_ ФИЗИКОХИМИЯ РАСТВОРОВ —

УДК (541.49:536):54-145.2

СМЕШАНОЛИГАНДНОЕ КОМПЛЕКСООБРАЗОВАНИЕ ЦИНКА С ОРНИТИНОМ И ГИСТИДИНОМ В ВОДНОМ РАСТВОРЕ

© 2023 г. М. Г. Никитина^{*a*}, М. С. Груздев^{*a*}, Д. Ф. Пырэу^{*b*}, *

^аИнститут химии растворов им. Г.А. Крестова РАН, ул. Академическая, 1, Иваново, 153045 Россия ^bИвановский государственный университет, ул. Ермака, 39, Иваново, 153025 Россия

*e-mail: pyreu@mail.ru Поступила в редакцию 30.08.2022 г. После доработки 28.11.2022 г. Принята к публикации 30.11.2022 г.

Методами рН-метрии, калориметрии и ЯМР-спектроскопии изучено образование смешанолигандных комплексов различного состава в системе Zn–L-гистидин (His)–L-орнитин (Orn). Рассчитаны термодинамические параметры (lg K, $\Delta_r G^0 \Delta_r H$, $\Delta_r S$) реакций их образования при 298.15 К и ионной силе I = 0.5 (KNO₃). На основании проведенного сравнительного анализа термодинамических параметров предложен наиболее вероятный способ координации аминокислотных остатков в составе смешанных комплексов.

Ключевые слова: смешанолигандное комплексообразование, гистидин, орнитин, калориметрия, цинк, дентатность

DOI: 10.31857/S0044457X22700167, EDN: JFWMYN

введение

Различные виды межлигандного взаимодействия и факторы, способствующие росту устойчивости смешанных комплексов 3*d*-металлов с аминокислотами с дополнительными донорными группами, такими как гистидин, лизин, орнитин, аргинин, аспарагиновая и глутаминовая кислоты, были исследованы в работах [1, 2]. На примере многочисленных комплексов Cu(II) с указанными аминокислотами L- и D-рядов были рассмотрены не только возникающие стереоселективные эффекты, но и различные виды межлигандного взаимодействия посредством водородных связей, $\pi - \pi$ -стекинга (в случае аминокислот с ароматическим фрагментом). При этом авторы изучали в основном комплексы Cu(II), в которых в силу тетрагонального искажения эти эффекты проявляются сильнее. Значительно реже в этом аспекте рассматриваются комплексы Ni и Zn, имеющие, как правило, октаэдрическое окружение.

Интерес к смешанному комплексообразованию 3*d*-металлов с биологически активными молекулами не снижается. Смешанные комплексы Cu(II), Ni, Zn с гистидином и производными имидазола служат моделями связывания катиона металла с олигогистидиновыми фрагментами, активно используемыми при модификации белковых молекул с целью их разделения посредством аффинной IMAC-хроматографии, а также таргетирования [3, 4]. Комплексы меди(II) с L-гистидином способствуют эффективному расщеплению плазмидной ДНК при физиологических значениях pH и температуры [5]. Нуклеазная активность комплексов цинка в последнее время также активно изучается [6, 7]. Условием успешного использования комплексов, в том числе смешанных, в различных медико-биологических методиках является тщательное изучение равновесий с их участием.

Ранее тройные системы M(II)-His-Orn (M = = Ni, Zn) исследовали в основном потенциометрическим методом [8, 9], и структурный аспект в этих работах ограничивался почти исключительно анализом констант равновесия. Более того, в указанных работах в основном рассчитывали константы устойчивости смешанных комплексов с двумя аминокислотными остатками, вследствие чего уточнение ионного состава растворов и выявление особенностей координации указанных аминокислотных остатков в смешанных комплексах на основе сравнительного анализа термодинамических данных является актуальным. Поскольку аминокислоты основного типа (His, Lvs, Orn) способны к поливариантной координации как в составе цвиттер-ионной, так и в составе анионной формы, выявление типа координации аминокислотного остатка только по результатам рНпотенциометрии крайне затруднительно и требует привлечения данных целого ряда методов. Часто в определенном диапазоне рН в растворе од-

новременно присутствует несколько комплексных частиц с относительно небольшими долями накопления. Поэтому для надежного определения их физико-химических характеристик требуется корректный учет вклада каждой из рассматриваемых частиц. При этом информативность данных того или иного метода в зависимости от объекта исследования может быть совершенно различной. Все вышесказанное позволяет утверждать, что независимое определение состава комплексов и их констант устойчивости потенциометрическим (или подходящим спектральным) методом с последующим расчетом термодинамических характеристик равновесий комплексообразования по данным калориметрии является предпочтительным, а часто даже единственно возможным. Такой подход хорошо себя зарекомендовал.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Солянокислые L-гистидин (Reanal) и L-орнитин (Acros) марки "ч. д. а." использовали без дополнительной очистки. Концентрацию рабочего раствора (1 моль/кг раствора) сульфата цинка квалификации "х. ч." устанавливали комплексонометрически. Бескарбонатный раствор гидроксида натрия готовили по обычной методике на дистиллированной воде, свободной от CO₂. Используемый для создания ионной силы нитрат калия марки "ч. д. а." дважды перекристаллизовывали из водного раствора.

