2O$ -Нуd и $Cs_{0.18}V_2O_5 \cdot nH_2O$ -SG, протекает в три стадии (рис. 7в). Основная убыль массы, относящаяся к потере кристаллогидратной воды, происходит в интервале $50-300^{\circ}$ С и сопровождается ярко выраженным эндоэффектом с максимумом при 78°С. Последующую убыль массы следует отнести к удалению двух типов хими-

Рис. 6. Изотермы сорбции, кривые распределения пор по размерам (вставка) образцов $Cs_{0.3}V_2O_5 \cdot nH_2O$ -Hyd (a), $Cs_{0.6}V_2O_5 \cdot nH_2O$ -AC (б) и $Cs_{0.18}V_2O_5 \cdot nH_2O$ -SG (в): *1* – адсорбция, *2* – десорбция.

чески связанной воды: координированной ванадил-ионами VO²⁺, находящимися в катионной подрешетке соединения, и ионами четырехва-

Рис. 7. Кривые ТГ, ДСК и МС образцов $Cs_{0.3}V_2O_5 \cdot 0.8H_2O$ -Hyd (a), $Cs_{0.18}V_2O_5 \cdot 1.2H_2O$ -SG (б) и $Cs_{0.6}V_2O_5 \cdot H_2O$ -AC (в).

лентного ванадия V⁴⁺ анионной подрешетки [29]. Процесс сопровождается экзоэффектами при 310, 360 и 500°С и заканчивается полным окислением четырехвалентного ванадия с образованием гексаванадата $Cs_2V_6O_{16}$ и метаванадата цезия CsVO₃.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 3 2023

Последующие эндоэффекты на кривой ДСК при 533 и 646°С, соответствующие плавлению $Cs_2V_6O_{16}$ и CsVO₃, подтверждают предложенную последовательность превращений. Рассчитано содержание воды в образцах, а именно: $Cs_{0.3}V_2O_5 \cdot 0.8H_2O$ -Hyd, $Cs_{0.6}V_2O_5 \cdot H_2O$ -AC и $Cs_{0.18}V_2O_5 \cdot 1.2H_2O$ -SG.

Представляло интерес изучить электропроводность синтезированных $Cs_{y}V_{2}O_{5} \cdot nH_{2}O$, различающихся содержанием четырехвалентного ванадия. Известно, что соединения $M_x V_2 O_5 \cdot n H_2 O$ относятся K смешанным полупроводникам. Электронная составляющая проводимости зависит от концентрации четырехвалентного ваналия в образцах и осуществляется за счет поляронов малого радиуса в режиме перескоков между разнозарядными ионами ванадия [30]. Катионная составляющая проводимости определяется диффузией соответствующих ионов и зависит от относительной влажности воздуха [31]. На рис. 8 представлены температурные зависимости электропроводности $Cs_xV_2O_5 \cdot nH_2O$ в координатах Аррениуса. На экспериментальных кривых $Cs_xV_2O_5$. $\cdot nH_2O$ в режиме нагревания можно выделить два прямолинейных участка. Для всех синтезированных соединений участок низкотемпературной области находится в интервале от комнатной температуры до 358 К. Энергия активации проводимости в указанном интервале температур, вычисленная по формуле $\sigma = \sigma_0 \exp(-E/RT)$, равна 0.16, 0.15 и 0.17 эВ для Cs_{0.6}V₂O₅ · H₂O-AC, Cs_{0.3}V₂O₅ · · 0.8H₂O-Hyd и Cs_{0.18}V₂O₅ · 1.2H₂O-SG соответственно. Ее значение определяется подвижностью носителей заряда, которая в низкотемпературной области пропорциональна содержанию воды в образцах [31]. При дальнейшем увеличении температуры до 423 К для $Cs_{0.6}V_2O_5 \cdot H_2O-AC$, $Cs_{0.3}V_2O_5 \cdot 0.8H_2O$ -Нуd и $Cs_{0.18}V_2O_5 \cdot 1.2H_2O$ -SG на высокотемпературном участке проводимости наблюдается излом на зависимости $\lg \sigma = f(1/T)$, энергия активации проводимости при этом возрастает и равна 0.3, 0.38 и 0.45 эВ соответственно. Наименьшим значением энергии активации проводимости в высокотемпературной области обладает $Cs_{0.6}V_2O_5 \cdot H_2O$ -AC ($E_a = 0.3$ эВ), отличающийся повышенным содержанием четырехвалентного ванадия. Аналогичный вид зависимости $\lg \sigma = f(1/T)$ с изломом в интервале температур 373-380 К получен при изучении электропроводности $Na_rV_2O_5 \cdot nH_2O$ и $K_rV_2O_5 \cdot nH_2O$ [30, 32]. Вероятно, температурные изменения электропроводности данного класса соединений обусловлены ступенчатой дегидратацией образцов, сопровождаемой уменьшением межслоевого расстояния, что приводит к увеличению энергии активации проводимости.

