## СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.32.654.42

# СИНТЕЗ И СТАБИЛИЗАЦИЯ КРИСТАЛЛОГИДРАТНОЙ МОДИФИКАЦИИ SrSO<sub>4</sub> · 0.5H<sub>2</sub>O

© 2023 г. Н. Н. Бушуев<sup>а, \*</sup>, А. А. Сысоев<sup>а</sup>, Ю. А. Великодный<sup>b</sup>

<sup>а</sup> Российский химико-технологический университет им. Д.И. Менделеева, Миусская пл., 9, Москва, 125047 Россия <sup>b</sup> Московский государственный университет им. М.В. Ломоносова, Ленинские горы, Москва, 119991 Россия

> \*e-mail: nbushuev@muctr.ru Поступила в редакцию 20.09.2022 г. После доработки 27.10.2022 г. Принята к публикации 31.10.2022 г.

Разработана методика синтеза метастабильной тригональной модификации SrSO<sub>4</sub> · 0.5H<sub>2</sub>O, изоструктурной известной модификации CaSO<sub>4</sub> · 0.5H<sub>2</sub>O (пр. гр. *P*3<sub>1</sub>21). Предложено использовать в качестве прекурсора при кристаллизации SrSO<sub>4</sub> · 0.5H<sub>2</sub>O замороженные растворы NaCl в воде. Предложен способ стабилизации структуры SrSO<sub>4</sub> · 0.5H<sub>2</sub>O путем изовалентного замещения ионов стронция на ионы кальция или гетеровалентного замещения ионов стронция на ионы калия и лантана. Получен образец стабилизированной модификации SrSO<sub>4</sub> · 0.5H<sub>2</sub>O на примере соединения K<sub>0.25</sub>La<sub>0.25</sub>Sr<sub>0.5</sub>(SO<sub>4</sub>) · 0.5H<sub>2</sub>O. Определены и уточнены параметры элементарной ячейки. Предложена модель структуры SrSO<sub>4</sub> · 0.5H<sub>2</sub>O при статистическом размещении атомов калия, лантана и стронция по позициям атомов Са в известной структуре CaSO<sub>4</sub> · 0.5H<sub>2</sub>O.

*Ключевые слова:* сульфаты стронция, твердые растворы, структура **DOI:** 10.31857/S0044457X22601675, **EDN:** JEAQAX

## введение

Полугидрат сульфата стронция  $SrSO_4 \cdot 0.5H_2O_2$ , впервые полученный в работе [1], кристаллизуется в тригональной сингонии (пр. гр. РЗ<sub>1</sub>21) и, повидимому, изоструктурен соединению CaSO<sub>4</sub> · · 0.5H<sub>2</sub>O, используемому в качестве вяжущего строительного материала. В литературе имеются сведения о получении твердых растворов на основе изовалентного замещения ионов стронция на ионы кальция по схеме:  $Sr^{2+} \rightarrow Ca^{2+}$  [2], а также на основе гетеровалентного замещения ионов стронция по схеме:  $2Sr^{2+} \rightarrow K^+ + La^{3+}$  [3]. Синтез SrSO<sub>4</sub> · 0.5H<sub>2</sub>O и исследование его структуры затруднены вследствие короткого времени существования этого соединения (2 ч). Методом электронной микроскопии исследован процесс кристаллизации сульфата стронция из водных растворов SrSO<sub>4</sub>-NaCl-H<sub>2</sub>O [4]. Установлено образование  $SrSO_4 \cdot 0.5H_2O$  и  $SrSO_4$ . В качестве стабилизатора кристаллизуемых фаз использовали растворы силикагеля. В работе отсутствуют выводы о механизме и влиянии растворов хлористого натрия на кристаллизацию сульфата стронция. Получаемый осадок в первый момент представляет высокодисперсную рентгеноаморфную фазу. В течение 2 ч наблюдается превращение тригональной модификации полугидрата сульфата

стронция в безводную ромбическую модификацию сульфата стронция. В литературе практически отсутствуют сведения об особенностях синтеза  $SrSO_4 \cdot 0.5H_2O$ , поиске исходных прекурсоров, позволяющих в течение длительного времени хранить исходную реакционную смесь, из которой можно быстро и надежно получать кристаллы  $SrSO_4 \cdot 0.5H_2O$ . Исследование и методы стабилизации кристаллической структуры  $SrSO_4 \cdot 0.5H_2O$  представляют научный и практический интерес.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Изучены процессы кристаллизации сульфата стронция из водных 1 М растворов хлорида стронция и соответствующих 1 М растворов сульфатов аммония, натрия и калия. В качестве исходных реактивов для приготовления 1 М растворов использовали SrCl<sub>2</sub> · 2H<sub>2</sub>O,  $(NH_4)_2SO_4$ , Na<sub>2</sub>SO<sub>4</sub> и K<sub>2</sub>SO<sub>4</sub> (все соединения марки "х. ч."). Осаждение сульфата стронция проводили при комнатной температуре с перемешиванием эквивалентных количеств растворов хлорида стронция и соответствующих количеств сульфатов аммония, натрия и калия в течение 10 мин. Полученные осадки отфильтровывали, промывали спиртом для удаления влаги и подвергали рентгенофазовому анализу на дифрактометре Arl Equinox 100. Регистрацию



Рис. 1. Фазовая диаграмма H<sub>2</sub>O-NaCl.