В ходе работы была проведена серия рН-метрических титрований растворов (ZnSO₄ + HHis · \cdot HCl + HOrn \cdot HCl + KNO₃) 0.2 М раствором NaOH при 25ºC и ионной силе 0.5 (KNO₃) при соотношениях Zn : His : Orn = 1 : 1 : 1, 1 : 2 : 1 и 1 : 1 : 2. В ячейку для титрования помещали 20 мл титриемого раствора и добавляли титрант (3-5 мл). При этом величина рН менялась в диапазонах 4-8.3 (Ni : His : Orn = 1 : 1 : 1), 4–9.3 (Ni : His : Orn = = 1 : 1 : 2) и 4–10.0 (Ni : His : Orn = 1 : 2 : 1). Концентрация ионов цинка во всех опытах составляла 0.01 моль/л. Методика измерения ЭДС цепи со стеклянным электродом и ее калибровки была аналогична приведенной в [10]. Обработку экспериментальных данных рН-метрических измерений проводили по программе PHMETR [11], основанной на минимизации функции правдоподобия $F = \Sigma (p_c H_{_{ЭКСП}} - p_c H_{_{расч}})^2$, где $p_c H = -lg[H^+] - lg[H^+]$ соответственно экспериментальные и рассчитанные по модели величины с учетом протекания реакций:

$$H_2O = H^+ + OH^-,$$
 (1)

$$Zn^{2+} + H_2O = ZnOH^+ + H^+,$$
 (2)

$$L^{-} + iH^{+} = H_{i}L^{i-1}, i = 1, 2, 3 (L = His, Orn), (3-5)$$

$$\operatorname{Zn}^{2+} + n\operatorname{His}^{-} = \operatorname{ZnHis}_{n}^{2-n}, n = 1, 2, (6,7)$$

$$Zn^{2+} + HHis = ZnHHis^{2+},$$
(8)

$$Zn^{2+} + HHis + His^{-} = ZnHHis_{2}^{+}, \qquad (9)$$

$$Zn^{2+} + Orn^{-} = ZnOrn^{+}, \qquad (10)$$

$$Zn^{2+} + Orn^{-} + HOrn = ZnHOrn_{2}^{+},$$
(11)

$$\operatorname{Zn}^{2+} + n\operatorname{HOrn} = \operatorname{Zn}(\operatorname{HOrn})_n^{2+}, n = 1, 2, (12, 13)$$

$$Zn^{2+} + Orn^{-} + His^{-} = Zn(Orn)(His).$$
(14)

Обработку потенциометрических данных проводили аналогично [10]. В случае соотношения Zn : His : Orn = 1 : 1 : 1 согласие между рассчитанной кривой и экспериментом достигалось при учете образования смешанных комплексов состава Zn(Orn)(His), Zn(HOrn)(His)⁺ и ZnH₂(Orn)(His)²⁺. При соотношении Zn : His : Orn = = 1 : 1 : 2 адекватной была модель комплексообразования, которая учитывала смешанные комплексы состава ZnH_i(His)(Orn)₂, где (*i* = 1, 2, 3) (заряд опущен) наряду с однороднолигандными комплексами и смешанными комплексами состава

1:1:1. Образование комплекса $Zn(His)(Orn)_2^-$ не выявлено по причине гетерогенного характера системы при высоких значениях pH. В случае соотношения Zn: His: Orn = 1:2:1 соответствие расчетных и экспериментальных кривых титрования достигалось при учете образования комплексов состава Zn(His)₂(Orn)⁻, NiH(His)₂(Orn) и NiH₂(His)₂(Orn)⁺.

Значения $\lg K$ реакций (3)–(5) для гистидина (9.02 и 15.07 соответственно) и орнитина (10.52 и 19.35 соответственно) были взяты из критических обзоров [12, 13], значения констант устойчивости однороднолигандных комплексов Zn с орнитином и гистидином – из надежно выполненных работ [14, 15] соответственно (табл. S1). Рассчитанные константы устойчивости смешанных комплексов приведены в табл. 1. Диаграммы долевого распределения в изучаемой системе при различных соотношениях Zn : His : Orn представлены на рис. 1–3.

Определение тепловых эффектов проводили на ампульном калориметре смешения с изотермической оболочкой и термисторным датчиком температуры. Надежность работы калориметра проверяли по теплоте растворения KCl в воде при 298.15 К. Были измерены тепловые эффекты смешения $\Delta_{mix}H$ раствора сульфата Zn с щелочными растворами аминокислот, содержащими фоновый электролит KNO₃ (табл. S2). Концентрация цинка после смешения составляла 0.005 моль/л. Компьютерное моделирование равновесий по программе RRSU [11] позволяло подобрать опти-

