ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

УДК 536.422.15

ПЕРЕСМОТР ТЕРМОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ФТОРИДОВ ТИТАНА

© 2023 г. М. И. Никитин^{*a*}, Е. Л. Осина^{*b*}, А. С. Алиханян^{*a*}, *

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ^bОбъединенный институт высоких температур, ул. Ижорская, 13, стр. 2, Москва, 125412 Россия

> *e-mail: alikhan@igic.ras.ru Поступила в редакцию 26.10.2022 г. После доработки 25.11.2022 г. Принята к публикации 28.11.2022 г.

В результате анализа литературных данных о гомогенных и гетерогенных равновесиях с участием фторидов титана получен новый набор их стандартных энтальпий образования при 0 К: TiF₃(κ) – 1403.2 ± 2.7; TiF₃ –1144.2 ± 3.3; Ti₂F₅(κ) –2349.4 ± 6.3; TiF₂(κ) –933.7 ± 6.8; TiF₂ –650.4 ± ± 2.4 кДж/моль. Показана термодинамическая метастабильность TiF₂(κ).

Ключевые слова: гетерогенные равновесия, масс-спектрометрия, фториды *d*-элементов, энтальпии образования фторидов

DOI: 10.31857/S0044457X22601833, EDN: JEURSU

введение

Термодинамические свойства фторидов титана представляют научный интерес как экспериментальная база для дальнейшего совершенствования расчетных методов характеристик химических связей. Практическое применение находит только тетрафторид, используемый для получения порошка титана повышенной чистоты (Ni 0.1%, другие элементы <10⁻²%) электролизом фторидного солевого расплава с выходом до 98.5% [1]. В подобных технологических процессах важно оценивать возможность взаимодействия TiF₄ и материалов аппаратуры с образованием примесей.

В настоящей работе выполнен анализ оригинальных исследований фторидов титана, обработанных и включенных в справочные издания [2–5]. Эти данные имеют значительные погрешности, нуждаются в уточнении и требуют более обоснованного и иногда противоречивого выбора.

ДАННЫЕ О ТЕРМОХИМИЧЕСКИХ ХАРАКТЕРИСТИКАХ ФТОРИДОВ ТИТАНА

Тетрафорид титана

Результаты исследования твердого [6–8] и газообразного фторида титана(IV) проанализированы и представлены в работах [4, 5, 9]. Наиболее поздний анализ, проведенный в [2], рекомендует следующие значения: $\Delta_f H^{\circ}$ (TiF₄(a), 298 K) = $\Delta_f H^{\circ}$ (TiF₄(к), 298 K) = -1649.3 ± 2.0; $\Delta_s H^{\circ}$ (TiF₄, 0) = 96.6 ± 2.2; $\Delta_f H^{\circ}$ (TiF₄, 298.15 K) = -1554.741 ± 3.0; $\Delta_f H^{\circ}$ (TiF₄, 0) = = -1550.476 ± 3.0 кДж/моль. Эти данные представляются вполне надежными и не требуют дополнительного пересмотра.

Трифторид титана

Разность энтальпий образования TiF₃(к) и TiF₄ определена в [10] при изучении восстановления фторида титана(IV) жидкой ртутью при температурах 465–570 К. Общее давление насыщенного пара измеряли нуль-манометром. Парциальное давление TiF₄ рассчитывали как разность давлений – общего и насыщенного пара ртути. Результаты представлены в [10] на рис. 1 и в виде уравнения: $\lg P(\text{TiF}_4)$ [атм.] = $-5574/T - 1.86 \lg T +$ + 14.62. Рентгенофазовый анализ продуктов реакции показал присутствие кристаллов Hg₂F₂, кроме того, обнаружены неидентифицированные линии.

Проведенный в [10] обстоятельный анализ собственных и литературных данных с привлечением обоснованных оценок привел, по мнению авторов, к наиболее надежной величине – $\Delta(\Delta_f H^{\circ}(\text{TiF}_4(\kappa)) - \Delta_f H^{\circ}(\text{TiF}_3(\kappa)), 298 \text{ K}) = -239.7 \pm 12.6 кДж/моль. Приведенная погрешность носит оценочный характер и обусловлена результатами РФА твердых продуктов реакции, а именно: характерные для кристаллического TiF₃ линии не обнаружены.$

Таблица 1. Масс-спектры газовой фазы системы Ti– CaF₂ (ионные токи, отн. ед.) и константы равновесия реакции (3) [12]

<i>Т</i> , К	Ca ⁺	CaF^+	TiF_2^+	TiF ₃ ⁺	<i>K</i> °(3)
1626	1350	1400	90	40	2.33
1671	3000	3400	215	155	1.57
1699	4800	6400	330	250	1.76
1693	5000	7000	400	270	2.07
1683	3000	6600	550	510	2.38
1660	3100	5500	530	440	2.12
1643	2400	4700	400	380	2.06
1627	1800	2950	270	240	1.85
1585	850	1600	145	130	2.01
1564	470	700	90	90	1.49

В [11] методом ЭДС в двух опытах (840–860 и 816–880 К) получена температурная зависимость изменения энергии Гиббса следующей реакции:

$$AI(\kappa) + TiF_3(\kappa) = Ti(\kappa) + AIF_3(\kappa), \qquad (1)$$

Препарат фторида титана(III) синтезировали фторированием опилок титана в титановой лодочке в атмосфере смеси HF и H_2 при 750—800°С. Особое внимание уделяли контролю методом РФА чистоты получаемого продукта. Тетрафторид и оксифториды не обнаружены. Небольшая примесь металлического титана не могла повлиять на результаты опытов, так как потенциалобразующий электрод состоял из смеси титана и его трифторида.

