_____ ФИЗИКОХИМИЯ _____ РАСТВОРОВ

УДК 543.07:66.011:66.061

ВЫДЕЛЕНИЕ ИЗ РАСТВОРОВ КОНЦЕНТРИРОВАННЫХ ФРАКЦИЙ КОМПОНЕНТОВ В КАСКАДЕ МНОГОСТУПЕНЧАТЫХ ЭКСТРАКЦИОННЫХ КОЛОНН МЕТОДАМИ РЕЦИРКУЛЯЦИОННОЙ ЖИДКОСТНО-ЖИДКОСТНОЙ ХРОМАТОГРАФИИ

© 2023 г. А. Е. Костанян^{а, *}, Ю. В. Царева^а, В. В. Белова^а

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия

*e-mail: kost@igic.ras.ru

Поступила в редакцию 24.08.2022 г. После доработки 04.10.2022 г. Принята к публикации 10.10.2022 г.

Приведены результаты экспериментального исследования процесса экстракционного выделения из растворов концентрированных фракций компонентов на установке, состоящей из пяти последовательно соединенных многоступенчатых экстракционных колонн, методом рециркуляционной жидкостно-жидкостной хроматографии при многократной загрузке в установку раствора разделяемых компонентов. Подтверждена адекватность ранее разработанной математической модели реальному процессу и справедливость полученных уравнений для моделирования и разработки различных вариантов рассматриваемых процессов разделения.

Ключевые слова: жидкостная экстракция, рециркуляционная жидкостно-жидкостная хроматография, выделение из растворов концентрированных фракций компонентов

DOI: 10.31857/S0044457X22601468, EDN: JDFBZF

введение

Применение методов жидкостно-жидкостной хроматографии, используемых в настоящее время в основном для разделения и очистки фармацевтических соединений в аналитических и препаративных целях [1–25], может существенно упростить существующие технологические процессы выделения из растворов и очистки промежуточных и конечных продуктов в производствах химической и других родственных отраслях промышленности. Для практической реализации таких комбинированных экстракционно-хроматографических процессов в промышленном масштабе нами было предложено использовать широко распространенное в промышленности экстракционное оборудование – секционированные горизонтальными перегородками (тарелками) многоступенчатые колонны и смесительно-отстойные экстракторы [26-28]. Рассматриваемые процессы экстракционного разделения, базирующиеся на принципах хроматографии, отличаются простотой технологической схемы (в одной технологической операции разделяются многокомпонентные смеси), высокой чистотой получаемых продуктов и малым расходом органических растворителей и химических реагентов.

Для выделения концентрированных фракций разделенных компонентов из растворов был предложен метод рециркуляционной хроматографии [29, 30] с многократным введением пробы и проведен анализ различных вариантов таких процессов на основе распределения Гаусса. Однако такой подход может быть использован для корректного описания хроматографических пиков при кратковременном (импульсном) вводе пробы, т.е. в процессах аналитического разделения, когда эффективность хроматографической установки, оцениваемая числом равновесных ступеней, достаточно высока. В промышленных экстракционно-хроматографических процессах для достижения высокой производительности необходимо загружать в установку большие объемы раствора разделяемых продуктов, т.е. требуется длительная загрузка. Кроме того, эффективность промышленных экстракционных установок обычно не превышает 50-100 равновесных ступеней. Математическое описание и анализ рассматриваемых процессов разделения на экстракционных установках, состоящих из каскада равновесных ступеней и работающих в режиме рециркуляционной жидкостно-жидкостной хроматографии, приведены в работе [31].

Цель настоящей работы — экспериментальная проверка теории, изложенной в вышеупомянутой публикации, при помощи установки для жид-костно-жидкостной хроматографии, состоящей из каскада ситчатых экстракционных колонн.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Экспериментальная установка. Лабораторная установка состояла из пяти ситчатых экстракционных колонн, последовательно соединенных по потоку тяжелой фазы, двух емкостей для проточной ("подвижной" в терминах хроматографии) тяжелой фазы (одна – для раствора компонентов, другая – для чистой фазы), перистальтического насоса Heidolph Pumpdrive 5101, спектрофотометрического детектора (спектрофотометр Аквилон UVV 101.4 М, длина волны 270 нм), соединенного с компьютером, и емкости для сбора подвижной фазы на выходе из детектора.

