= ФИЗИКОХИМИЯ РАСТВОРОВ ==

УДК 541.49:546.56:547.461:547.466

ВЗАИМОДЕЙСТВИЕ МЕДИ(II) С ЯНТАРНОЙ КИСЛОТОЙ И НЕКОТОРЫМИ АМИНОКИСЛОТАМИ

© 2023 г. Н. А. Скорик^{а,} *, О. А. Васильева^а

^{*а*}Томский государственный университет, пр-т Ленина, 36, Томск, 634050 Россия **e-mail: Skorikninaa@mail.ru* Поступила в редакцию 04.08.2022 г. После доработки 20.12.2022 г. Принята к публикации 30.12.2022 г.

Методами спектро- и фотометрии, pH-потенциометрии и растворимости изучено взаимодействие в водных растворах, содержащих ион "металла жизни" Cu²⁺ и биологически активные вещества – янтарную кислоту и (или) одну из аминокислот (аминоуксусную, глутаминовую, аспарагиновую). Определены общие константы протонизации кислот, состав и константы устойчивости однороднои смешанолигандных комплексов меди(II) при ионной силе I = 0.3; для сукцината меди(II) состава CuC₄H₄O₄ · 2H₂O найдена константа растворимости (lg $K_S = -7.59 \pm 0.06$).

Ключевые слова: синтез, медь(II), янтарная кислота и аминокислоты, однородно- и смешанолигандные комплексы, сукцинат меди(II)

DOI: 10.31857/S0044457X22601304, EDN: FKZNGV

ВВЕДЕНИЕ

Исследование соединений биометаллов (железо, мель, цинк, марганец, кобальт и др.) с карбоновыми и оксикарбоновыми кислотами, аминокислотами (АК), пептидами важно с точки зрения химии, биологии, медицины и имеет научное и прикладное значение. В последнее время вырос интерес к изучению систем со смешанолигандным комплексообразованием, которое преобладает в биологических и экологических условиях. Большинство процессов, протекающих в организме, включает в себя взаимодействие ионов металла с несколькими лигандами. Так, известно, что при транспортировке металлов большую роль играют смешанолигандные комплексы (СЛК) с участием двух аминокислот [1]. Большое значение придается изучению координационных соединений меди(II) с α-аминокислотами, поскольку они участвуют в транспорте меди в ткани, клетки и жидкости организма.

Однороднолигандные комплексы меди(II) с аминокислотами и карбоновыми кислотами (лимонная, щавелевая, янтарная, фумаровая, яблочная и др.), а также карбоксилатные соли меди(II) изучены достаточно полно [2–5]. Широкое применение в медицинской практике находит янтарная кислота HOOC(CH₂)₂COOH (H₂Suc). Она рекомендуется в качестве общеукрепляющего средства, применяется в медицине как активное бактерицидное вещество, ее соли могут быть использованы в фармакологии, ветеринарии, медишине и пишевой промышленности в качестве лекарственных средств или биологически активных добавок. Сукцинаты *d*-металлов можно получить взаимодействием янтарной кислоты с гидроксидами и карбонатами металлов, взаимодействием сукцината натрия с солями *d*-металлов [6]. Из твердой фазы сукцинат меди(II) получен реакцией основного карбоната меди с янтарной кислотой [7]. Для сукцината меди CuSuc · 0.5H2O [8] определена константа растворимости $K_S = 2.9 \times 10^{-6}$. Добавление аминокислоты (серин, глицин, аланин) к этой соли увеличивает ее растворимость, расчетные данные для системы сукцинат меди(II)-аминокислота предсказывают образование СЛК. Это изменение растворимости сукцината меди авторы связывают с представлением о потенциальном увеличении биодоступности иона Cu^{2+} . В работе [9] дана информация о термическом поведении сукцинатов переходных металлов $MC_4H_4O_4 \cdot nH_2O$ (M = = Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺). Конечным продуктом термического разложения указанных сукцинатов являются Mn₃O₄, Fe₂O₃, Co₃O₄, NiO, СиО и ZnO соответственно.

Получены и смешанолигандные соли меди(II) с янтарной кислотой, аминокислотами и другими лигандами. Динуклеарная соль $[Cu_2(C_4H_4O_4)(phen)_2(H_2O)_2](NO_3)_2(C_4H_4O_4^{2-} - сукци$ нат-ион, phen - 1,10-фенантролин) содержит мостиковый сукцинат-анион, ионы меди имеют квадратно-плоскостную геометрию [10]. Из раствора синтесоль зирована состава $[(phen)_2Cu(\mu-L)Cu(phen)_2]L \cdot 12.5H_2O (L^{2-} - ани$ он янтарной кислоты), которая состоит из сукцинатных мостиковых комплексных катионов $[(phen)_2Cu(\mu-L)Cu(phen)_2]^{2+}$, некоординированных сукцинатных анионов и молекул воды, связанных водородной связью [11]. Изучено применение при терапии опухоли соединения меди(II) с L-серином (HOCH₂CH(NH₂)CO₂H) и глицином (NH₂CH₂CO₂H, HGly) [12]. Эта работа показала, что смешанолигандные соединения меди(II) с α-аминокислотами перспективны для поиска новых противоопухолевых соединений. В работе [13] дан обзор химии соединений меди(II) со многими аминокислотами: глицином, аланином, гистидином, лизином, тирозином, серином и др.