Найденное значение $\Delta_f H^{\circ}(\text{TiF}_3(\kappa), 298 \text{ K}) = -1410.0 \pm 5.4 \ \kappa Дж/моль признано наиболее надежной и точной величиной и приведено в современных справочных изданиях [2, 4, 5].$

В работе [12] проводили испарение кристаллического фторида титана(III) из никелевой камеры через отверстие диаметром 1.05 мм. Качество используемых препаратов проверяли методом РФА. Расшифровку не приведенных суммарных массспектров не проводили, так как в расчетах использовали токи молекулярных ионов при энергиях ионизирующих электронов, превышающих энергии ионизации (*EP*) молекул на ~3 эВ.

В насыщенном паре фторида титана(III) были зарегистрированы ионы Ti⁺, TiF⁺, TiF⁺₂ и TiF⁺₃ с энергиями появления (*AE*) 21.3, 15.5, 14.0 и 11.0 эВ соответственно. Ион TiF⁺₄ не обнаружен. На основании этого сделано заключение о присутствии в паре только молекул TiF₃, причем ион TiF⁺₃ образуется при ионизации этой молекулы: $AE(\text{Ti}F_3^+) = IE(\text{Ti}F_3)$.

Необходимый для расчета давления пара $P^0(\text{TiF}_3)$ коэффициент чувствительности прибора определяли в отдельном опыте по уравнению Герца—Кнудсена. При 847 К из эффузионной камеры за 9120 с испарилось 11.6 мг TiF₃, что соответствует давлению TiF₃ 1.03 × 10⁻⁵ атм.

В результате получена температурная зависимость давления насыщенного пара TiF₃ в интервале температур 759—865 K, а также энтальпия сублимации по II и III законам: 237.2 \pm 1.7 при 810 K и 238.1 \pm 0.4 кДж/моль при 298 K соответственно. Авторы [12] отмечают небольшой, но четко выраженный температурный ход энтальпии, рассчитанной по III закону.

Дифторид титана

Фторирование металлического титана дифторидом кальция в танталовой камере в [12] проводили на установке, применявшейся для испарения фторида титана(III). Использовали такую же методику измерения ионных токов. В масс-спектре регистрировали только молекулярные ионы, соответствующие TiF_3 , TiF_2 , CaF и атомам Ca (табл. 1). Из-за большого разброса экспериментальных данных расчет энтальпии реакции

$$Ca + TiF_3 = CaF + TiF_2.$$
(3)

проводили только по III закону, $\Delta_r H^{\circ}((3), 298 \text{ K}) = 238.1 \pm 0.8 \text{ кДж/моль.}$

ВЫБОР ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ И ЭНТАЛЬПИЙ ОБРАЗОВАНИЯ ВЕШЕСТВ

Экспериментальные данные по теплоемкости ТіF₂(к, ж) и ТіF₃(к, ж) при низких и высоких температурах в литературе отсутствуют. В связи с этим термолинамические свойства ди- и трифторидов титана при 298.15 К и температурах выше стандартной были оценены с учетом соответствующих экспериментальных данных для галогенидов титана и циркония. Линейное уравнение, необходимое для расчета термодинамических констант при T > 298 K, выведено по оцененным значениям теплоемкости $C_p^{\circ}(298.15 \text{ K})$ и $C_p^{\circ}(1500 \text{ K})$, температуры плавления $T_{\rm m} = 1500 \pm 300 \text{ K}$, энтальпии плавления 20 кДж/моль и теплоемкости в интервале 1500-2000 К для TiF₂(ж) и принято из справочника [13] для TiF₃(к, ж). Термические константы $TiF_4(\kappa, \pi)$ при стандартной температуре рекомендованы в соответствии с [14]. Трехчленное уравнение для теплоемкости при *T* > 298 К взято из справочника [13] и использовано нами для рас-

Соединение	Т, К	Фаза	Ф°(<i>T</i>), Дж/(моль К)	<i>H</i> °(298 K) − <i>H</i> °(0), кДж/моль
TiF ₄	298	К	66.081	20.250
		Г	247.349	18.209
	500	К	107.334	45.595
		Г	282.000	36.516
	800	К	_	_
		Г	318.772	66.533
	900	К	_	-
		Г	328.701	76.864
TiF ₃	298	К	41.669	12.800
		Г	249.257	16.181
	500	К	69.527	31.676
		Г	279.649	31.655
	800	К	102.443	60.856
		Г	311.183	56.472
	900	К	111.563	70.882
		Г	319.588	64.904
	1600	К	160.380	145.258
		Г	362.849	124.477
TiF ₂	298	К	37.100	11.300
		Г	186.269	12.266
	500	К	60.036	25.087
		Г	248.230	23.492
	800	К	85.759	47.293
		Г	271.468	41.423
	900	К	92.849	55.151
		Г	277.631	47.577
	1600	К	131.311	116.540
		Г	309.434	91.969

Таблица 2. Значения термодинамических функций фторидов титана

чета термодинамических функций TiF₄(к) в интервале температур 298–699 К ($T_{\rm m}$). Теплоемкость жидкого TiF₄ оценена на основании имеющихся экспериментальных данных для ZrF₄, UF₄, TiCl₄, TiBr₄ и TiI₄. Усредненное значение составило 145 ± 10 Дж/(К моль).

В теоретическом расчете [15], выполненном методом MRCI с базисами DZP и TZP, для молекулы TiF₂ получены линейная структура симметрии $D_{\infty h}$, значения равновесного расстояния и частот колебаний, величина энергии низшего возбужденного состояния, которые использованы нами при расчете термодинамических функций (табл. 2).