Равновесие	lg K	$-\Delta_r G^0,$ кДж/моль	Δ _r H, кДж/моль	∆ <i>,S</i> , Дж/(моль К)
$Zn^{2+} + His^{-} + Orn^{-} = ZnHisOrn$	12.23 ± 0.07	69.81 ± 0.49	-43.75 ± 0.67	87.4 ± 2.8
$Zn^{2+} + Orn^- + His^- + H^+ = ZnHOrnHis^+$	20.84 ± 0.06	118.95 ± 0.34	-83.74 ± 0.93	118.1 ± 3.9
$Zn^{2+} + Orn^{-} + His^{-} + 2H^{+} = ZnHHisHOrn^{2+}$	28.14 ± 0.05	160.62 ± 0.30	-123.68 ± 1.45	123.9 ± 4.8
$Zn^{2+} + 2His^{-} + Orn^{-} = ZnHis_2Orn^{-}$	15.84 ± 0.08	90.41 ± 0.46	-48.88 ± 0.30	139.3 ± 1.8
$Zn^{2+} + 2His^{-} + Orn^{-} + H^{+} = ZnHHis_2Orn$	25.63 ± 0.08	146.29 ± 0.46	-109.32 ± 0.45	124.0 ± 4.2
$Zn^{2+} + 2His^{-} + Orn^{-} + 2H^{+} = ZnHHis_2HOrn^{+}$	34.24 ± 0.07	195.44 ± 0.40	-143.88 ± 0.27	172.9 ± 4.7
$Zn^{2+} + His^{-} + 2Orn^{-} + 3H^{+} = ZnHHis(HOrn)_{2}^{2+}$	42.27 ± 0.14	241.27 ± 0.80	-188.9 ± 1.8	183.7 ± 5.2
$Zn^{2+} + His^{-} + 2Orn^{-} + 2H^{+} = ZnHis(HOrn)_{2}^{+}$	33.68 ± 0.26	192.2 ± 1.5	-136.6 ± 2.2	155 ± 9
$ZnHis^+ + Orn^- = ZnHisOrn$	5.92 ± 0.07	33.79 ± 0.40	-23.65 ± 0.67	34.0 ± 2.6
$ZnHis^+ + HOrn = ZnHisHOrn^+$	4.01 ± 0.06^{1}	22.89 ± 0.34	-11.72 ± 0.93	37.5 ± 3.3
	5.70 ± 0.06^2	32.54 ± 0.34	-16.56 ± 0.93	53.6 ± 3.3
$Zn^{2+} + HOrn + HHis = ZnHHisHOrn^{2+}$	8.42 ± 0.05^{1}	48.06 ± 0.30	-26.61 ± 1.45	71.9 ± 5.0
	11.35 ± 0.05^2	64.78 ± 0.30	-41.26 ± 1.45	78.9 ± 5.0
$ZnHisOrn + His^{-} = ZnHis_{2}Orn^{-}$	3.61 ± 0.10	20.61 ± 0.87	-5.13 ± 0.30	51.9 ± 3.1
$ZnHis_2 + Orn^- = ZnHis_2Orn^-$	4.00 ± 0.07	22.83 ± 0.40	-3.28 ± 0.30	65.6 ± 1.7
$ZnHis_2 + HOrn = ZnHHis_2Orn$	3.27 ± 0.08	18.66 ± 0.46	-11.82 ± 0.45	22.9 ± 2.2
	4.96 ± 0.08	28.31 ± 0.46	-16.64 ± 0.45	39.1 ± 2.2
$ZnHis^+ + HHis + HOrn = ZnHOrnHHis_2^+$	8.21 ± 0.14^1	46.86 ± 0.80	-26.71 ± 0.27	67.6 ± 3.1
2	11.14 ± 0.14^2	63.59 ± 0.80	-41.36 ± 0.27	74.6 ± 3.1
	9.90 ± 0.14^3	56.51 ± 0.80	-31.55 ± 0.27	83.7 ± 3.1
$ZnHisOrn + HHis = ZnHHis_2Orn$	4.20 ± 0.11^{1}	23.97 ± 0.63	-15.29 ± 0.81	29.1 ± 3.4
	7.13 ± 0.11^2	40.70 ± 0.63	-29.94 ± 0.81	36.1 ± 3.4
	12.03 ± 0.14^{1}	68.66 ± 0.80	-39.9 ± 1.8	97
Zn^{2+} + HHis + 2HOrn = ZnHHis(Horn) ₂ ²⁺	14. 96 \pm 0.14 ²	85.39 ± 0.80	-54.6 ± 1.8	103
$Zn^{2+} + His^{-} + 2HOrn = ZnHis(HOrn)_2^+$	12.64 ± 0.26	72.26 ± 1.5	-32.8 ± 2.2	132

Таблица 1. Термодинамические параметры реакций образования смешанолигандных комплексов в системе Zn^{2+} -His⁻-Orn⁻-H⁺ при 298.15 К и I = 0.5 (KNO₃)

данные рассчитаны с учетом протонирования α-аминогруппы гистидина и ε-аминогруппы орнитина.

²Данные рассчитаны с учетом протонирования имидазольного фрагмента гистидина и ε-аминогруппы орнитина.

³Данные рассчитаны с учетом протонирования α-аминогрупп гистидина и орнитина.

мальные условия проведения термохимического эксперимента. Обработку данных калориметрических измерений проводили по программе НЕАТ [11] с учетом вкладов процессов ионизации воды ($\Delta_r H_{(1)} = -56.90 \text{ кДж/моль}$) [16], протонирования аминокислот ($\Delta_r H_{(3)} = -45.15 \text{ кДж/моль}$, $\Delta_r H_{(4)} = -75.65 \text{ кДж/моль}$ [17] для гистидина и $\Delta_r H_{(3)} = -51.92 \text{ кДж/моль}$, $\Delta_r H_{(4)} = -99.00 \text{ кДж/моль}$ [18] для орнитина), образования однороднолигандных комплексов Zn с гистидином ($\Delta_r H_{(6)} = -20.1 \text{ кДж/моль}$, $\Delta_r H_{(7)} = -45.6 \text{ кДж/моль}$) [19] и смешанных комплексов указанных выше составов в суммарный тепловой эффект. Вклад

комплексов Zn с орнитином в суммарный тепловой эффект в данных условиях был небольшим.