В колоннах, изготовленных из трубки FEP 6.4 × × 6 мм, с интервалом 35 мм размещены 25 ситчатых тарелок из фторопласта толщиной 3 мм с 13 отверстиями диаметром 0.25 мм.

Растворители и реактивы. В качестве экстракционной системы и выделяемых соединений использовали стандартные в исследованиях процессов жидкостно-жидкостной хроматографии двухфазную систему гексан—изопропиловый спирт вода в эквивалентном объемном соотношении и фармацевтические продукты — кофеин и кумарин.

Методика проведения экспериментов. Процессы выделения, концентрирования и разделения компонентов проводятся в замкнутом двухфазном жидкостно-жидкостном контуре. После загрузки исходного раствора компонентов выходящий из последней (пятой) колонны поток тяжелой фазы подается на вход первой колонны, и компоненты циркулируют в замкнутом контуре. После определенного числа циклов (проходов определенного компонента загруженной пробы через установку) контур размыкается, и в установку с расходом, равным скорости ее циркуляции в контуре, подается тяжелая проточная фаза, с которой выводятся фракции компонентов.

Были проведены две серии опытов: 1) концентрирование одного компонента (кофеина или кумарина) при двукратной загрузке его раствора в установку; 2) концентрирование двух компонентов (кофеина и кумарина) при двукратной загрузке раствора смеси компонентов в установку. В обоих случаях вторую загрузку проводили в начале второго цикла. Длительность каждой загрузки составляла 1 мин. В опытах первой серии длина линии рецикла при концентрировании кумарина равнялась L = 15.5 м (объем 27 мл), вторую загрузку проводили через 39 мин после первой; при концентрировании кофеина L = 7 м (объем 12.5 мл), вторая загрузка — через 20 мин после первой. При концентрировании раствора двух компонентов (кофеина и кумарина) L = 65.5 м (объем 116 мл), вторая загрузка — через 60 мин после первой.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 и 2 сопоставлены опытные (а) и расчетные (б) хроматограммы кофеина и кумарина при одной загрузке раствора соответствующего компонента в установку. Теоретические хроматограммы рассчитывали по уравнению [31]:

$$X_{n1}(t) = \frac{e^{-aN(t-t_s)}}{\tau_s} \sum_{j=1}^n \sum_{i=1}^{jN} e^{aN(j-1)b} \times \left\{ \frac{\exp(jN-i+1)}{\sqrt{2\pi(jN-i+1)}} \left[\frac{aN(t-(j-1)b-t_s)}{jN-i+1} \right]^{jN-i+1} \times (1) \right\} \times \left[1 - e^{-aNt_s} \sum_{i=1}^{i} \frac{(aNt_s)^{i-1}}{(i-1)!} \right],$$

где $a = \frac{1}{1 - S_f + S_f K_D}$ – безразмерный параметр;

 $b = V_{r}/V_{c}$ – отношение объемов линии рецикла V_{r} и установки V_{c} ; N – число теоретических ступеней; n – номер цикла циркуляции и количество проходов компонента K_{D} через установку; S_{f} – доля объема, занимаемая непроточной (неподвижной) легкой фазой в установке, $S_{f} = V_{s}/V_{c}$; V_{s} – объем, занимаемый в установке неподвижной фазой; $X = x/\overline{x}$ – безразмерная концентрация компонента K_{D} , $\overline{x} = Q/V_{c} = x_{s}F\tau_{s}/V_{c}$ – средняя концентрация компонента K_{D} в установке после загрузки раствора компонент; Q – количество компонента K_{D} в загруженной пробе, x_{s} – концентрация компонента K_{D} в загруженном растворе; F – объемная скорость расхода проточной тяжелой фазы, раствора компонента и циркуляции тя-

желой фазы в замкнутом контуре; $t = \frac{\tau F}{V_c}$ – безразмерное время, $t_s = \tau_s F/V_c$ – безразмерное время загрузки раствора компонента K_D .