Молекулярные постоянные TiF_3 в основном состоянии $X^2A'_1$ приняты на основании данных

[16], а величины энергий возбужденных состояний рекомендованы по данным справочника [4].

Согласно [17], молекула ТіF₄ в основном элек-

тронном состоянии $X^1A'_2$ имеет тетраэдрическую конфигурацию T_d . Значение межъядерного расстояния взято нами из [17], величины частот колебаний — по результатам экспериментального исследования КР-спектра в [18]. В первом возбужденном состоянии молекула имеет энергию >28000 см⁻¹, поэтому в расчетах термодинамических функций TiF₄ возбужденные электронные состояния не принимали во внимание.

Использованные в дальнейших термохимических расчетах значения термодинамических функций фторидов титана приведены в табл. 2.

Т, К	Р	$a(\text{TiF}_3) \times 100 \ge$	$K^{\circ}(4) = P(\mathrm{TiF}_4)/a(\mathrm{TiF}_3)$	$\Delta_r H^{\circ}(4) \leq (III закон)$
573.1	0.58	7.26	7.99	109.1
555.6	0.30	6.68	4.54	108.6
526.3	0.093	5.75	1.62	107.7
500.0	0.028	4.95	0.572	106.9
476.2	0.009	4.26	0.202	106.2
467.1	0.005	4.00	0.132	105.9

Таблица 3. Давление пара (*P*, атм.) фторида титана(IV) [10], активность *a*(TiF₃), константы равновесия и энтальпия (в кДж/моль) реакции (4) при 298 К

Примечание. $K^{\circ}(4) = P(\text{TiF}_4)/a(\text{TiF}_3)$ II закон: $\Delta_r S^{\circ}((4), 500 \text{ K}) = 167.8 \text{ кДж/моль}; \Delta_r H^{\circ}((4), 518 \text{ K}) = 86.2 \text{ кДж/моль}; \Delta_r H^{\circ}((4), 298 \text{ K}) = 89.7 \text{ кДж/моль}$ III закон $\Delta_r S^{\circ}((4), 500 \text{ K}) = 196.0 \text{ Дж/моль}; \Delta_r H^{\circ}((4), 298 \text{ K}) = 107.4 \pm 1.5 \text{ кДж/моль}.$

Температурный ход $\Phi'(\text{Hg}_2F_2(\kappa), T)$ принят таким же, как в [5], но $S^{\circ}(298 \text{ K}) = 174.891 \text{ Дж}/(моль \text{ K})$ и $\Delta_f H^{\circ}(298 \text{ K}) = -489.511 \text{ кДж/моль из [3]}$. Энтальпии образования и термодинамические функции газообразного кальция и его фторидов, а также кристаллического трифторида алюминия взяты из справочника [19].

АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Обнаружение в [10] только продукта фторирования ртути ($Hg_2F_2(\kappa)$) по реакции:

$$1/2Hg_2F_2(\kappa) + TiF_3(\kappa) = TiF_4 + Hg(\kappa)$$
(4)

свидетельствует о сильной восстановительной способности металлической ртути и предполагает образование кристаллического TiF_3 с пониженной активностью. Ближайший максимальный по фтору состав может соответствовать смешанному фториду $\text{Ti}_2F_5(\kappa)$ и находится на границе его области гомогенности и $\text{TiF}_2(\kappa)$. Существование подобных соединений рассмотрено на реальных примерах в [20], где показано, что их энтальпии образования из кристаллических ди- и трифторидов

$$MF_{2}(\kappa) + MF_{3}(\kappa) = M_{2}F_{5}(\kappa)$$
(5)

составляют $\Delta_f H^{\circ}((5), 0) = \Delta_r H^{\circ}((5), 0) = -(10-15)$ кДж/моль. В дальнейших расчетах принята величина -12.5 кДж/моль при $\Delta_r \Phi^{\circ}((5), T) = 0$. Эти данные могут быть использованы для расчета активностей TiF₃ или TiF₂ по формуле:

$$\ln a(\mathrm{TiF}_2) + \ln a(\mathrm{TiF}_3) = \Delta_r H^\circ((5), 0) / RT$$

при $a(Ti_2F_5) = 1.$

Экспериментальные данные из [10] и результаты их обработки в данной работе представлены в

Таблица 4. Температурная зависимость молекулярного ионного тока TiF₃⁺ [12]

<i>Т</i> , К	865	851	835	823	806	788	787	772	759
<i>I</i> , отн. ед.	210	120	63	38.5	19	8	7.3	4	2

табл. 3. При указанном выше составе $a(TiF_2) = 1$ и, таким образом, $a(TiF_3)$ является нижней оценкой.

Температурный ход энтальпии реакции (4) невелик и связан, скорее всего, с недостатками в измерениях равновесного давления TiF₄ из-за малой скорости протекающих реакций. В связи с этим в данной работе наиболее надежной принята величина $\Delta_r H^{\circ}((4), 298 \text{ K})$, полученная при наиболее высокой температуре 573.1 К и рассчитанная по III закону термодинамики. Ей соответствует энтальпия образования трифторида титана $\Delta_r H^{\circ}(\text{TiF}_3(\kappa), 298 \text{ K}) \ge -1419.1 \text{ кДж/моль, в преде$ лах погрешностей согласующаяся с разностьюэнтальпий образования кристаллических TiF₃ иTiF₄, оцененной в [10].