К настоящему времени в литературе имеется достаточно данных по константам устойчивости сукцинатных комплексов меди(II) в растворах, однако они довольно противоречивы. В работе [5] методом капиллярного электрофореза определены константы равновесий в системе Cu^{2+} -янтарная кислота (H₂L): lg β (CuL) = 2.89 ± 0.02, lgK(CuHL⁺) = 5.4 ± 0.5, lg β (CuL²⁻) = 3.88 ± 0.05, lgR(CuHL⁻) = 7.2 ± 0.3, приведены также литературные данные по константам равновесий в указанной системе.

Изучены смешанолигандные комплексы меди(II) с аминокислотами, карбоновыми кислотами и другими лигандами. В работах [1, 14] при pH > 7 для растворов с соотношением компонентов 1 : 1 : 1 определено образование комплексов состава CuAspSer⁻ (lg $\beta_{111} = 24.5$) и CuAspVal⁻ (lg $\beta_{111} = 19.9$) (Asp – аспарагиновая кислота, Ser, Val – серин, валин); в системе Cu(Gly)₂–Hist при изменяющейся концентрации гистидина (pH 5–6; 200–300 нм) спектрофотометрически установлено образование разнолигандных комплексов. Полярографически показано образование СЛК [Cu(Val⁻)(Gly⁻)] ($\beta_{111} = 4.6 \times 10^{15}$) и [Cu(Val⁻)(Leu⁻)] ($\beta_{111} = 7.2 \times 10^{15}$) в тройных системах Cu²⁺–валинат-ион (Val⁻)–глицинат-ион, Cu²⁺–валинат-ион–лейцинат-ион (Leu⁻) соответственно [15].

Исходя из литературных данных можно заметить, что разнолигандные комплексные соединения меди(II) на основе карбоновых и аминокарбоновых кислот при образовании в растворе чаще всего имеют состав 1 : 1 : 1, при выделении в твердом виде их состав и строение могут быть иными и меняться в широких пределах.

Изучение смешанолигандного комплексообразования важно в научном плане для решения вопросов совместимости лигандов, их взаимного влияния в координационной сфере комплекса, устойчивости СЛК, изменения химических и биологических свойств СЛК по сравнению с однороднолигандными комплексами. В практическом плане на примере изучения реакций взаимодействия ионов биометаллов с лигандами, содержащими те же функциональные группы, что и какой-либо рассматриваемый биологический объект, возможно моделирование физиологических процессов.

Цель данной работы — исследование комплексообразования (состав и устойчивость комплексов) в двойных ($Cu^{2+}-Suc^{2-}(L^{m-})$) и тройных ($Cu^{2+}-Suc^{2-}-L^{m-}$) системах, содержащих сукцинат-ион и ионы L^{m-} некоторых аминокислот (аминоуксусной, аспарагиновой, глутаминовой), а также определение константы растворимости синтезированного сукцината меди(II) состава CuC₄H₄O₄ · 2H₂O.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для изучения взаимодействия в системах, содержащих медь(II), янтарную кислоту и (или) некоторые аминокислоты L-ряда, использовали растворы CuCl₂, янтарной, аминоуксусной, глутаминовой NH₂(CH₂)₂CH(CO₂H)₂ (H₂Glu) и аспарагиновой NH₂CH₂CH(CO₂H) кислот, приготовленных из реактивов марок "х. ч." и "ч. д. а". Растворы кислот низких концентраций получали путем разбавления исходных растворов, приготовленных из навесок кислот. Концентрацию кислот уточняли рН-потенциометрически. Во всех исходных и рабочих растворах поддерживали постоянную ионную силу I = 0.3, создаваемую хлоридом натрия. Измерение рН в растворах осуществляли на рН-метре-673, стеклянный электрод которого калибровали по буферным растворам с рН в интервале 3.56-6.86 при 25°С. Спектральные измерения проводили на спектрофотометре модели UV-2800, фотоэлектроколориметре КФК-2-УХЛ 4.2 при толщине поглощающего слоя l = 10 мм. Для термического анализа синтезированной соли CuSuc · 2H₂O использовали прибор марки Netzsch STA 449 С.

Для изучения смешанолигандного комплексообразования меди(II) с биологически активными лигандами (янтарной кислотой и аминокислотами) предварительно определяли общие константы протонизации кислот B_i при выбранной ионной силе I = 0.3, а также состав и константы устойчивости однороднолигандных комплексов меди(II). Константы протонизации кислот определяли pH-потенциометрическим методом, титруя растворы кислот бескарбонатной щелочью при перемешивании смеси очищенным азотом.