При расчете хроматограмм в уравнение (1) подставляли значение n = 1. По экспериментальным хроматограммам с помощью формул (2) и (3) были определены параметры K_D и Nдля кумарина ($K_D = 0.48$; N = 23) и кофеина ($K_D = 0.11$; N = 44). Отметим, что полученные значения весьма близки к определенным в работе [32] для кумарина ($K_D = 0.46$; N = 26) и кофеина ($K_D = 0.1$; N = 39).

$$K_{D} = \frac{(\tau_{R} - \tau_{m})V_{m}}{\tau_{m}V_{s}} = \frac{(\tau_{R} - \tau_{m})(1 - S_{f})}{\tau_{m}S_{f}}, \qquad (2)$$

Рис. 1. Опытные (а) и расчетные (б) хроматограммы кумарина при одной загрузке его раствора в установку. Параметры процесса: $K_D = 0.48$; N = 23; S = 0.77; $t_s = 0.02$.

$$n = 16 \left(\frac{\tau_R}{W_b}\right)^2, \qquad (3)$$

где τ_R — время максимума пика; τ_m — среднее время пребывания частиц проточной фазы в установке, $\tau_m = V_c/F$; V_m — объем, занимаемый в установке неподвижной фазой; W_b — ширина основания хроматографического пика.

Следует отметить, что формулы (2) и (3) справедливы, когда хроматографический пик можно описать нормальным распределением (распределением Гаусса). Однако, учитывая сравнительно короткое время загрузки проб, их можно применять для оценки величин искомых параметров процесса.

Как видно из рис. 1 и 2, имеется приемлемое согласование экспериментальных и теоретических хроматограмм.

На рис. 3 и 4 приведены опытные (а) и расчетные (б, в, г) хроматограммы кофеина и кумарина при двух загрузках раствора соответствующего компонента в установку. Теоретические хроматограммы, полученные после первой загрузки, рассчитывали по уравнению (1), в которое подстав-

Рис. 2. Опытные (а) и расчетные (б) хроматограммы кофеина при одной загрузке в установку. Параметры процесса: $K_D = 0.11$; N = 44; S = 0.77; $t_s = 0.02$.

ляли значение n = 2 (кривая *1* на рис. 36, кривая на рис. 46 и кривая *1* на рис. 48).

Теоретические хроматограммы, полученные после второй загрузки без учета первой загрузки, рассчитывали по уравнению (4), в которое подставляли значение n = 2 (кривая 2 на рис. 3б и 4в).

$$X_{n2}(t) = \frac{e^{-aN(t-t_r-t_s)}}{t_s} \sum_{j=1}^{n-1} \sum_{i=1}^{jN} e^{aN(j-1)b} \times \left\{ \frac{\exp(jN-i+1)}{\sqrt{2\pi(jN-i+1)}} \begin{bmatrix} aN(t-t_r-(j-1)b-t_s)\\ jN-i+1 \end{bmatrix} \right\}^{jN-i+1} \times \left[1 - e^{-aNt_s} \sum_{i=1}^{i} \frac{(aNt_s)^{i-1}}{(i-1)!} \end{bmatrix} \right\}.$$

Следует подчеркнуть, что расчет по уравнению (4) ведется, начиная со времени $t \ge (n-1)b + t_s$.

Рис. 3. Опытные (а) и расчетные (б, в) хроматограммы кумарина при двух загрузках раствора в установку. Теоретическая хроматограмма после первой загрузки, рассчитана по уравнению (1) при n = 2 (кривая Iна рис. 36). Теоретическая хроматограмма после второй загрузки (без учета первой загрузки) рассчитана по уравнению (4) при n = 2 (кривая 2 на рис. 36). Суммарная после двух загрузок хроматограмма (в) на выходе из установки во втором цикле рассчитана по уравнению (6). Параметры процесса: b = 0.18; $K_D =$ = 0.48; N = 23; S = 0.77; $t_s = 0.02$.

Для концентрирования компонента K_D вторая загрузка его раствора должна проводиться в то время, когда циркулирующая хроматограмма первой загрузки этого компонента будет находиться на входе в установку. Это время можно рассчитать по формуле [30]:

$$t_R = \frac{1}{a} + \frac{t_s}{2} + b.$$
 (5)

Рис. 4. Опытные (а) и расчетные (б, в, г) хроматограммы кумарина при двух загрузках раствора в установку. Теоретическая хроматограмма после первой загрузки рассчитана по уравнению (1) при n = 2 (рис. 4б и кривая I на рис. 4в). Теоретическая хроматограмма после второй загрузки (без учета первой загрузки) рассчитана по уравнению (4) при n = 2 (кривая 2 на рис. 4в). Суммарная после двух загрузок хроматограмма (рис. 4г) на выходе из установки во втором цикле рассчитана по уравнению (6). Параметры процесса: b = 0.083; $K_D = 0.11$; N = = 44; S = 0.77; $t_s = 0.02$.