Пересчет данных из [11] в виде уравнения (2) по II и III законам термодинамики дает хорошо согласующиеся результаты: II закон – $\Delta_r S^{\circ}((1),$ 850 K) = –18.4; $\Delta_r H^{\circ}((1),$ 850 K) = –102.3, $\Delta_r H^{\circ}((1), 0) = 100.8$ кДж/моль и III закон – $\Delta_r S^{\circ}((1), 298$ K) = –23.5; $\Delta_r \Phi^{\circ}((1), 850$ K) = = –16.8 Дж/моль; $\Delta_r H^{\circ}((1), 0) = -100.9$ кДж/моль.

Для крайних значений температурного интервала (см. выше) $\Delta_r G^{\circ}((1), 816 \text{ K}) = -87.3; \Delta_r H^{\circ}((1), 0) =$ = -100.9 и $\Delta_r G^{\circ}((1), 880 \text{ K}) = -86.1; \Delta_r H^{\circ}((1), 0) =$ = -101.4 кДж/моль. Заметный выраженный температурный ход энтальпии реакции (1) не наблюдается, поэтому мы рекомендуем следующие величины энтальпий образования трифторида титана: $\Delta_r H^{\circ}(\text{TiF}_3(\kappa), 0) = -1403.2 \pm 2.7 \text{ и} \Delta_r H^{\circ}(\text{TiF}_3(\kappa),$ 298 K) = -1408.5 ± 2.7 кДж/моль. Погрешность принята такой же, как для $\Delta_r G^{\circ}(\text{TiF}_3(\kappa), 850 \text{ K})$ [11], с учетом погрешности $\Delta_r H^{\circ}(\text{AlF}_3(\kappa))$ [20].

В табл. 4 представлены первичные экспериментальные данные из [12], которые соответствуют составу конденсированной фазы $TiF_3(\kappa)-Ti_2F_5(\kappa)$, т.е. единичной активности TiF_3 .

Отсутствие молекулярного иона TiF_4^+ в суммарном масс-спектре насыщенного пара TiF_3 не означает, что давление TiF_4^+ неизмеримо мало. Оно мо-

жет быть сравнимо или даже превышать давление

ТіF₃. Это легко объясняется малой долей ТіF₄⁺ в индивидуальном масс-спектре ТіF₄. Аналогичные масс-спектры характерны для AlF₃, UF₆, ZrF₄ и др. Действительно, для фторида титана(IV) отношение TiF₄⁺: TiF₃⁺ = 0.8 : 100 [21] (в оригинале опечат-ка). Уравнение Герца–Кнудсена, использованное в [12] для калибровки прибора, в этом случае можно записать как:

$$m = 443.3St (1/T)^{1/2} \left[\left(M^{1/2} P \right)_{\text{TiF}_3} + \left(M^{1/2} P \right)_{\text{TiF}_4} \right],$$

где m — масса испарившегося вещества, мг; S — площадь эффузионного отверстия, мм²; t — время испарения, с; T — температура, К; ($M^{1/2}P$) — молекулярная масса, Да, и давление, атм., соответствующей молекулы. Подстановка численных данных из [12] приводит при 847 К к выражению:

$$8.664 \times 10^{-6} = P(\mathrm{TiF}_4) + 0.920P(\mathrm{TiF}_3).$$
 (6)

На рис. 1 показана температурная зависимость

логарифма произведения $i(\text{TiF}_{3}^{+})T$, прямо пропорционального давлению пара над кристаллическим фторидом титана(III) P = kiT.

Подтверждением молекулярного предшествен-

ника иона TiF_3^+ является малая величина *EI* и ее согласие с величиной, полученной в другом опыте рассматриваемой работы. Большой коэффициент корреляции свидетельствует об отсутствии хаотичных изменений коэффициента чувствительности прибора, неизменности активности фторида титана(III) во время измерений и в итоге надежности его энтальпии сублимации. В дальнейших расчетах из соотношения (6) при 847 К принято $P^{\circ}(\text{TiF}_3) =$ $= 9.417 \times 10^{-6}$ атм. $\gg P(\text{TiF}_4)$. Эта величина соответствует коэффициенту чувствительности прибора $k = 1.47 \times 10^{-9}$ атм./ед. *і* К. С принятыми термодинамическими функциями это давление дает, по III закону термодинамики, $\Delta_s H^{\circ}(\text{TiF}_3, 0 \text{ K}) = 258.0 \pm$ ± 1.8 кДж/моль (погрешность воспроизводимости), а с рекомендованной выше стандартной энтальпией образования кристаллического трифторида – $\Delta_f H^{\circ}$ (TiF₃, 0 K) = –1144.2 ± 3.3 кДж/моль.

В системе Ti–F в области составов TiF₃–Ti могут существовать два соединения: довольно неустойчивый Ti₂F₅(к) (см. реакцию (5)) и разлагающийся при 693 К TiF₂ [22]. Активность TiF₂ находится на уровне, необходимом для обеспечения $a(Ti_2F_5) = 1$ в соответствии с $K^{\circ}(5)$. Например, при 847 К для составов TiF₃–Ti₂F₅ $a(TiF_3) = 1$, $a(TiF_2) = 0.17$ и является нижним пределом. Для составов Ti₂F₅–Ti эта величина является нижним пределом $a(TiF_3)$ на границе области гомогенности соединения Ti₂F₅ с титаном. При стехиометрическом составе соединения Ti₂F₅, когда моль-

Рис. 1. Результаты обработки температурной зависимости $i(\text{TiF}_3^+) \times T$ из [12] и ее обработка по II и III законам.