Состав комплекса [CuSuc] (1:1) был установлен методом изомолярных серий (pH 2.20), заряд (заряды частиц не указаны). По данным табл. 1 с 0.15

(заряды частиц не указаны). По данным таол. 1 с помощью программы D-pH [17] одновременно определяли число протонов, входящих в состав координируемого лиганда (n = 0), и устойчивость комплекса [CuSuc] (при $n = 0 \lg R = \lg \beta_1 = 2.64 \pm \pm 0.15$). В программе учтены побочные реакции комплексообразования Cu²⁺ с анионом фонового электролита (Cl⁻), взятого для создания ионной силы:

и устойчивость ($\lg \beta_1 = 2.64$) — методом функцио-

нальной зависимости *D*-pH [16], представленной

на рис. 1 и в табл. 1. Растворы серии В готовили сливанием растворов лиганда и металла и пере-

менных количеств растворов NaOH, HCl и NaCl,

чтобы общий объем составлял 6 мл (I = 0.3). Растворы серии А готовили аналогично, но вместо

раствора лиганда брали равный объем 0.3 моль/л

раствора NaCl. Во избежание выпадения осадка сукцината меди(II) измерения в растворах прово-

Реакцию образования комплекса состава 1:1

 $M + nH + L \longleftrightarrow MH_nL$

дили в интервале рН 1.5-4.5.

можно представить уравнением:

$$\operatorname{Cu}^{2+} + i\operatorname{Cl}^{-} \leftrightarrow \operatorname{Cu}\operatorname{Cl}_{i}^{2-i},$$

реакция гидролиза комплексообразователя по первой ступени и протонизация не связанного в комплекс лиганда.

Определение констант устойчивости однороднолигандных комплексов меди(II) с аминокислотами проводили методом Бьеррума. В табл. 2 для примера приведены данные pH-потенциометрического титрования в системе CuCl₂–Gly и результаты расчета $lg\beta_1$ для комплекса [CuGly]⁺. Расчет величины $lg\beta_1$ для комплексов CuL, где L – анион аминокислоты, проводили в интервале pH 3.5–6, где доминируют указанные комплексы. Частицы MH_nL, согласно диаграммам выхода комплексных частиц с аминокислотами [1, 18, 19], доминируют в интервале pH 1–4.

Состав и устойчивость разнолигандных комплексов [CuGlySuc]⁻, [CuAspSuc]^{2–} и [CuGluSuc]^{2–} определяли методом кривых насыщения при рН ~ 4 (отсутствие частиц CuH_nL). Для примера на рис. 2 приведена кривая насыщения в системе (Cu²⁺-H₂Suc)-H₂Glu, указывающая на образование комплекса состава 1 : 1 : 1, а в табл. S1 и S2 – данные для расчета константы устойчивости β_{111} СЛК в системах (Cu²⁺-H₂Suc)-H₂Glu и (Cu²⁺-H₂Glu)-H₂Suc.

Синтез сукцината меди(II) проводили из водного раствора хлорида меди(II) и янтарной кислоты, частично нейтрализованной гидроксидом натрия, чтобы выделение осадка проходило при рН ~ 4. Мольное соотношение компонентов составляло 1 : 1. Сукцинат меди(II) – это мелкокри-

Рис. 1. Изменение оптической плотности в системе $Cu^{2+}-H_2Suc$ от pH ($C_{Cu}^0 = C_{Suc}^0 = 5 \times 10^{-2}$ моль/л; $V_M = V_L = 2$ мл; $V_{o6III} = 6$ мл; I = 0.3; $\lambda_{9\Phi} = 750$ нм): I - D; $2 - D_M$.

сталлическое вещество голубого цвета, которое малорастворимо в воде. В соли содержание меди находили иодометрически, воды, оксида металла и сукцинат-иона – гравиметрически и термогра-

Таблица 1. Данные по измерению оптической плотности, рН и определению заряда и устойчивости комплекса в системе $Cu^{2+}-H_2Suc$ ($C^0(CuCl_2) = C^0(H_2Suc) = 5 \times 10^{-2} \text{ моль/л}$; $V_M = V_L = \text{const} = 2 \text{ мл}$; $V_{obin} = 6 \text{ мл}$; I = 0.3; $\lambda_{ob} = 750 \text{ нм}$; $D_{\infty} = 0.321$; $K_h(Cu^{2+}) = 2.95 \times 10^{-8}$; $\lg B_1 = 5.08$, $\lg B_2 = 8.97$)

Серия	D	D_M	pН	$\lg \beta_1$
А		0.200	2.50	
В	0.252		2.16	2.42
А		0.200	2.10	
В	0.248		2.00	2.70
А		0.200	1.90	
В	0.245		1.85	2.67
А		0.200	1.85	
В	0.242		1.82	2.70
А		0.200	1.80	
В	0.238		1.73	2.68
А		0.200	2.50	
В	0.252		2.10	2.59

Результаты расчета: для CuHnSuc n = 0; lg β (CuSuc) = 2.64 \pm \pm 0.15.