Спектры ЯМР на ядрах ¹Н и ¹³С регистрировали на приборе Bruker AVANCE III-500 с частотами 500.17 МГц на ядрах протона и 125.76 МГц на ядрах углерода при температуре 298 К. Использование температурной приставки Bruker BVT 3000 позволяло поддерживать температуру с точностью 0.1 К. В качестве внешнего стандарта использовали циклогексан ($\delta_{3ксп} = 1.77$ м. д. для ¹Н и $\delta_{3ксп} = 27.6$ м. д. для ¹³С). Была приготовлена серия растворов (растворитель – D₂O) с соотношением Zn : His : Orn = 1 : 1 : 1 и 1 : 2 : 1 при величине pH,

Рис. 1. Диаграмма долевого распределения частиц в системе Zn^{2+} —His⁻—Orn⁻—H⁺ при соотношении Zn : : His : Orn = 1 : 1 : 1 ($C_{Zn} = 0.01$ моль/л).

Рис. 3. Диаграмма долевого распределения частиц в системе Zn^{2+} —His⁻—Orn⁻—H⁺ при соотношении Zn : : His : Orn = 1 : 2 : 1 (C_{Zn} = 0.01 моль/л).

отвечающей максимальному выходу смешанолигандной формы. Необходимую величину pH (pD) создавали введением наряду с кристаллическими $ZnSO_4$, HHis · HCl и Horn · HCl рассчитанного количества кристаллического KOH марки "х. ч.". Концентрация комплексоната Zn в растворе составляла 0.250 моль/кг D₂O. Значения химических сдвигов сигналов функциональных групп Orn и His в растворах изученных комплексов приведены в табл. S3 и S4. Спектры ЯМР ¹Н растворов изученных комплексов представлены на рис. 4, 5.

Рис. 2. Диаграмма долевого распределения частиц в системе Zn^{2+} —His⁻—Orn⁻—H⁺ при соотношении Zn : : His : Orn = 1 : 1 : 2 (C_{Zn} = 0.01 моль/л).

Рис. 4. Спектры ПМР растворов, содержащих ZnSO₄, HHis · HCl, Horn · HCl и КОН в мольном соотношении 1 : 1 : 1 : 2 (*I*), 1 : 1 : 1 : 3 (*2*) и 1 : 1 : 1 : 3.5 (*3*); растворитель – D₂O; $C_{Zn} = 0.2$ моль/кг растворителя.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В литературе имеются данные лишь одной работы [9], в которой методом pH-метрии были изучены тройные системы Zn–L-гистидин, гистамин–диаминокарбоновая кислота. Авторами работы установлено существование в растворе трех смешанных частиц состава ZnH_i(His)(Orn), где i = 0, 1, 2 (заряд опущен), однако не выявлены смешанные комплексы иной стехиометрии. Тем не менее константы устойчивости комплексов указанного состава, полученные в настоящей работе и работе [9], достаточно хорошо согласуются

Рис. 5. Спектры ПМР растворов, содержащих ZnSO₄, HHis · HCl, Horn · HCl и KOH в мольном соотношении 1:2:1:4(1), 1:2:1:5(2) и 1:2:1:6(3); растворитель – D₂O; $C_{Zn} = 0.2$ моль/кг растворителя.

Рис. 6. Корреляционная зависимость констант образования смешанных комплексов Ni(II) и Zn с гистидином и орнитином при 298.15 K и I = 0.5 (KNO₃).

с учетом различий в условиях эксперимента. Таким образом, представляло интерес не только уточнить ионный состав растворов в системе Zn—His—Orn в широком интервале концентрационных соотношений и pH, но и использовать термодинамический подход к оценке строения образующихся смешанных комплексов.

Анализ литературных данных позволил указать на ряд структурных особенностей координации остатка гистидина катионом цинка. Так, в работе [24], выполненной с привлечением двумерной гомо- и гетероядерной корреляционной ЯМР-спектроскопии, а также DFT-расчетов, была предложена схема координации остатков гистидина в *бис*-гистидинате Zn. В частности, при повышении pH раствора до 7.5 катион Zn(II) оказывается связанным с донорными атомами N_{am} , O_{COO} и N_{im} двух остатков гистидина и имеет октаэдрическое окружение. На это указывает пространственная близость атомов азота α -аминогруппы и пиридинового кольца в гистидине, что следует из данных 2D ¹⁵N–¹⁵N PDSD ЯMР-эксперимента. Кроме того, тридентатный характер остатков гистидина и шестивершинное строение комплекса подтверждены оптимизацией геометрии, что, в свою очередь, хорошо согласуется с данными кросс-поляризационного ¹³С ЯМР-эксперимента. Полученный при pH 7.5 комплекс