ные доли ди- и трифторидов титана равны, активности $a(\text{TiF}_2)$ и $a(\text{TiF}_3)$ близки, как это принято в [20]. В дальнейших расчетах использовали средние логарифмические значения границ этого интервала, показанные в табл. 5. Это позволило рассчитать термодинамические характеристики равновесия реакции:

$$3\mathrm{Ti}_{2}\mathrm{F}_{5}(\kappa) = 5\mathrm{Ti}\mathrm{F}_{3}(\kappa) + \mathrm{Ti}(\kappa).$$
(7)

Заметный температурный ход рассчитанной энтальпии реакции $\Delta_r H^{\circ}((7), 0)$ обусловлен оценочным характером термодинамических характеристик Ti₂F₅(к) [19] и активности TiF₃. Тем не менее с использованием принятых в этой работе значений $\Delta_f H^{\circ}(\text{TiF}_3(\kappa), 0)$ и $\Delta_r H^{\circ}((7), 0)$ можно вычислить $\Delta_f H^{\circ}(\text{TiF}_2(\kappa), 0) = \Delta_f H^{\circ}(\text{Ti}_2 F_5(\kappa), 0) - (\text{TiF}_3(\kappa), 0) - \Delta_r H^{\circ}((5), 0) = -933.7 \pm 68 (-936.0 \pm 6.8 при 298 K) кДж/моль. Приведенные погрешности учитывают только вклады погрешностей воспроизводи-$

Таблица 5. Система состава Ti_2F_5 —Ti. Константы равновесия и стандартная энтальпии реакции (7), кДж/моль

<i>Т</i> , К	$a(TiF_3)$	$K^{\circ}(7) \times 10^4$	$\Delta_r H^{\circ}((7), 0)$
865	0.272	14.8	31.1
847	0.264	12.9	31.5
823	0.254	10.6	31.9
788	0.239	7.82	32.5
759	0.226	5.95	33.1

Примечание. $\Delta_r H^{\circ}((7) 0) = 32.0 \pm 3.3$ кДж/моль (усредненное значение).

НИКИТИН и др.

<i>Т</i> , К	$Ca \times 10^{6}$	$CaF \times 10^{6}$	$TiF_2 \times 10^4$	$TiF_3 \times 10^5$	H3	$K8 \times 10^5$	H8	$K9 \times 10^4$	H9	$K10 \times 10^{-9}$	H10
1626	8.66	8.98	2.15	9.56	42.5	8.57	212.2	10.9	334.8	1.86	750.0
1671	17.3	19.6	5.28	38.1	47.9	26.2	202.7	10.2	344.4	9.14	746.9
1699	20.9	27.9	8.24	62.4	46.3	26.4	206.0	14.4	344.9	17.3	749.3
1693	17.0	23.8	9.96	67.2	44.0	24.5	206.3	21.8	337.9	17.0	747.1
1683	5.74	12.6	13.6	126	42.1	11.8	215.2	15.8	340.5	7.81	754.0
1660	5.74	10.2	12.9	107	43.7	19.2	205.5	18.6	333.9	7.40	745.3
1643	3.40	6.65	9.66	91.8	44.2	12.2	209.6	10.7	338.3	3.28	749.5
1627	3.54	5.80	6.46	57.4	45.7	13.0	206.6	8.17	338.9	2.28	747.7
1585	1.13	2.13	3.38	30.3	43.9	4.54	215.1	4.20	339.4	0.383	753.5
1564	1.15	1.72	2.07	20.7	48.3	6.26	208.0	2.07	344.4	0.239	750.5

Таблица 6. Давление пара молекул атм.; N, KN и HN – номер уравнения реакции, $K^{\circ}((N), T)$ и $\Delta_r H^{\circ}((N), 0)$ соответственно

Примечание. Ca + TiF₃ = CaF + TiF₂ (3) $\Delta_r H^{\circ}((3) 0) = 44.9 \pm 1.6$ кДж/моль. Tik + 3CaF = TiF₃ + 3Ca (8) $\Delta_r H^{\circ}((8) 0) = 208.7 \pm 3.23$ кДж/моль. 2TiF₃ + Tik = 3TiF₂ (9) $\Delta_r H^{\circ}((9) 0) = 339.8 \pm 2.9$ кДж/моль. Tik + CaF₂k = TiF₂ + Ca (10). $\Delta_r H^{\circ}((10 0) = 749.4 \pm 2.1$ кДж/моль.

мости энтальпии реакций (5) — 2.5 кДж/моль и (7) и оценки $a(\text{TiF}_3)$ коэффициентом 2.

Полученные в [12] константы реакции (3) были обработаны аналогично [12] по III закону и привели к сильно отличающейся величине $\Delta_r H^{\circ}((3), 0) = 44.9 \pm 1.6 \ \text{кДж/моль}$. Отличие связано с другими значениями $\Delta_r \Phi^{\circ}((3), T)$, использованными в данной работе. Дополнительно к газовой реакции (3) можно рассмотреть некоторые другие независимые, в том числе гетерогенные, реакции:

$$Ti(\kappa) + 3CaF = TiF_3 + 3Ca, \qquad (8)$$

$$2\mathrm{Ti}\mathrm{F}_3 + \mathrm{Ti}(\kappa) = 3\mathrm{Ti}\mathrm{F}_2, \tag{9}$$

$$Ti(\kappa) + CaF_2(\kappa) = TiF_2 + Ca.$$
(10)

При расчете парциальных давлений TiF₂ и TiF₃ принято равенство коэффициентов чувствительности прибора в обоих опытах ($k = 1.47 \times 10^{-9}$ атм./ед. *i* K, см. выше) и активности кристаллических титана и дифторида кальция (1). Давление атомарного кальция и CaF рассчитано по константам равновесия реакции и отношениям ионных токов Ca⁺ и CaF⁺:

$$2CaF = CaF_{2}(\kappa) + Ca, \qquad (11)$$

$$K^{o}(11) = P(Ca)/P(CaF)^{2} =$$

$$= (i(Ca)/i(CaF))/P(CaF),$$

$$P(Ca)/P(CaF) = i(Ca^{+})/i(CaF^{+}).$$

Исходные ионные токи приведены в табл. 1, результаты расчетов – в табл. 6.