Таблица 2. Данные pH-потенциометрического титрования в системе Cu²⁺–HGly (5 мл 5 × 10⁻³ моль/л раствора HGly и 5 мл 5 × 10⁻³ моль/л раствора CuCl₂; Δ pH = -0.37; $C_{\text{NaOH}} = 1.07 \times 10^{-2}$ моль/л)

Nº	V _{NaOH} , мл	рН _{изм}	$\lg\beta_1$	Nº	V _{NaOH} , мл	рН _{изм}	$lg\beta_l$
1	0.0	3.70	8.10	16	1.5	4.87	8.18
2	0.1	3.74	8.11	17	1.6	4.95	8.20
3	0.2	3.80	8.08	18	1.7	4.98	8.19
4	0.3	3.90	8.09	19	1.8	5.04	8.24
5	0.4	4.00	8.13	20	1.9	5.08	8.21
6	0.5	4.09	8.12	21	2.0	5.14	8.23
7	0.6	422	8.12	22	2.1	5.18	8.22
8	0.7	4.28	8.13	23	2.2	5.25	8.26
9	0.8	4.34	8.12	24	2.3	5.28	8.27
10	0.9	4.42	8.12	25	2.4	5.34	8.29
11	1.0	4.49	8.13	26	2.5	5.40	8.31
12	1.1	4.56	8.13	27	2.6	5.46	8.35
13	1.2	4.64	8.11	28	2.7	5.51	8.40
14	1.3	4.71	8.12	29	2.8	5.56	8.37
15	1.4	4.81	8.16	30	2.9	5.70	8.44

 $\lg \beta(CuGlyc^+) = 8.13 \pm 0.17.$

виметрически. Результаты анализа синтезированной соли представлены ниже.

	Cu^{2+}	Suc ^{2–}	H_2O	CuO
Найдено, %:	29.9,	54.5,	16.4,	37.3.
Для CuSuc $\cdot 2H_2O$				
вычислено, %:	29.47,	53.82,	16.71,	36.89.

По данным растворимости сукцината меди(II) в 0.3 моль/л растворах (H, Na)Cl (табл. 3) с учетом равновесий и их констант равновесия

$$\operatorname{CuSuc}_{(\mathrm{T})} \rightleftharpoons \operatorname{CuSuc}_{(\mathrm{p})} \rightleftharpoons \operatorname{Cu}_{(\mathrm{p})}^{2+} + \operatorname{Suc}_{(\mathrm{p})}^{2-}, K_{S},$$
$$i\mathrm{H}^{+} + \operatorname{Suc}^{2-} \rightleftharpoons \mathrm{H}_{i}\operatorname{Suc}^{i-2}, B_{i},$$
$$\operatorname{Cu}^{2+} + \mathrm{H}_{2}\mathrm{O} \leftrightarrow \operatorname{CuOH}^{+} + \mathrm{H}^{+}, K_{h1}$$

рассчитана константа растворимости соли CuSuc $\cdot 2H_2O$ (lg $K_S = -7.59 \pm 0.06$) по формуле:

$$K_{S}(\text{CuSuc} \cdot 2\text{H}_{2}\text{O}) = C_{\text{Cu}}^{2}/f\omega,$$

где C_{Cu} – концентрация иона металла в насыщенном растворе; функция протонизации сукцинатаниона $f = 1 + B_1[\text{H}^+] + B_2[\text{H}^+]^2$ (B_1 , B_2 – общие константы протонизации янтарной кислоты для I = 0.3); $\omega = 1 + K_{h1}/h$ – функция гидролиза иона Cu^{2+} , K_{h1} – константа гидролиза иона Cu^{2+} по первой ступени; $h = [\text{H}^+]$. Концентрацию ионов Cu²⁺ в насыщенных растворах сукцината меди(II) определяли иодометрически.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Экспериментально определенные константы протонизации глутаминовой, аспарагиновой и янтарной кислот (I = 0.3) согласуются с данными [20], пересчитанными на I = 0.3 по уравнению Дэвиса (табл. 4).

Расчеты констант протонизации лигандов, констант устойчивости однороднолигандных комплексов по данным pH-потенциометрии, метода *D*—pH проведены на ЭВМ [17]. При pH-потенциометрическом определении констант устойчивости меди(II) с аминокислотами методом Бьеррума установлено, что кривые титрования соответствующих кислот с солью металла лежат ниже кривых титрования самих кислот, что связано с вытеснением комплексообразователем протонов из доминирующих в системе (pH 3.5–6) форм лигандов:

$$M^{2+} + HL(HGly) \rightleftharpoons ML^{+} + H^{+},$$

 $M^{2+} + HL^{-}(HGlu^{-}) \rightleftharpoons ML + H^{+}.$

Доминирование частиц HGly, HGlu⁻ и HAsp⁻ в указанном интервале pH подтверждается диаграммами выхода кислот.

Электронные спектры поглощения одинарных, двойных и тройных систем указывают на образование СЛК (рис. 3). Повышение оптической плотности, смещение максимумов поглощения в коротковолновую область в системах с однородными и разными лигандами по сравнению с исход-

Рис. 2. Изменение оптической плотности в растворах (кривая насышения) системы (Cu²⁺−H₂Suc)−H₂Glu ($C_{Cu} = C_{Suc} = 8.34 \times 10^{-3}$ моль/л; $C_{Glu} \neq \text{const}$; pH 4.13; $\lambda_{9\Phi} = 750$ нм): 1 - D; $2 - \Delta D$.