His-Zn(II) наиболее близок по структуре к кристаллическому Zn(D,L-His)₂ [25]. При дальнейшем увеличении рН до 11 обнаружено, что атом азота пиридинового типа имидазольного фрагмента по-прежнему координируется катионом Zn(II), а атом азота пирольного типа депротонируется, образуя водородные связи с соседней молекулой воды. При рН 14 оба атома азота депротонированного имидазольного фрагмента становятся идентичными и координируются разными катионами Zn(II), образуя макромолекулу. Не менее интересны в свете строения гистидинатов цинка результаты работы [26], где с применением XANES- и EXAFS-спектроскопии выявлено ближайшее окружение катиона цинка в растворах гистидинатов в широком диапазоне pH 0.5-11.5. При рН 9.02 остатки гистидина, связанные с цинком, выступают в качестве бидентатных лигандов. При этом комплекс имеет тетраэдрическую геометрию. Это полностью согласуется с данными рентгеноструктурного анализа кристаллического образца дигидрата *бис*-L-гистидината цинка (запись HISZND01 в базе данных СССС) [27], где имеет место гистаминный способ координации остатков гистидина, хотя в более ранних работах [28, 29] было установлено тетрагональное окружение катиона цинка в составе ди- и пентагидратов *бис*-L-гистидината цинка (длина связи Zn-O_{COO} значительно больше связей Zn-N_{am} и $Zn-N_{im}$). При подкислении раствора (pH ~ 5.87) комплекс принимает октаэдрическую геометрию с четырьмя внутрисферными молекулами воды и двумя монодентатными гистидиновыми лигандами, координированными посредством α-аминогруппы. Предложенная авторами структура комплекса $[Zn(HHis)_2(H_2O)_4]^{2+}$, к сожалению, не указывает на характер протонирования остатков гистидина, однако совершенно очевидно, что предпочтительным является глицинатный способ координации. Тем не менее в качестве монодентатного лиганда можно рассматривать и цвиттер-ионную форму HHis, где координация осуществляется через имидазольный фрагмент, что весьма характерно для цинка. Когда протонирование гистидина завершено (pH < 2.29), цинк окружен шестью молекулами воды. К сожалению, авторы не рассматривают образование комплекса [ZnHHis₂]⁺, в котором остатки гистидина, очевидно, имеют разные типы координации.

Рассчитанные термодинамические параметры изученных реакций приведены в табл. 1. Как уже отмечалось ранее в аналогичном исследовании с участием комплексов Ni [10], при оценке возможного типа координации лигандов более информативным является анализ термодинамических параметров присоединения анионной или цвиттерионной формы орнитина к моно- и *бис*-комплексам Zn с гистидином. Нами рассматривались так-

же процессы смешанолигандного комплексообразования Zn с гистидином и глицином [20] в качестве модельных процессов. Так, реакция присоединения анионной формы орнитина к комплексу ZnHis⁺ является более экзотермичной по сравнению с реакцией присоединения цвиттер-ионной формы. Указанное явление наблюдалось и в случае аналогичных реакций с участием никеля [10]. При этом параметры присоединения HOrn[±] к ZnHis⁺ близки к параметрам аналогичной реакции с участием глицина, а также к параметрам реакций образования глицинатных комплексов Zn, что позволяет с уверенностью говорить о преобладании тридентатного (N, N, O) типа координации орнитина в составе комплекса Zn(His)(Orn). По-видимому, в растворе устанавливается равновесие между формами смешанного комплекса с би- и тридентатным типом координации орнитина, которое смещено в сторону последнего. Термодинамические параметры присоединения $HOrn^{\pm} \kappa ZnHis^{+}$, рассчитанные с учетом протонирования α-аминогруппы и предполагающие координацию цвиттер-ионной формы орнитина посредством ε-аминогруппы и ее монодентатный характер, оказываются явно завышенными (табл. 1). На глицинатный тип координации цвиттер-ионной формы орнитина указывает близость термодинамических параметров рассматриваемого процесса и реакции присоединения остатка глицина к ZnHis⁺ и ZnGly⁺ (табл. 2).

Термодинамические параметры присоединения цвиттер-ионных форм гистидина и орнитина к катиону цинка с образованием комплекса Zn(HHis)(HOrn)²⁺ рассчитывали с учетом возможного протонирования остатка гистидина как по α-аминогруппе, так и по имидазольному кольцу. При этом остаток орнитина считали преимущественно протонированным по *٤*-аминогруппе и, как следствие, координированным по глицинатному фрагменту. Учет протонирования остатка гистидина по имидазольному фрагменту дает явно завышенные значения $\lg K$ и экзоэффекта рассматриваемой реакции, хотя это и предполагает участие в координации именно глицинатного фрагмента. Аналогичная ситуация наблюдалась и для комплекса Ni такого же состава. В то же время учет протонирования остатка гистидина по α-аминогруппе и, как следствие, координация ННіз[±] посредством гетероатома азота пиридинового типа дают значения $\lg K$ и $\Delta_r H$, близкие к таковым для процесса образования бис-глицинатного комплекса цинка. Это предполагает глицинатный тип координации цвиттер-ионных форм орнитина и гистидина в комплексе состава Zn(HHis)(HOrn)²⁺ (табл. 3). Очевидно, поведение глицинатного и имидазольного фрагментов гистидина при его протонировании и последующей координации нельзя полностью рассматривать

СМЕШАНОЛИГАНДНОЕ КОМПЛЕКСООБРАЗОВАНИЕ ЦИНКА

Dooruug	L = Gly		Course	L = Orn			Сантиа	
гсакция	lg K	$\Delta_r H$	$\Delta_r S$	Ссылка	lg K	$\Delta_r H$	$\Delta_r S$	Ссылка
ZnHis + L = ZnHisL	4.71	-12.75	47.4	[20]	5.92	-23.65	34.0	Наст.
ZnHis + HL = ZnHisHL					4.01	-11.72	37.5	работа
$ZnHisL + His = ZnHis_2L$	3.00	-17.35	-1.0		3.61	-5.13	51.9	
$ZnHisL + HHis = ZnHHis_2L$	2.86	-19.7	-11.3		4.20	-15.29	29.1	
$ZnHis_2 + L = ZnHis_2L$	2.18	-4.60	26.3		4.00	-3.28	65.6	
$ZnHis + His = ZnHis_2$	5.5	-25.5	20.3	[12]				
ZnL + Gly = ZnLGly	4.2*	-13.0	36.8	[22]		1	I	I
Zn + Im = ZnIm	2.6**	-15.9	-4.3	[23]				

Таблица 2. Термодинамические параметры реакций образования комплексов в системах Zn(II)–His–L (L = Orn, Gly, Im) при 298.15 К и I = 0.5 (KNO₃), $\Delta_r H$ в кДж/моль, $\Delta_r S$ в Дж/(моль K) (заряды опущены)

*При I = 0.2.