Причиной применения разных способов расчета энтальпий образования фторидов титана в данной работе, скорее всего, является использование в [12] разных режимов регистрации ионных токов вторичным электронным умножителем [12, 23]: интегрального (>10⁻¹⁵ A) и счета ионов (<10⁻¹⁵ A). Если в табл. 1 ионные токи *i*(Ca⁺) и *i*(CaF⁺) выражены в имп/с, а не в *i* × *R* (*R* – входное сопротивление электрометрического усилителя ~10¹² Ом), как $i(\text{TiF}_2^+)$ и $i(\text{TiF}_3^+)$, то они будут соответствовать токам в интервале (2–11) × 10⁻¹⁶.

Са + TiF₃ = CaF + TiF₂ (3),

$$\Delta_r H^{\circ}((3), 0) = 44.9 \pm 1.6 \ \kappa \mbox{Мж/моль};$$

Ti (κ) + 3CaF = TiF₃ + 3Ca (8),
 $\Delta_r H^{\circ}((8), 0) = 208.7 \pm 3.23 \ \kappa \mbox{Дж/моль};$
2TiF₃ + Ti (κ) = 3TiF₂ (9),
 $\Delta_r H^{\circ}((9), 0) = 339.8 \pm 2.9 \ \kappa \mbox{Дж/моль};$
Ti (κ) + CaF₂ (κ) = TiF₂ + Ca (10),
 $\Delta_r H^{\circ}((10), 0) = 749.4 \pm 2.1 \ \kappa \mbox{Дж/моль}.$

Из данных табл. 6 для реакций (3), (9) и (10) следует, что $\Delta_f H^{\circ}(\text{TiF}_2, 0) = -647.7 \pm 6.3, -650.2 \pm 2.4$ и -653.2 ± 7.1 кДж/моль соответственно. В данной работе рекомендована средняя арифметическая величина $\Delta_f H^{\circ}(\text{TiF}_2, 0) = -650.4 \pm 2.4$ кДж/моль. Полученное по реакции (8) значение $\Delta_f H^{\circ}(\text{TiF}_3, 0) = -1149.4 \pm 9.5$ кДж/моль в пределах погрешностей подтверждает рекомендованную нами выше величину, корректность сделанных допущений и в конечном итоге установление термодинамического равновесия в эф-фузионной камере.

В работе [24] исследован инфракрасный спектр поглощения молекулы TiF₃ в матрицах инертного газа. Напыление TiF₃ проводили испарением коммерческого препарата фторида ти-

ПЕРЕСМОТР ТЕРМОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК

TiF ₄ (κ)	TiF ₄	TiF ₃ (к)	TiF ₃	Ссылка
1647.1 ± 3.8	1547.8 ± 4.2	$1430.2 \pm 41.8^*$	1184.5 ± 41.8	[4, 5]
1647.1 ± 2.0	1550.5 ± 3.0	1404.7 ± 10.0	1164.7 ± 5.0	[2]
_	_	—	1081.1*	[25]
1647.1 ± 2.0 [2]	1550.5 ± 3.0 [2]	1403.2 ± 2.7	1144.2 ± 3.3	Наст. работа
Тi ₂ F ₅ (к)	TiF ₂ (к)	TiF ₂	TiF	Тi ₂ F ₅ (к)
_	-	686.6 ± 41.8	-66.9 ± 41.8	[4, 5]
_	920 ± 50	678.7 ± 10.0	-15.7	[2]
2349.4 ± 6.3	933.7 ± 6.8	650.4 ± 2.4	-15.7 [2]	Наст. работа

Таблица 7. Стандартные энтальпии образования $-\Delta_t H^\circ$ (TiF_n, 0) фторидов титана кДж/моль

*Пересчитано к 0 К.

тана(III) из графитовой эффузионной камеры при давлении ~ 10^{-4} атм., рассчитанном по данным [12]. В полученном спектре обнаружены частоты поглощения, отнесенные к TiF₃ и, вероятно, димеру. Отмечена инертность графита. Частоты поглощения CF₄ – возможного продукта взаимодействия фторидов титана с графитом – не обнаружены. Таким образом, подтвержден состав пара, найденный в [12].

Для увеличения содержания TiF₂ в потоке, попадающем в матрицу, насыщенный при 863 К пар TiF₃ перегревался в "горячей" секции графитовой двойной эффузионной камеры с помещенной в нее титановой стружкой до 1213 К. Оценка $K^{\circ}((9), 1213 \text{ K})$ в [24], немного скорректированная с учетом давления насыщенного пара TiF₃ из данной работы, составляет 2.09 × 10⁻⁴ атм. и приводит к $\Delta_r H^{\circ}((9), 298 \text{ K}) = 266 \text{ и } \Delta_f H^{\circ}(\text{TiF}_2, 298 \text{ K}) =$ = -669 кДж/моль. Надежность этой оценки невелика из-за допущения о равенстве молярных коэффициентов поглощения в ИК-спектрах TiF₂ и TiF₃ и отсутствия данных о калибровке прибора.

В табл. 7 представлены величины стандартных энтальпий образования фторидов титана из оригинальных публикаций. проанализированных в известных справочных изданиях, и результаты их пересмотра в этой работе. Рекомендованные значения приведены в итогах анализа конкретных работ. Если их несколько, они усредняются с одинаковыми статистическими весами. Погрешности представляют собой 95%-ный доверительный интервал и включают только энтальпийные вклады для реакций и справочных данных. Такой подход подчеркивает качество экспериментального материала и сделанных оценок. Учет погрешностей термодинамических функций участников равновесий существенно увеличивает величину погрешностей.