дифракционной картины осуществляли в течение 5 мин одновременно во всем диапазоне углов  $2\theta$  от 5° до  $90^{\circ}$ .

#### РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В результате проведенных экспериментов установлено, что кристаллизация безводной ромбической модификации SrSO<sub>4</sub> наблюдается из растворов хлоридов стронция, сульфатов аммония или калия, в то время как из растворов хлорида стронция и сульфата натрия кристаллизуется тригональная модификация SrSO<sub>4</sub> · 0.5H<sub>2</sub>O:

$$(\mathrm{NH}_{4})_{2} \operatorname{SO}_{4} + \operatorname{SrCl}_{2} + n\mathrm{H}_{2}\mathrm{O} \rightarrow$$
  

$$\rightarrow \operatorname{SrSO}_{4} \downarrow + 2\mathrm{NH}_{4}\mathrm{Cl} + n\mathrm{H}_{2}\mathrm{O},$$
  

$$\mathrm{K}_{2}\mathrm{SO}_{4} + \operatorname{SrCl}_{2} + n\mathrm{H}_{2}\mathrm{O} \rightarrow$$
  

$$\rightarrow \operatorname{SrSO}_{4} \downarrow + 2\mathrm{KCl} + n\mathrm{H}_{2}\mathrm{O},$$
  

$$\mathrm{Na}_{2}\mathrm{SO}_{4} + \operatorname{SrCl}_{2} + n\mathrm{H}_{2}\mathrm{O} \rightarrow$$
  

$$\rightarrow \operatorname{SrSO}_{4} \cdot 0.5\mathrm{H}_{2}\mathrm{O} \downarrow + 2\mathrm{Na}\mathrm{Cl} + n\mathrm{H}_{2}\mathrm{O}.$$

Полученный осадок SrSO<sub>4</sub> · 0.5H<sub>2</sub>O теряет при комнатной температуре в течение 2 ч кристаллогидратную воду и полностью переходит в ромбическую модификацию SrSO<sub>4</sub>. Сделан вывод о положительном влиянии растворов хлорида натрия на кристаллизацию SrSO<sub>4</sub> · 0.5H<sub>2</sub>O. В отличие от хлоридов калия и аммония, хлорид натрия встречается в природе в виде кристаллогидрата NaCl · · 2H<sub>2</sub>O [5]. Описание некоторых физико-химических свойств  $NaCl \cdot 2H_2O$  и его влияния на процессы кристаллизации воды в виде льда можно часто встретить в литературе [6–11]. Определенный интерес представляет фазовая диаграмма  $H_2O-NaCl$ , построенная авторами работы [12].

На рис. 1 приведена диаграмма  $H_2O-NaCl$ , на которой видно, что указанный кристаллогидрат NaCl  $\cdot$  2H<sub>2</sub>O содержит 61.1% NaCl и разлагается при температуре 0.1°C с образованием NaCl и жидкой фазы. Эвтектика между NaCl · 2H<sub>2</sub>O и H<sub>2</sub>O плавится при температуре −21.1°C и содержит 23.3% NaCl, что соответствует составу, содержащему 38.1% H<sub>2</sub>O в виде льда и 61.9% кристаллической фазы NaCl · 2H<sub>2</sub>O. Эвтектика в системе H<sub>2</sub>O-NaCl содержит 76.7% твердой фазы H<sub>2</sub>O, значительная доля которой присутствует в виде кристаллогидратной формы NaCl · 2H<sub>2</sub>O. На основании этого можно сделать вывод, что NaCl способен удерживать значительное количество воды в виде кристаллогидратной формы при отрицательных температурах, т.е. ниже точки замерзания воды  $(0^{\circ}C)$ .

Полученный после осаждения сульфата стронция раствор, содержащий ~6% NaCl, помещали в морозильную камеру до полного замерзания при температуре -20°С и выдерживали в течение 4 ч для полной кристаллизации.