**При I = 0.16.

Таблица 3. Наиболее вероятные типы координации аминокислотных остатков в составе смешанных комплексов цинка

Состав комплекса	Ближайшее окружение катиона цинка
ZnHisOrn	$\{2N_{am}^{\alpha}, N_{im}, 2O_{COO}\} \leftrightarrow \{2N_{am}^{\alpha}, N_{im}, N_{am}^{\omega}, 2O_{COO}\}$
ZnHisHOrn ⁺	$\{2N_{am}^{\alpha}, N_{im}, 2O_{COO}\}$
ZnHHisHOrn ²⁺	$\{2N_{am}^{\alpha}, 2O_{COO}\}$
ZnHis ₂ Orn ⁻	$\{3N_{am}^{\alpha}, N_{im}, 2O_{COO}\}$
ZnHHis ₂ Orn	$\{3N_{am}^{\alpha}, 3O_{COO}\}$
ZnHHis ₂ HOrn ⁺	$\{3N_{am}^{\alpha}, N_{im}, 2O_{COO}\}$
$ZnHis(HOrn)_2^+$	$\{3N_{am}^{\alpha}, 3O_{COO}\}, \{3N_{am}^{\alpha}, N_{im}, 2O_{COO}\}$
$ZnHHis(HOrn)_2^{2+}$	$\{3N_{am}^{\alpha}, 3O_{COO}\}$

как независимое. В случае орнитина и лизина тезис о независимом поведении двух атомов азота при их координации оказывается более обоснованным по причине протяженной алифатической части и пространственного разделения донорных атомов.

Рассчитанные нами константы процессов сопропорционирования

$$ZnL_2 + ZnHis_2 = 2ZnHisL$$
 (15)

для L = Gly [20], HOrn, Orn составили соответственно 0.97, 1.99 и 1.65 лог. ед. Расчет константы равновесия (15) для L = Orn проводили с использованием данных по устойчивости комплекса Zn(Orn)₂, приведенных в работе [30], так как эта величина в работе [14] не была получена. Все константы равновесия пересчитывали на I = 0.5. Полученные нами значения $\lg K_{(15)}$ ненамного больше статистически ожидаемого значения 0.3. Причиной этого является отсутствие в случае Gly такого фактора экстрастабилизации смешанного комплекса, как увеличение дентатности лиганда(ов). В случае L = HOrn $K_{(15)}$ достигает 2 лог. ед., что, скорее всего, можно объяснить наличием слабого взаимодействия (водородной связи) между протонированной ε -аминогруппой остатка орнитина и карбоксильной группой гистидина.

Как и в случае комплексов Ni, термодинамические параметры образования смешанных комплексов с тремя аминокислотными остатками свидетельствуют о конкуренции между донорными атомами лигандов. В частности, реакции присоединения анионных форм His⁻ и Orn⁻ соответственно к комплексам Zn(His)(Orn) и Zn(His)₂ с образованием комплекса Zn(His)₂(Orn)⁻ характеризуются небольшими экзоэффектами. Присоединение остатка гистидина или орнитина здесь возможно только за счет понижения дентатности уже координированных остатков аминокислот. Слабый экзоэффект свидетельствует о том, что присоединение третьего аминокислотного остатка приводит к перераспределению дентатности лигандов в комплексе, не сопровождающемуся увеличением числа координированных атомов азота аминного типа. При этом присоединение His⁻ к комплексу Zn(His)(Orn) характеризуется несколько большим экзоэффектом, что косвенно указывает на устранение от координации Е-аминогруппы орнитина и координацию второго остатка гистидина посредством глицинатного фрагмента, в то время как присоединение Orn- к комплексу Zn(His), характеризуется меньшим экзоэффектом, очевидно, вследствие нарушения структуры устойчивого координационно-насыщенного бис-гистидината цинка и перехода от гистаминного к глицинатному типу координации. Похожее соотношение отмечалось и для комплексов никеля.

Комплекс ZnHisOrn₂ в ходе исследований не обнаружен в силу развивающегося в щелочной области осадкообразования. Выявлены протонированные комплексы состава ZnHisH_iOrn₂, где i == 2, 3 (заряды опущены). Экзоэффект присоединения цвиттер-ионной формы орнитина к ZnHis₂ с образованием ZnHHis₂Orn, рассчитанный с учетом протонирования остатка орнитина как по ٤-, так и по α-аминогруппе, оказался больше, чем при образовании комплекса ZnHis₂Orn⁻, но близок к тепловому эффекту присоединения цвиттер-ионной формы орнитина к комплексу ZnHis⁺. При этом значение $\lg K$ заметно меньше. Данный факт косвенно подтверждает координацию остатка орнитина по глицинатному типу. Учет протонирования остатка орнитина по α-аминогруппе, предполагающий монодентаный характер HOrn⁺, дает явно завышенные значения константы равновесия и экзоэффекта. На основании того, что осно́вные свойства є-аминогруппы орнитина значительно выше, чем имидазольного фрагмента остатка гистидина, можно с уверенностью говорить о том, что в структуре ZnH(His)₂(Orn) протонированным оказывается остаток орнитина. Более того, экзотермичность рассматриваемого процесса указывает на рост числа координированных атомов азота, приводящий к появлению комплекса с ближайшим окружением {2N_{am}, $2N_{im}, N_{am}, O_{COO})$, т.е. в составе этого комплекса один или два остатка гистидина сохраняют гистаминный способ координации.