Квантово-механический расчет энтальпии образования TiF₃ [25] дает величину, хорошо согласующуюся с полученной в других теоретических работах. В работе [25] подчеркивается сильно заниженное значение, принятое в [4]. Это действительно так, но в пределах погрешности $\Delta_f H^{\circ}((\text{TiF}_3), 0)$ из [4] вписывается в приведенный доверительный интервал, в [25] погрешность не приведена.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Реальность существования в конденсированной фазе соединений, приведенных в табл. 7, в стандартном состоянии может быть охарактеризована их термодинамической стабильностью, а именно положительной энергией Гиббса реакций превращения в наиболее устойчивые (с наименьшей энтальпией образования) продукты (табл. 8).

Учитывая малый вклад энтропийного члена в энергетический баланс реакций, можно при низких температурах приближенно принять $\Delta_r G^{\circ}((\mathbb{N}_2), T) \sim \Delta_r H^{\circ}((\mathbb{N}_2), T)$. Дальнейшие расчеты проведены с использованием величин энтальпий образования из данной работы (табл. 7).

Отрицательные величины стандартных энтальпий реакций (16) и (17) (табл. 8) показывают, что кристаллический фторид титана(II) – соединение термодинамически метастабильное. Его синтез сложен и состоит в нагревании смеси Ті и

Таблица 8. Энтальпии реакций диссоциации и диспропорционирования кристаллических фторидов титана, кДж/моль

№ реакции	Реакция	$\Delta_r H^{\circ}((\mathbb{N}_2), 0)$
12	$2\mathrm{TiF}_4 = 2\mathrm{TiF}_3(\kappa) + \mathrm{F}_2$	294.6
13	$3\text{TiF}_3(\kappa) = \text{TiF}_4 + \text{Ti}_2\text{F}_5(\kappa)$	309.7
14	$\mathrm{Ti}_{2}\mathrm{F}_{5}(\kappa) = \mathrm{Ti}\mathrm{F}_{3}(\kappa) + \mathrm{Ti}\mathrm{F}_{2}(\kappa)$	12.5
15	$2\text{TiF}_2(\kappa) = \text{TiF}_4 + \text{Ti}(\kappa)$	316.9
16	$3\text{TiF}_2(\kappa) = 2\text{TiF}_3(\kappa) + \text{Ti}(\kappa)$	-8.3
17	$5\mathrm{Ti}\mathrm{F}_{2}(\kappa) = \mathrm{Ti}(\kappa) + 2\mathrm{Ti}_{2}\mathrm{F}_{5}(\kappa)$	-30.3

Рис. 2. Корреляционные зависимости стандартных энтальпий образования газообразных (а) и кристаллических (б) фторидов и хлоридов титана.

TiF₃ под давлением 4.0–6.5 ГПа (по-видимому, 40–65 атм.) при 700–1400°С [21].

На воздухе TiF₂ подвергается пирогидролизу до TiOF₂ и TiO₂, поэтому температуру, при которой начинается разложение, определяли в вакууме, характерном для установок с масляным диффузионным насосом ~10⁻⁽⁹⁻⁸⁾ атм. Диспропорционирование на тетрафторид и металл начинается только при 693 K [21]. Если это соответствует реакции (15), то: $\Delta_r H^{\circ}((15), 0) = 316.9 \text{ кДж/моль},$ $\Delta_r \Phi^{\circ}((15), 700 \text{ K}) = 183.0 \text{ Дж/моль K и } K^{\circ}((15),$ 700 K) = $P(\text{TiF}_4) = 8 \times 10^{-15}$ атм. Очевидно, вклад в разложение по этой схеме пренебрежимо мал. Но

Таблица 9. Энергии разрыва связей для молекул фто-

ридов титана D_0° , кДж/моль

Связь	TiF ₃ -F	TiF ₂ -F	TiF-F	Ti–F
D_0°	483.6	571.1	743.4	564 [2]

диспропорционирование до TiF₃(к) по реакции (16) вполне возможно: $\Delta_r H^{\circ}((16), 0) = -8.3 \text{ кДж/моль},$ $\Delta_r \Phi^{\circ}((16), 700 \text{ K}) = -17.9 \text{ Дж/моль K}, K^{\circ}((16), 700 \text{ K}) = 0.5, a(\text{TiF}_3) = 0.7 ~ 1. Из этого следует <math>P(\text{TiF}_3) \sim P^{\circ}(\text{TiF}_3) = 2.4 \times 10^{-7} \text{ атм.},$ что может быть обнаружено по газовыделению, приводящему к ухудшению вакуума, относительно быстрым потере массы образца и появлению налета на холодных частях установки. При этом температура 693 К задает только достаточно большую скорость реакции (16).

Метастабильность TiF₂(к) противоречит рассмотренному выше опыту [10], в котором $a(\text{TiF}_4) < 1$, а рассчитанная $a(\text{TiF}_3)$ тоже меньше 1. Это соответствует $a(\text{TiF}_2) = 1$. Однако при температурах <580 К дифторид титана(II) кинетически еще достаточно устойчив, но не находится в равновесии с другими соединениями. Это согласуется с предположением о том, что реакция (4) не достигает равновесия, при этом величину энтальпии реакции (4) следует рассматривать как оценку снизу. В опыте по испарению TiF₃ [12] при температурах >759 К кристаллическая фаза TiF₂ образоваться не могла.