<i>C</i> _{Cu} , моль/л	pН	$-\lg K_S$
2.66×10^{-4}	5.17	7.53
2.41×10^{-4}	5.24	7.57
2.66×10^{-4}	5.23	7.49
2.81×10^{-4}	5.21	7.47
3.46×10^{-4}	4.78	7.59
4.53×10^{-4}	4.52	7.62
6.00×10^{-4}	4.30	7.63
6.80×10^{-4}	4.17	7.69
7.86×10^{-4}	4.08	7.69

Таблица 3. Данные по растворимости (0.3 моль/л растворы (H, Na)Cl) и расчета K_S соли CuSuc \cdot 2H₂O

 $\lg K_S = -7.59 \pm 0.06.$

ным водным раствором хлорида меди(II) свидетельствуют об образовании комплексных частиц – однородно- и разнолигандных комплексов. Замещение молекул воды в координационной сфере иона Cu^{2+} на более прочно связываемые лиганды (лучшие доноры электронных пар) увеличивает разность энергий расщепленных *d*-подуровней комплексообразователя, и его *d*-*d*-полоса поглощения смещается в сторону более коротких длин волн (гипсохромный эффект). Образование смешанолигандных комплексов в растворе связано со сродством *d*-катиона Cu^{2+} (*d*⁹) к донорным атомам как азота, так и кислорода выбранных лигандов – некоторых аминокислот и янтарной кислоты.

Авторы работы [5] приводят для комплекса [CuSuc] следующие литературные значения $\lg\beta_1$: 2.70, 2.59, 2.50, 2.60, 2.61, 2.85, 2.98, 3.20, 3.22. В работе [2] показано, что при ионной силе 0.1 и всех выбранных соотношениях металл : лиганд образуются комплексные частицы CuHSuc⁺ ($\lg\beta_{11} = 1.99$) и CuSuc ($\lg\beta_1 = 3.02, 2.98$). Определенная нами методом *D*-рH величина $\lg\beta_1 =$ = 2.64 ± 0.15 имеет меньшее значение при большей ионной силе (*I* = 0.3).

Из данных по кривым насыщения систем (Cu²⁺-H₂Suc)-АК и (Cu²⁺-АК)-H₂Suc (табл. S1, S2) рассчитаны константы устойчивости β_{111} сме-

шанолигандных комплексов по методике, изложенной в [21]. Для равновесия с участием сукцинатных комплексов меди(II) состава 1 : 1 и 1 : 1 : 1

$$K$$
CuSuc + AK \rightleftharpoons CuSucAK,

где АК – анион аминокислоты (для удобства заряды опущены), константа равновесия *K* связана с константами устойчивости указанных комплексов уравнением $\beta_{111} = K \cdot \beta_{CuSuc}$. Константа равновесия $K = \alpha_{\infty} f_{AK}/(1 - \alpha_{\infty})(C_{AK} - \alpha_{\infty} C_{Cu})$, где $\alpha_{\infty} = (\varepsilon_i - \varepsilon_{CuSuc})/(\varepsilon_{\infty} - \varepsilon_{CuSuc}); \varepsilon_i = D/C_{Cu}; \varepsilon_{\infty} = D_{\infty}/C_{Cu}; \varepsilon_{CuSuc} = D_{CuSuc}/C_{Cu}, \alpha_{\infty}$ – максимальный выход комплекса CuSucAK, ε – коэффициент молярного поглощения соответствующих частиц: CuSuc (ε_{CuSuc}), CuSucAK (ε_{∞}), CuSuc + CuSucAK (ε_i); $f_{AK} = 1 + B_1[H^+] + B_2[H^+]^2$.

Для равновесия

$$CuAK + Suc \rightleftharpoons CuAKSuc$$

константа равновесия $K = \alpha_{\infty} f_{Suc} / (1 - \alpha_{\infty}) (C_{Suc} - \alpha_{\infty} C_{Cu})$, где

$$\alpha_{\infty} = (\varepsilon_i - \varepsilon_{\text{CuAK}}) / (\varepsilon_{\infty} - \varepsilon_{\text{CuAK}}); \quad \varepsilon_i = D / C_{\text{Cu}};$$
$$\varepsilon_{\infty} = D_{\infty} / C_{\text{Cu}}; \quad \varepsilon_{\text{CuAK}} = D_{\text{CuAK}} / C_{\text{Cu}}$$

и $\beta_{111} = K \cdot \beta_{CuAK}$. Для одной и той же аминокислоты (H₂Glu) отмечается хорошая сходимость величин lg β_{111} (табл. 5), рассчитанных из данных по изучению обоих типов равновесий (табл. S1, S2). В табл. 5 приведены также коэффициенты молярного поглощения ε_{∞} частиц CuAKSuc.

Из табл. 5 видно, что константы устойчивости однороднолигандных комплексов меди с глицинат-, глутаминат- и аспарагинат-анионами ($\lg\beta_1$ составляет 8.05, 8.49 и 8.56 соответственно), как и константы устойчивости смешанолигандных комплексов меди(II) с сукцинат-ионом и ионами аминокислот ($\lg\beta_{111}$ соответственно составляет 12.88, 13.07, 13.21), не сильно изменяются в указанных рядах, что может быть связано с близостью строения и кислотно-основных свойств изучаемых АК (так, для глицинат-, глутаминат- и аспарагинатанионов величина $\lg B_1$ составляет соответственно 9.53, 9.56 и 9.51).