При образовании смешанолигандного комплекса $ZnHHis(HOrn)_2^{2+}$ термодинамические параметры были рассчитаны для двух случаев: а) с учетом протонирования α -аминогруппы гистидина и ٤-аминогруппы орнитина и б) с учетом протонирования имидазольного фрагмента гистидина и ε-аминогруппы орнитина. Наиболее вероятные значения были получены при учете протонирования α-аминогруппы гистидина и εаминогруппы орнитина. В данном случае протонированными оказываются все три аминокислотных остатка. Наиболее возможной является координация остатков орнитина по глицинатному фрагменту, в то время как цвиттер-ионная форма гистидина может координироваться посредством как глицинатного фрагмента, так и гетероатома азота имидазольного кольца. Вполне вероятно, что реализуются оба способа координации и в растворе сосуществуют обе структуры.

В структуре комплекса состава Zn(His)(HOrn)₂⁺, по всей видимости, протонированными оказываются оба остатка орнитина. Экзоэффект процесса:

$$Zn^{2+} + His^{-} + 2HOrn = Zn(His)(HOrn)_{2}^{+}$$
 (16)

несколько уступает тепловому эффекту образования

ZnHHis(HOrn) $_{2}^{2+}$ (табл. 1). Принимая во внимание тот факт, что тепловой эффект этого процесса определен с максимальной в наших условиях погрешностью, можно предполагать, что в комплексах состава ZnHis(HOrn) $_{2}^{+}$ и ZnHHis(HOrn) $_{2}^{2+}$ все три аминокислотных остатка координированы по глицинатному типу. Таким образом, гистаминный способ координации остатка гистидина в комплексе

 $ZnHis(HOrn)_2^+$ оказывается маловероятным.

Данные ЯМР-спектроскопии косвенно подтверждают выводы, сделанные на основании сравнительного анализа термодинамических данных. Из спектров ПМР (рис. 4, 5) хорошо видно, что с ростом pH (pD) наибольшее смещение отмечается для сигналов протонов имидазольного фрагмента гистидина. При этом сигналы смещаются в область сильного поля. Это указывает на координационную активность имидазольного фрагмента и возможность вовлечения в координацию двух атомов азота гистидина. Сосуществование в одной и той же области рН различных однородно- и смешанолигандных частиц с относительно невысоким процентным содержанием сильно осложняет интерпретацию изменения величины химсдвига линий в спектре ЯМР растворов с соотношением Zn : His : Orn = 1 : 2 : 1. Изучение спектров ЯМР растворов с соотношением Zn : His : Orn = 1 : 1 : 2 оказывается крайне затруднительным в силу осадкообразования, а их информативность еще больше снижается.

Спектроскопия ЯМР на ядрах углерода уже привлекалась ранее [21] для изучения равновесий в системах Zn–His–L (L = en, Gly). Данные ¹³С ЯМР-спектроскопии были использованы для расчета констант устойчивости комплексов со-

става ZnH_nHis_2L , где n = -1, 0, 1 (заряд опущен). По мнению авторов, только учет образования указанных выше тройных комплексов, содержаших два остатка гистидина. наряду с комплексами состава ZnHisL дает довольно хорошее соответствие межлу расчетными и экспериментальными профилями pD. Из полученных нами данных (рис. 4) видно, что сигналы протонов, связанных с β- и δ-атомами углерода соответственно гистидина и орнитина, с ростом рН сильно уширяются. Это может быть обусловлено так называемым внутрихелатным обменом, отвечающим равновесию между формами смешанного комплекса с гистаминоподобным и тридентатным типами координации остатка гистидина, с одной стороны, и глицинатным и тридентатным {N, N, O} типами координации остатка орнитина с другой. К сожалению, выявить эту тенденцию сложно, так как даже в наиболее щелочном растворе содержание комплексов Zn(His)(HOrn)⁺ и Zn(His)(Orn) оказывается сопоставимым. Таким образом, данный эффект наблюдается в условиях равновесия между двумя указанными смешанными комплексами на фоне депротонирования δ-аминогруппы остатка орнитина.

Хорошо прослеживаемая корреляционная зависимость констант устойчивости смешанных комплексов Ni(II) [10] и Zn указывает прежде всего на их сходное строение. И хотя для этих двух металлов было установлено сушествование в растворе смешанных комплексов не всех составов, можно указать на ожидаемое значение константы устойчивости смешанного комплекса одного металла при известной аналогичной величине для другого. Нами были предложены составы смешанных комплексов с указанием ближайшего окружения и наиболее вероятных типов координации аминокислотных остатков катионом цинка (табл. 3). В ряде случаев можно говорить о сосуществовании в растворе как минимум двух структур одного и того же комплекса, различающихся типом координации либо характером межлигандного взаимодействия. В условиях относительно низкой информативности спектральных методов или неприменимости того или иного их вида сравнительный анализ термодинамических параметров позволяет сделать обоснованные выводы о строении смешанных комплексов металлов в растворе.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Таблица S1. Тепловые эффекты смешения раствора сульфата цинка (1.006 моль/кг раствора) с растворами (HHis·HCl + HOrn·HCl + NaOH + KNO₃) при 298.15 К и *I* = 0.5 (KNO₃).