Рис. 8. Температурные зависимости электропроводности образцов $Cs_{0.3}V_2O_5 \cdot 0.8H_2O$ -Нуd (a), $Cs_{0.6}V_2O_5 \cdot H_2O$ -АС (б) и $Cs_{0.18}V_2O_5 \cdot 1.2H_2O$ -SG (в) на переменном токе частотой 1 кГц: *1* – нагревание, *2* – охлаждение.

ЗАКЛЮЧЕНИЕ

Проведен сравнительный анализ морфологических особенностей и текстурных характеристик $Cs_xV_2O_5 \cdot nH_2O$, полученного с применением различных методов синтеза. Впервые гидротермальным методом синтезирован $Cs_{0.6}V_2O_5 \cdot H_2O$, частицы которого имеют стержневую морфологию диаметром 70–170 нм и длиной 5–10 мкм. Гидролитический метод позволяет формировать соединения $Cs_xV_2O_5 \cdot nH_2O$ -Нуd с наиболее развитой удельной поверхностью. Установлено, что использование сульфата ванадила гидрата при гидролитическом и гидротермальном методах синтеза приводит к образованию частиц стержневой морфологии и обусловлено, по-видимому, "сарping agent" эффектом. Дополнительно применение сульфата ванадила гидрата позволяет целенаправленно регулировать содержание четырехвалентного ванадия в образцах. Предложенные методы получения $Cs_xV_2O_5 \cdot nH_2O$ являются простыми, низкозатратными и обеспечивают получение конечного продукта с различными текстурными характеристиками. Изучение температурной зависимости электропроводности Cs_xV₂O₅ · *n*H₂O показало, что в низкотемпературной области энергия активации проводимости соединений практически одинакова и не зависит от содержания V^{4+} . В высокотемпературной области (318-423 К) наименьшей энергией активации (0.3 эВ) обладает $Cs_{0.6}V_2O_5 \cdot nH_2O$ -AC, синтезированный гидротермальным методом и характеризующийся повышенным содержанием четырехвалентного ванадия.

БЛАГОДАРНОСТЬ

Работа выполнена с использованием оборудования Центра коллективного пользования "Спектроскопия и анализ органических соединений" (ЦКП "САОС").

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в соответствии с государственным заданием и планами НИР ИХТТ УрО РАН АААА-A19-119031890025-9.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Livage J. // Solid State Ionics. 1996. V. 86–88. № 2. P. 935. https://doi.org/10.1016/0167-2738(96)00336-0
- Clites M., Hart J.L., Taheri M.L. et al. // ACS Energy Lett. 2018. V. 3. № 3. P. 562. https://doi.org/10.1021/acsenergylett.7b01278
- El-Desoky M.M., Al-Assiri M.S., Bahgat A.A. // J. Phys. Chem. Solids. 2014. V. 75. P. 992. https://doi.org/10.1016/j.jpcs.2014.04.003
- 4. *Grigorieva A., Badalyan S., Goodilin E. et al.* // Eur. J. Inorg. Chem. 2010. V. 210. № 33. P. 5247. https://doi.org/10.1002/ejic. 201000372
- 5. Захарова Г.С., Денисова Т.А., Волков В.Л. и др. // Журн. неорган. химии. 1988. Т. 33. № 6. С. 1444.