Таблица 4. Данные определения ($I = 0.3, 25^{\circ}$ С) и пересчета логарифма общих констант протонизации кислот $\lg B_i$

Кислота	Величина lg <i>B_i</i>			
i inchora	<i>I</i> = 0.1 [20]; <i>I</i> = 0.3 (пересчет)	эксперимент (<i>I</i> = 0.3)		
Янтарная	5.28, 9.28; 5.17, 9.12	5.08, 8.97		
Аминоуксусная	9.62,12.0; 9.53, 11,89	—		
Глутаминовая	9.67, 13.95; 9.56, 13.77	9.52, 13.70		
Аспарагиновая	9.62, 13.32; 9.51, 13.17	9.45, 13.12		

Рис. 3. Спектры поглощения систем: $1 - \text{CuCl}_2$; $2 - \text{CuCl}_2-\text{H}_2\text{Suc}$; $3 - \text{CuCl}_2-\text{HGly}$; $4 - \text{CuCl}_2-\text{H}_2\text{Suc}-\text{HGly}$ ($C_{\text{M}} = C_{\text{L}} = 9.26 \times 10^{-3}$; pH ~ 3).

Относительная стабильность разнолигандных комплексов по сравнению с устойчивостью соответствующих однороднолигандных комплексов, а также совместимость разных лигандов (A, B) во внутренней сфере СЛК состава МАВ могут быть оценены различными способами [22–25], а именно: с помощью параметра $\Delta \lg K$, имеющего вид $\Delta \lg K(MAB) = \lg \beta(MAB) - \lg \beta(MA) - \lg \beta(MB)$, и константы сопропорционирования ($\lg K_s$, $\lg X$), связанной с общими константами устойчивости комплексов соотношением $\lg K_s = \lg \beta(MAB) - 1/2\lg \beta(MA_2) - 1/2\lg \beta(MB_2)$. При совместимости лигандов величина $\lg K_s$ для устойчивых комплексов должна быть больше нуля, в ином случае разнолигандный комплекс МАВ подвергается дис-

пропорционированию на комплексы МА₂ и МВ₂, т.е. оказывается неустойчивым независимо от величины его константы устойчивости lg β(MAB) [26]. Можно показать, что в изучаемой нами системе при соотношении компонентов 1:1:1 в комплексе[CuGlySuc]⁻ ($lg\beta_{111} = 12.88$, табл. 5) лиганды совместимы, так как при $lg\beta(CuSuc_2^{2-}) =$ = 3.88 [5] и lg β (CuGly₂) = 14.73 [3] величина lg K_s равна 3.58. Стабильность разнолигандных комплексов также интерпретируется с помощью статистического метода [25]. Константа стабилизации $\Delta lg\beta$ получается из разности измеренной константы стабильности для СЛК и константы. рассчитанной на основе статистических данных: $\Delta \lg \beta = \lg \beta_{\text{изм}} - \lg \beta_{\text{стат}}$. Значение константы образования смешанолигандного комплекса состава МАВ, ожидаемое по статистике, рассчитывается по уравнению: $\lg\beta_{ctat} = 1/2(\lg\beta(MA_2) + \lg\beta(MB_2)) + \lg2$. Совместимость лигандов во внутренней сфере СЛК состава [CuGlySuc]- подтверждается и величиной $\Delta lg\beta = lg\beta_{H3M}(CuGlySuc) - lg\beta_{CTAT}(CuGlySuc) =$ = 12.88 - 9.60 = 3.28. Значительное отличие lg $\beta_{\mu_{3M}}$ от $lg\beta_{cтат}$ может быть связано с тем, что последняя величина не учитывает координации молекул растворителя в комплексе и сродства лигандов к иону металла. Отличие указанных выше величин наблюдается в ряде работ. Так, константы стабилизации $\Delta lg\beta$ комплексов Cu(IMA)L, где IMA – имидазол-4-уксусная кислота, L – фенилаланин, аланин (заряды комплексных частиц опущены), составляют 2.73 и 1.39 соответственно [24]. Используя данные работы [27], можно рассчитать константы стабилизации $\Delta \lg \beta$ комплексов NiAdeAsp (4.39) и NiAdeGlu (3.98), где Ade – аденин; Asp, Glu – аспарагиновая и глутаминовая кислоты L-ряда. Дополнительное повышение

Таблица 5. Данные определения состава и констант устойчивости однородно- и разнолигандных комплексов меди(II) (*I* = 0.3, 25°C)

	Методы о			
Состав комплекса		фотом	иетрия	Литературные данные
	рН-метрия, $lg\beta_l$	$\lg \beta_1, \lg \beta_{111}$	ε _∞ (750 нм), л моль ⁻¹ см ⁻¹	
[CuSuc]		2.64 ± 0.15	19.3	3.02, 2.98, <i>I</i> = 0.1; 2.89 [2, 5]
[CuGlyc] ⁺	8.13 ± 0.17	-		8.1, <i>I</i> = 0.1 [20]
[CuGlu]	8.49 ± 0.36	_		7.85, <i>I</i> = 0.02 [20]
[CuAsp]	8.56 ± 0.37	-		_
[CuGlycSuc] ⁻	—	12.88 ± 0.24	21.6	
[CuGluSuc] ^{2–}	—	13.07 ± 0.25	28.8	
[CuSucGlu] ^{2–}	_	12.97 ± 0.21	28.8	
[CuAspSuc] ^{2–}	_	13.21 ± 0.48	42.0	

стабильности СЛК (по сравнению со статистическими данными) может иметь место при взаимодействии между двумя лигандами, связанными с одним и тем же комплексообразователем, например, за счет образования водородной связи. Некоторые авторы считают, что при формировании разнолигадных комплексов из простых происходит стабилизация, которая выражается, вероятно, в выгодном перераспределении электронной плотности между лигандами и комплексообразователем в комплексе [18].