Таблица S2. Значения химических сдвигов на ядрах ¹Н.

Таблица S3. Значения химических сдвигов на ядрах ¹³С.

Таблица S4. Логарифмы констант равновесия процессов, использованных в работе.

СПИСОК ЛИТЕРАТУРЫ

- Yamauchi O., Odani A. // J. Chem. Soc., Dalton Trans. 2002. P. 3411. https://doi.org/10.1039/B202385G
- Yamauchi O., Odani A. // Inorg. Chim. Acta. 1985.
 V. 100. P. 165. https://doi.org/10.1016/S0020-1693(00)88304-8
- Chaga G.S. // J. Biochem. Biophys. Methods. 2001. V. 49. P. 313.
- 4. *Gaberc-Porekar V., Menart V. //* J. Biochem. Biophys. Methods. 2001. V. 49. P. 335.
- Yang P., Zheng W., Hua Z. // Inorg. Chem. 2000. V. 39. № 24. P. 5454. https://doi.org/10.1021/ic0000146
- Raman N., Sakthivel A., Raja J.D. et al. // Russ. J. Inorg. Chem. 2008. V. 53. P. 213. https://doi.org/10.1134/S0036023608020113
- Demidov V.N., Kas'yanenko N.A., Antonov V.S. et al. // Russ. J. Gen. Chem. 2012. V. 82. P. 602. https://doi.org/10.1134/S1070363212030401
- Nair M.S., Arasu P.T., Sutha S.G. et al. // J. Indian Chem. Soc. 1998. V. 37A. P. 1084. http://nopr.niscair.res.in/handle/123456789/40379
- Nair M.S., Pillai M.S., Ramalingam S.K. // J. Chem. Soc., Dalton Trans. 1986. P. 1. https://doi.org/10.1039/DT9860000001
- 10. *Никитина М.Г., Пырэу Д.Ф.* // Журн. неорган. химии. 2021. Т. 66. № 10. С. 1482. https://doi.org/10.1134/S0036023621100120
- 11. Бородин В.А., Васильев В.П., Козловский Е.В. Математические задачи химической термодинамики. Новосибирск: Наука, 1985. С. 219.
- 12. *Pettit L.D.* // Pure Appl. Chem. 1984. V. 56. P. 247. https://doi.org/10.1351/pac198456020247
- Yamauchi O., Odani A. // Pure Appl. Chem. 1996.
 V. 68. P. 469. https://doi.org/10.1351/pac199668020469
- Farkas E., Gergely A., Kas E. // J. Inorg. Nucl. Chem. 1981. V. 43. P. 1591. https://doi.org/10.1016/0022-1902(81)80343-0
- 15. Sovago I., Kiss T., Gergely A. // J. Chem. Soc., Dalton Trans. 1978. P. 964.
- Васильев В.П. Термодинамические свойства растворов электролитов. М.: Высш. школа, 1982. С. 201.
- 17. *Гаравин В.А.* // Дис. ... канд. хим. наук. Иваново: ИХТИ, 1983.
- Gergely A., Farkas E., Nagypál I. et al. // J. Inorg. Nucl. Chem. 1978. V. 40. P. 1709. https://doi.org/10.1016/0022-1902(78)80366-2

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 3 2023

- Amico P., Arena G., Daniele P. et al. // Inorg. Chem. 1981. V. 20. P. 772. https://doi.org/10.1021/ic50217a027
- Pyreu D., Alekseeva E., Gridchin S. // Thermochim. Acta. 2019. V. 680. P. 178335. https://doi.org/10.1016/j.tca.2019.178335
- Couves L.D., Hague D.N., Moreton A.D. // J. Chem. Soc., Dalton Trans. 1992. P. 217. https://doi.org/10.1039/DT9920000217
- Kiss T., Sovago I., Gergely A. // Pure Appl. Chem. 1991.
 V. 63. P. 597.
- 23. Sjoberg S. // Pure Appl. Chem. 1997. V. 69. P. 1549.
- 24. Zhou L., Li S., Su Y. et al. // J. Phys. Chem. B. 2013. V. 117. P. 8954. https://doi.org/10.1021/jp4041937
- Dalosto S.D., Calvo R., Pizarro J.L., Arriortua M.I. // J. Phys. Chem. A. 2001. V. 105. P. 1074. https://doi.org/10.1021/jp003167n

- 26. Ferrer P., Jiménez-Villacorta F., Rubio-Zuazo J. et al. // J. Phys. Chem. B. 2014. V. 118. P. 2842. https://doi.org/10.1021/jp411655e
- 27. Kistenmacher T.J. // Acta Crystallogr., Sect. B. 1972.
 V. 28. P. 1302. https://doi.org/10.1107/S0567740872004133
- Kretsinger R.H., Cotton F.A., Bryan R.F. // Acta Crystallogr. 1963. V. 16. P. 651 https://doi.org/10.1107/S0365110X63001705
- 29. Harding M.M., Cole S.J. // Acta Crystallogr. 1963. V. 16. P. 643. https://doi.org/10.1107/S0365110X63001699
- 30. Bottari E., Festa M. // J. Coord. Chem. 1990. V. 22. P. 237. https://doi.org/10.1080/00958979009408220
- 31. *Powell K., Brown P., Byrne R. et al.* // Pure Appl. Chem.
- 2013. V. 85. P. 2249.