В отличие от дифторида, другие галогениды титана(II) термодинамически устойчивы. Так, $\Delta_r H^{\circ}(0)$ реакций для хлоридов и иодидов, аналогичных реакции (16), равны 82.2 [26] и 122 [27] кДж/моль соответственно. С учетом термодинамики это связано с понижением термической устойчивости при переходе от трифторида к трииодидам титана из-за увеличения размера аниона и влияния стерических факторов.

Предложенный набор стандартных энтальпий образования газообразных фторидов титана хорошо коррелирует с аналогичным набором для хлоридов [26] (рис. 2). Это автоматически означает хорошую корреляцию и для энергий в молекулах. Для молекул фторидов они приведены в табл. 9.

Несколько хуже корреляция проявляется для кристаллических соединений. Возможной причиной является использование в [26] термодинамических функций из [4], а в данной работе — из [3].

ЗАКЛЮЧЕНИЕ

Проведенный в настоящей работе анализ экспериментальных данных оригинальных исследований позволил выявить некоторые методические недостатки, учесть неизвестные ранее факторы и объяснить термическое поведение фторидов титана. В результате существенно повышены надежность и точность рекомендованных величин стандартных энтальпий образования, которые могут быть включены в справочные издания и использованы в научных и технических расчетах.

ФИНАНСИРОВАНИЕ РАБОТЫ

ПЕРЕСМОТР ТЕРМОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сорокина Е.В., Карелин В.А. // Успехи современного естествознания. 2014. № 8. С. 134.
- 2. Термические константы веществ / Под ред. Глушко В.П. М.: ВИНИТИ, 1974. Т. VII. Ч. I.
- 3. Гурвич Л.В. // Вестн. АН СССР. 1983. № 3. С. 54.
- 4. *Chase M.W.* // NIST-JANAF thermochemical tables. Phys. and Chem. Ref. Data, Monograph. 1998. 27. № 9. P. 1.
- 5. Barin I., Knacke O., Kubaschewski O. Thermochemical properties of inorganic substances. Supplement. Springer-Verl., 1977. P. 861.
- Greenberg E., Settle J.L., Hubbard W.N. // J. Phys. Chem. 1962. V. 66. P. 1345. https://doi.org/10.1021/j100813a030
- 7. Gross P., Hayman C., Levi D.L. // XVIIth Interim. Cong. Pure Appl. Chem. Adstr. 1959. V. 1. P. 90.
- Hall E.H., Blocher J.M. // J. Electrochem. Soc. 1958. V. 105. P. 275. https://doi.org/10.1149/1.2428823
- 9. Леонидов В.Я., Медведев В.А. // Фторная калориметрия. М.: Наука, 1978. 296 с.
- Blocher J.M., Hall E.H. // J. Phys. Chem. 1959. V. 63. № 1. P. 127.
- 11. *Резухина Т.Н., Горшкова Т.И., Цветков А.А. //* Журн. физ. химии. 1983. Т. 57. № 7. С. 1651.
- Zmbov K.P., Margrave J.L. // J. Phys. Chem. 1967.
 V. 71. № 9. P. 2893. https://doi.org/10.1021/j100868a021
- 13. Pankratz L.B. // U.S. Dept. Interior, Bur. Mines Bull.674, Washington. 1984. № 674. P. 1.

- Euler R.D., Westrum Jr. E.F. // J. Phys. Chem. 1961.
 V. 65. № 1. P. 132. https://doi.org/10.1021/j100819a037
- Vogel M., Wenzel W. // Chem. Phys. Lett. 2005. V. 413. N
 1−3. P. 42. https://doi.org/10.1016/j.cplett.2005.07.030
- 16. *Гиричева Н.И., Гиричев Г.В., Шлыков С.А. //* Журн. структур. химии. 1991. Т. 32. № 4. С. 165.
- 17. Гиричев Г.В., Петров В.М., Гиричева Н.И., Краснов К.С. // Журн. структур. химии. 1982. Т. 23. № 1. С. 56.
- Alexander L., Beattie I.R. // J. Chem. Soc., Dalton Trans. 1972. № 16. P. 1745. https://doi.org/10.1039/DT9720001745
- Термодинамические свойства индивидуальных веществ. Справочник в 4-х томах / Под ред. Глушко В.П. М.: Наука, 1978–1982.
- 20. Никитин М.И., Чилингаров Н.С., Алиханян А.С. // Журн. неорган. химии. 2021. Т. 66. № 1. С. 81.
- Краткая химическая энциклопедия / Под ред. Зефирова Н.С. М.: Большая российская энциклопедия, 1995. Т. IV. 592 с.
- 22. Борщевский А.Я. Масс-спектральные термодинамические исследования фторидов переходных металлов и их применение к получению фторпроизводных фуллеренов. Дис. ... докт. хим. наук. М., 2001. 245 с.
- Blue G.D., Green J.W., Rexato R.G. et al. // J. Phys. Chem. 1963. V. 67. P. 877. https://doi.org/10.1021/j100798a039
- 24. Hastie J.W., Hauge R.H., Margrave J. // J. Chem. Phys. 1969. V.51. P. 2648. https://doi.org/10.1063/1.1672391
- Соломоник В.Г., Муханов А.А. // Журн. физ. химии. 2014. Т. 88. № 1. С. 62. https://doi.org/10.1134/S0036024414010233
- 26. Никитин М.И., Снигирева Е.М., Цирельников В.И. // ТВТ. 1992. Т. 30. № 6. С. 1069. Nikitin M.I., Snigireva E.M., Tsirel'nikov V.I. // High Temperature. 1992. V. 30. № 6. Р. 881.
- 27. Никитин М.И., Косинова Н.М., Цирельников В.И. // ТВТ. 1992. Т. 30. № 4. С. 691.