Найденные константы устойчивости СЛК меди(II) с янтарной кислотой и аминокислотами (табл. 5) использовали для построения диаграммы выхода частиц в зависимости от рН в изученных системах при мольном соотношении компонентов 1 : 1 : 1 (рис. 4). Расчет равновесного состава раствора и построение диаграммы выполнены с помощью программы HySS2009 [28] с учетом равновесий (1)-(12) и соответствующих констант равновесий.

Равновесие	Логарифм константы равновесия
$\operatorname{Suc}^{2-} + \operatorname{H}^+ \leftrightarrow \operatorname{HSuc}^-,$	(1), $\lg B_{1S} = 5.08$,
$\operatorname{Suc}^{2-} + 2\operatorname{H}^+ \leftrightarrow \operatorname{H}_2\operatorname{Suc},$	(2), $\lg B_{2S} = 8.97$,
$\mathrm{Gly}^- + \mathrm{H}^+ \leftrightarrow \mathrm{HGly},$	(3), $\lg B_{1G} = 9.53$,
$\mathrm{Gly}^- + 2\mathrm{H}^+ \leftrightarrow \mathrm{H}_2\mathrm{Gly}^+,$	(4), $\lg B_{2G} = 11.89$,
$Cu^{2+} + H^+ + Suc^{2-} \leftrightarrow CuHSuc^+,$	(5), $\lg R = 7.04$ [5],
$Cu^{2+} + Suc^{2-} \leftrightarrow CuSuc,$	(6), $\lg \beta_{1S} = 2.89$ [5],
$Cu^{2+} + 2Suc^{2-} \leftrightarrow CuSuc_2^{2-},$	(7), $\lg \beta_{2S} = 3.88$ [5],
$Cu^{2+} + Gly^- \leftrightarrow CuGly^+,$	(8), $\lg \beta_{1G} = 8.13$,
$\mathrm{Cu}^{2+} + 2\mathrm{Gly}^- \leftrightarrow \mathrm{Cu}\mathrm{Gly}_2,$	(9), $\lg \beta_{2G} = 14.73$ [3],
$Cu^{2+} + Suc^{2-} + Gly^{-} \leftrightarrow CuSucGly^{-},$	(10), $\lg \beta_{111} = 12.88$,
$Cu^{2+} + H_2O \leftrightarrow CuOH^+ + H^+,$	(11), $\lg K_h = -7.53$,
$H_2O \leftrightarrow H^+ + OH^-,$	(12), $\lg K_{\rm w} = -13.8$.

Как видно из рис. 4, смешанолигандные частицы CuSucGly⁻ оказываются доминирующими формами в широком диапазоне pH. Совместимость во внутренней сфере СЛК меди(II) кислород- и азотсодержащих донорные атомы лигандов обеспечивает его высокий выход по сравнению со всеми другими комплексными частицами.

ЗАКЛЮЧЕНИЕ

Определены общие константы протонизации янтарной кислоты и аминокислот (H_2 Glu, H_2 Asp) при ионной силе 0.3, а также состав и константы устойчивости однороднолигандных комплексов меди(II) с анионами янтарной, аминоуксусной,

Рис. 4. Диаграмма выхода частиц от pH в системе $Cu^{2+}-H_2Suc-HGly: 1 - Cu^{2+}, 2 - CuSucGly^-, 3 - CuGly^+, 4 - CuHSuc^+, 5 - CuSuc, 6 - CuOH^+ (<math>C_{Cu} = C_{Suc} = C_{Gly} = 8.34 \times 10^{-3} \text{ моль/л}$).

глутаровой и аспарагиновой кислот состава 1 : 1 ($lg\beta_1$ составляет 2.64, 8.13, 8.49 и 8.56 соответственно).

Состав (1 : 1 : 1) разнолигандных комплексов [CuGlySuc]⁻, [CuGluSuc]²⁻, [CuAspSuc]²⁻ и их константы устойчивости (соответственно $lg\beta_{111}$ составляет 12.88, 13.07, 13.21) определены мето-дом кривых насыщения.

Электронные спектры поглощения растворов одинарной, двойной и тройной систем в видимой части спектра подтверждают образование смешанолигандных комплексов.

Для синтезированного сукцината меди(II) СuC₄H₄O₄ · 2H₂O по данным растворимости (I = 0.3) рассчитана константа растворимости lg $K_S = -7.59 \pm 0.06$.

Полученные данные по устойчивости СЛК меди(II) с янтарной кислотой и аминокислотами могут быть полезным материалом для исследователей, проводящих работы в биологических средах.

Рассчитанная диаграмма долевого распределения частиц в системе $Cu^{2+}-H_2Suc-AK$ указывает на области их доминирования, что позволяет использовать диаграмму для направленного синтеза соединений из раствора.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Таблица S1. Данные измерения оптической плотности в системе ($Cu^{2+}-H_2Suc$)- H_2Glu

Таблица S2. Данные измерения оптической плотности в системе ($Cu^{2+}-H_2Glu$)- H_2Suc .