Рис. 5. Опытные (а) и расчетные (б, в) хроматограммы после первой (б) и второй (в) загрузок раствора кофеина и кумарина в установку. Теоретическая хроматограмма после первой загрузки в первом цикле рассчитана по уравнению (7). Теоретическая хроматограмма второго цикла (после второй загрузки) рассчитана по уравнениям (8)–(10). Параметры процесса: b = 0.77; S = 0.77; $t_s = 0.02$.

Суммарные концентрационные профили компонентов после первой и второй загрузок (кривые на рис. 3в и рис. 4г) на выходе из установки во втором цикле рассчитывали по уравнению (6):

$$X_{s2}(t) = X_{n1}(t) + X_{n2}(t).$$
(6)

Результаты, представленные на рис. 3 и 4, подтверждают отмеченное выше согласие теории с экспериментом. Об этом же говорят результаты рис. 5, где приведены опытные (а) и расчетные (б, в) хроматограммы для первой и второй загрузок раствора кофеина и кумарина в установку. Теоретическую хроматограмму, полученную после первой загрузки в первом цикле, рассчитывали по уравнению:

$$X(t) = X_{1n1}(t) + X_{2n1}(t) , \qquad (7)$$

где X_{1n1} (кофеин) и X_{2n1} (кумарин) рассчитывали по уравнению (1) при n = 1.

Теоретическую хроматограмму второго цикла (после второй загрузки) рассчитывали по уравнениям:

$$X(t) = X_1(t) + X_2(t),$$
 (8)

$$X_{1}(t) = X_{1n1}(t) + X_{1n2}(t), \qquad (9)$$

$$X_{2}(t) = X_{2n1}(t) + X_{2n2}(t),$$
(10)

где X_{1n1} (кофеин) и X_{2n1} (кумарин) рассчитывали по уравнению (1) при n = 2, а X_{1n2} (кофеин) и X_{2n2} (кумарин) – по уравнению (4) при n = 2. Различие в эффективности разделения между экспериментом (рис. 5а) и теорией (рис. 5б, 5в), вероятно, можно объяснить тем, что хотя измеряемая детектором величина оптической плотности принимается пропорциональной величине концентрации соответствующего компонента, коэффициент пропорциональности может быть различным для разных компонентов.

ЗАКЛЮЧЕНИЕ

На лабораторной установке, состоящей из пяти последовательно соединенных многоступенчатых экстракционных колонн. экспериментально исследован процесс экстракционного выделения из растворов концентрированных фракций компонентов (кофеина и кумарина) методом рециркуляционной жидкостно-жидкостной хроматографии. Концентрирование компонентов достигается путем загрузки в установку через определенные интервалы времени нескольких порций раствора компонентов. Подтверждена адекватность ранее разработанной математической модели таким экстракционно-хроматографическим процессам разделения и справедливость полученных уравнений для разработки и моделирования этих процессов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ito Y.* // J. Chromatogr. A. 2005. V. 1065. P. 145. https://doi.org/10.1016/j.chroma.2004.12.044
- Conway W.D. // J. Chromatogr. A. 2011. V. 1218. P. 6015.
- https://doi.org/10.1016/j.chroma.2011.03.056
- Friesen J.B., Ahmed S., Pauli G.F. // J. Chromatogr. A. 2015. V. 1377. P. 55. https://doi.org/10.1016/j.chroma.2014.11.085
- Friesen J.B., McAlpine J.B., Chen S.-N., Pauli G.F. // J. Nat. Prod. 2015. V. 78. P. 1765. https://doi.org/10.1021/np501065h
- Huang X.-Y., Pei D., Liu J.-F., Di D.-L. // J. Chromatogr. A. 2018. V. 1531. P. 1.
- https://doi.org/10.1016/j.chroma.2017.10.073
- Li H., Zhang F., Jin Q., Zhu T. // J. Chromatogr. A. 2021. V. 1649. P. 462221. https://doi.org/10.1016/j.chroma.2021.462221
- Guilois-Dubois S., Guyot S., Poupard P. // J. Chromatogr. A. 2021. V. 1653. P. 462382. https://doi.org/10.1016/j.chroma.2021.462382
- He J.M., Huang J., Wu W.L., Mu Q. // J. Chromatogr. A. 2020. V. 1626. P. 461 368. https://doi.org//10.1016/j.chroma.2020.461368