- Волков В.Л., Захарова Г.С., Бондаренка В.М. Ксерогели простых и сложных поливанадатов. Екатеринбург: Изд-во УрО РАН, 2001.
- Feng J., Xiong Z., Zhao L. et al. // J. Power Sources. 2018. V. 396. P. 230. https://doi.org/10.1016/j.jpowsour.2018.06.021
- Подвальная Н.В., Захарова Г.С. // Неорган. материалы. 2021. Т. 57. № 8. С. 838. https://doi.org/10.31857/S0002337X2108026116
- 9. *Yao T., Oka Y.* // Solid State Ionics. 1997. V. 96. P. 127. https://doi.org/10.1016/S0167-2738(96)00623-6
- Yao T., Oka Y., Yamamoto N. // J. Mater. Chem. 1992.
 V. 2. № 3. P. 331. https://doi.org/10.1039/JM9920200331
- 11. Shivastava O.P., Komarneni S.K., Malla P. // Mater. Res. Bull. 1991. V. 26. P. 357.
- Liu Y.-J., Cowen J.A., Kaplan T.A. et al. // Chem. Mater. 1995. V. 7. P. 1616. https://doi.org/10.1021/cm00057a007
- 13. Волков В.Л., Захарова Г.С., Ивакин А.А. и др. // Журн. неорган. химии. 1987. Т. 32. № 10. С. 2427.
- Tian B., Tang W., Su C. et al. // Appl. Mater. Interfaces. 2018. V. 10. № 1. P. 642. https://doi.org/10.1021/acsami.7b15407
- 15. *Nakamoto K.* Infrared and Raman Spectra of Inorganic and Coordination Compounds. Moscow: Mir, 1991.
- 16. Волков В.Л., Захарова Г.С. // Журн. неорган. химии. 1988. Т. 33. № 6. С. 1580.
- 17. Кристаллов Л.В., Корякова О.В., Переляева Л.А. и др. // Журн. неорган. химии. 1987. Т. 32. № 8. С. 1811.
- Livage J. // Coord. Chem. Rev. 1998. V. 178–180. № 2. P. 999.

https://doi.org/10.1016/S0010-8545(98)00105-2

19. Butler A., Clague M.J., Meister G.E. // Chem. Rev. 1994. V. 94. № 3. P. 625.

- Najdoski M., Koleva V., Samet A. // J. Phys. Chem. C. 2014. V. 118. P. 9636. https://doi 10.21./jp4127122
- Durupthy O., Steunou N., Coradin T. et al. // J. Mater. Chem. 2005. V. 15. P. 1090. https://doi.org/10/1039/b414893b
- 22. Подвальная Н.В., Захарова Г.С. // Журн. неорган. химии. 2020. Т. 65. № 7. С. 880. https://doi.org/10.31857/S0044457X20070156
- 23. Petkov V., Trikalitis P.N., Bozin E.S. et al. // J. Am. Chem. Soc. 2002. V. 124. № 34. P. 10157. https://doi.org/10.1021/ja026143y
- 24. Patterson A.L. // Phys. Rev. 1939. V. 56. № 10. P. 978. https://doi.org/10.1103/PhysRev.56.978
- Chandrasekaran P., Viruthagiri G., Srinivasan N. // J. Alloys Compd. 2012. V. 540. P. 89. https://doi.org/10.1016/j.jallcom.2012.06.032
- Suwanboon S., Amornpitoksuk P., Randorn C. // Ceram. Int. 2019. V. 45. P. 2111. https://doi.org/10.1016/j.ceramint.2018.10.116
- 27. *Sing K.S.W., Everett D.H., Haul R.A.W. et al.* // Pure Appl. Chem. 1985. V. 57. № 4. P. 603. https://doi.org/10.1351/pac198557040603
- Диаграммы состояния систем тугоплавких оксидов: Справочник. Вып. 5. Двойные системы. Л.: Наука, 1986. Ч. 2.
- Charbi N., Sanchez C., Livage J. et al. // Inorg. Chem. 1982. V. 21. № 10. P. 2758. https://doi.org/10.1021/ic00137a043
- 30. Bahgat H.A., Mady A.S., Abdel Moghny A.S. et al. // J. Mater. Sci. 2011. V. 27. № 10. P. 865. https://doi.org/10.1016/S1005-0302(11)60157-6
- Bahgat A.A., Ibrahim E.A., El-Desoky M.M. // Thin Solid Films. 2005. V. 489. P. 68. https://doi.org/10.1016/j.tsf.2005.05.001
- El-Desoky M.M., Al-Assiri M.S., Bahgat A.A. // J. Alloys Compd. 2014. V. 590. P. 572. https://doi.org/10.1016/j.jallcom.2013.12.168