СПИСОК ЛИТЕРАТУРЫ

- 1. Трудникова Н.М., Болотин С.Н., Скляр А.А., Панюшкин В.Т. // Изв. вузов: Северо-Кавказский регион. Естественные науки. 2006. № 1(133). С. 71.
- 2. Васильев В.П., Зайцева Г.А., Тукумова Н.В. и др. // Журн. неорган. химии. 1998. Т. 43. № 10. С. 1651.
- Васильев В.П., Зайцева Г.А., Гарфутдинова Л.В. // Журн. физ. химии. 1995. Т. 69. № 3. С. 506.
- 4. *Симеу А.С., Ермолина Г.Е., Молодкин А.К. и др. //* Журн. неорган. химии. 1988. Т. 33. № 8. С. 2043.
- Sursyakova V.V., Burmakina G.V., Rubaylo A.I. // J. Coord. Chem. 2017. V. 70. № 3. P. 431. https://doi.org/10.1080/00958972.2016.1270450
- 6. Кадырова Р.Г., Папуниди К.Х., Гильметдинов Б.М. Пат. RU 2 174 508 C1. Казань, 2001.
- Bassi P.S., Chopra G.S., Gupta B.R. // Thermochim. Acta. 1988. V. 124. P. 197. https://doi.org/10.1016/0040-6031(88)87022-9
- Sobela S., Haigneyb A., Kim M. et al. // Chem. Speciation Bioavailability. 2010. V. 22. P. 109. https://doi.org/10.3184/095422910X12692705325385
- 9. Caires F.J., Lima L.S., Carvalho C.T., Ionashiro M. // Thermochim. Acta. 2010. V. 500. № 1–2. P. 6. https://doi.org/10.1016 / j.tca.2009.11.015
- Koo Bon K., Kim J., Lee U. et al. // Inorg. Chim. Acta. 2010. V. 363. № 8. P. 1760. https://doi.org/10.1016/j.ica.2010.02.032
- 11. Padmanabhan M., Kumary S.M., Huang X., Li J. // Inorg. Chim. Acta. 2005. V. 358. № 13. P. 3537. https://doi.org/10.1016/j.ica.2005.05.027
- 12. Трещалина Е.М., Коновалова А.Л., Преснов М.А. и др. // Докл. АН СССР. 1979. Т. 248. № 5. С. 1273.
- 13. Hakimi M., Aliabadi T.S. // World Applied Programming. 2012. V. 2. № 10. P. 431.

- Зайцев П.М., Дорофеева Г.И., Венсковский Н.У. и др. // Журн. общей химии. 1998. Т. 68. № 5. С. 729.
- Sanz Alaejos M.T., Rodríguez Placeres J.C., García Montelongo F.J. // Collect. Czechosl. Chem. Commun. 1992. V. 57. P. 1405. https://doi.org/10.1135/cccc19921405
- Кумок В.Н., Скорик Н.А. Лабораторные работы по химии комплексных соединений. Томск: Изд-во ТГУ, 1983. 140 с.
- Скорик Н.А., Чернов Е.Б. Расчеты с использованием персональных компьютеров в химии комплексных соединений. Томск: Изд-во ТГУ, 2009. 90 с.
- Трошанин Н.В., Бычкова Т.И. // Ученые записки Казанского ун-та. Сер. Естественные науки. 2021. Т. 163. Кн. 1. С. 45. https://doi.org/10.26907/2542-064X.2021.1.45-60
- Woźniczka M., Vogt A., Kufelnicki A. // Chem. Cent. J. 2016. V. 10. № 14. https://doi.org/10.1186/s13065-016-0160-5
- 20. Инцеди Я. Применение комплексов в аналитической химии. М.: Мир, 1979. 376 с.
- 21. *Мигаль П.К., Гэрбэлэу А.П., Чапурина З.Ф. //* Журн. неорган. химии. 1971. Т. 16. № 3. С. 727.
- 22. Фридман Я.Д., Левина М.Г., Долгашова Н.В. и др. Устойчивость смешанных комплексных соединений в растворе. Фрунзе: ИЛИМ, 1971. 181 с.
- Лукачина В.В. Лиганд-лигандное взаимодействие и устойчивость разнолигандных комплексов. К.: Наук. думка, 1988. 184 с.
- 24. Aljahdali M., El-Sherif A.A., Shoukry M.M., Seham E.M. // J. Solution Chem. 2013. V. 42. № 5. P. 1028. https://doi.org/10.1007/s10953-013-0015-9
- 25. Бек М., Надьпал И. Исследование комплексообразования новейшими методами. М.: Мир, 1989. 413 с.
- 26. *Трошанин Н.В.* Дис. ... канд. хим. наук. Казань, 2022. 161 с.
- 27. *Turkel N.* // J. Solution Chem. 2015. V. 44. № 6. P. 1267.
- Alderighi L., Gans P., Ienco A. et al. // Coord. Chem. Rev. 1999. V. 184. № 1. P. 311. https://doi.org/10.1016/S0010-8545(98)00260-4