- 9. Yuan Y, He X., Wang T. et al. // Mar. Drugs. 2020. V. 18. P. 332. https://doi.org/10.3390/md18060332
- 10. Jerz G., Winterhalter P. // J. Chromatogr. A. 2020. V. 1617. P. 460698. https://doi.org/10.1016/j.chroma.2019.460698
- 11. *Morley R., Minceva M.* // J. Chromatogr. A. 2020. V. 1617. P. 460479. https://doi.org/10.1016/j.chroma.2019.460698
- 12. *Roehrer S., Minceva M.* // Separations. 2019. V. 6. P. 36. https://doi.org/10.3390/separations6030036
- Wang C., Sun W., Wang X. et al. // J. Chromatogr. A. 2019. V. 1601. P. 266. https://doi.org/10.1016/j.chroma.2019.05.028
- Peng A., Hewitson P., Sutherland I. et al. // J. Chromatogr. A. 2018. V. 1580. P. 120. https://doi.org/10.1016/j.chroma.2018.10.012
- 15. Friesen J.B., McAlpine J.B., Chen S.-N., Pauli G.F. // J. Chromatogr. A. 2017. V. 1520. P. 1. https://doi.org/10.1016/j.chroma.2017.08.077
- Ignatova S., Sutherland I. // J. Chromatogr. A. 2015. V. 1425. P. 1. https://doi.org/10.1016/j.chroma.2015.10.096
- 17. Guan Y.H., Hewitson P., van den Heuvel R. et al. // J. Chromatogr. A. 2015. V. 1424. P. 102. https://doi.org/10.1016/j.chroma.2015.03.004
- Ma T., Dong H., Lu H. et al. // J. Chromatogr. A. 2018. V. 1578. P. 61. https://doi.org/10.1016/j.chroma.2018.10.014
- Jing J.-X., Muhire J., Sun X. et al. // J. Chromatogr. A. 2022. V. 1677. P. 463319. https://doi.org/10.1016/j.chroma.2022.463319
- Müller M., Wasmer K., Vetter W. // J. Chromatogr. A. 2018. V. 1556. P. 88. https://doi.org/10.1016/j.chroma.2018.04.069
- Coll J., Minceva M. // AIChE J. 2017. V. 63. P. 1659. https://doi.org/10.1002/AIC.15529
- Han Q.B., Song J.Z., Qiao C.F. et al. // J. Chromatogr. A. 2006. V. 1127. P. 298. https://doi.org/10.1016/j.chroma.2006.07.044
- 23. Xie J., Deng J., Tan F., Su J. // J. Chromatogr. B. 2010. V. 878878. P. 2665. https://doi.org/10.1016/j.jchromb.2010.07.023
- 24. *Meng J., Yang Z., Liang J. et al.* // J. Chromatogr. A. 2014. V. 1327. P. 27. https://doi.org/10.1016/j.chroma.2013.12.069
- Zong S., Guan Y.-X., Yan J. et al. // J. Chromatogr. A. 2011. V. 1218. P. 5434. https://doi.org/10.1016/j.chroma.2011.06.015
- 26. *Костанян А.Е.* // Журн. неорган. химии. 2017. Т. 62. № 12. С. 1666.
- 27. Галиева Ж.Н., Семенов А.А., Костанян А.Е., Алдушкин А.В. // Хим. технология. 2020. Т. 21. № 12. С. 565.
- 28. Костанян А.Е., Царева Ю.В., Белова В.В., Телешова М.А. // Хим. технология. 2021. Т. 22. № 7. С. 330.
- Kostanyan A., Martynova M., Erastov A., Belova V. // J. Chromatogr. A. 2018. V. 1560. P. 26. https://doi.org/10.1016/j.chroma.2018.05.032
- 30. Костанян А.Е., Царева Ю.В. // Хим. технология. 2022. Т. 23. № 11.
- 31. *Костанян А.Е., Martynova М.* // J. Chromatogr. A. 2020. V. 1614. P. 460735. https://doi.org/10.1016/j.chroma.2019.460735