Закристаллизованную в небольшой кювете массу (1–2 мг) извлекали из холодильника и быстро переносили на дифрактометр Arl Equinox 100. В течение первых 15 с при комнатной темпе-

| $SrSO_4 \cdot 0.5H_2O$ [I] |        | $SrSO_4 \cdot 0.5H_2O$ [II] |        | $SrSO_4 \cdot 0.5H_2O$ [III] |        | hkl |
|----------------------------|--------|-----------------------------|--------|------------------------------|--------|-----|
| d, Å                       | I/I, % | <i>d</i> , Å                | I/I, % | <i>d</i> , Å                 | I/I, % | ΠΚΙ |
| 6.2173                     | 35     | 6.2336                      | 37     | 6.2510                       | 30     | 100 |
| 4.5310                     | 5      | 4.5477                      | 5      | 4.5180                       | 4      | 101 |
| 3.5929                     | 64     | 3.6004                      | 62     | 3.5980                       | 58     | 110 |
|                            |        | 3.3108 SrSO <sub>4</sub>    | 2      |                              |        |     |
| 3.1106                     | 100    | 3.1168                      | 100    | 3.1160                       | 100    | 200 |
|                            |        | 2.9850 SrSO <sub>4</sub>    | 2      |                              |        |     |
| 2.9164                     | 36     | 2.9221                      | 25     | 2.9160                       | 36     | 102 |
| 2.4358                     | 6      | 2.4375                      | 7      | 2.4290                       | 5      | 102 |
| 2.3546                     | 11     | 2.3592                      | 14     | 2.3510                       | 8      | 210 |
|                            |        | 2.2685 SrSO <sub>4</sub>    | 3      |                              |        |     |
| 2.2175                     | 31     | 2.2217                      | 36     | 2.2140                       | 28     | 211 |
| 1.9795                     | 11     | 1.9838                      | 17     | 1.9770                       | 9      | 301 |
| 1.9170                     | 36     | 1.9206                      | 38     | 1.9150                       | 28     | 212 |
| 1.7987                     | 9      | 1.8017                      | 12     | 1.7980                       | 10     | 220 |
| 1.7578                     | 14     | 1.7615                      | 16     | 1.7560                       | 10     | 302 |
| 1.7269                     | 17     | 1.7305                      | 24     | 1.7260                       | 16     | 310 |
| a = 7.194(7) Å             |        | a = 7.199(4) Å              |        | <i>a</i> = 7.178 Å           |        |     |
| c = 6.615(6)  Å            |        | c = 6.618(5)  Å             |        | c = 6.589  Å                 |        |     |
| $V = 296.5(5) \text{ Å}^3$ |        | $V = 297.0(4) \text{ Å}^3$  |        | $V = 295.0 \text{ Å}^3$      |        |     |

Таблица 1. Рентгенографические характеристики  $SrSO_4 \cdot 0.5H_2O$ 

ратуре удалось получить рентгенограмму, свидетельствующую о наличии кристаллической дифракционной решетки исследуемого твердого закристаллизованного образца.

Предварительный анализ дифракционных линий рентгенограммы не обнаруживает возможных фаз  $SrSO_4 \cdot 0.5H_2O$ ,  $SrSO_4$ , NaCl или NaCl  $\cdot 2H_2O$ , что свидетельствует о достаточно сложной структуре полученного комплексного соединения. Более детальный рентгенографический анализ провести не удалось вследствие ограниченного времени съемки. В течение 30 с образец плавится и превращается в рентгеноаморфную фазу. Необходимо отметить, что более детальное исследование следует проводить на низкотемпературном дифрактометре при температуре  $-20^{\circ}C$ .

Важным этапом исследования был поиск и отработка методики выделения и отделения  $SrSO_4 \cdot 0.5H_2O$  от закристаллизованной массы. Замерзшую массу образца нагревали до полного плавления кристаллогидрата  $NaCl \cdot 2H_2O$  при температуре 0°С. Жидкую фазу быстро удаляли фильтрованием, а оставшуюся кристаллическую часть подвергали рентгенофазовому анализу на рентгеновском дифрактометре Arl Equinox 100. В результате съемки образца в течение 5 мин удалось получить рентгенограмму тригональной модификации  $SrSO_4 \cdot 0.5H_2O$ , аналогичную рентгенограм-

ме японских исследователей [1], с параметрами тригональной ячейки  $SrSO_4 \cdot 0.5H_2O$  a = 7.178, c = 6.589 Å.

В табл. 1 представлены рентгенографические характеристики образца  $SrSO_4 \cdot 0.5H_2O$  [I], полученного сразу после отделения от жидкой фазы; образца  $SrSO_4 \cdot 0.5H_2O$  [II], стоявшего на воздухе в течение 15 мин, и образца  $SrSO_4 \cdot 0.5H_2O$  [III], полученного в работе [1]. Видно, что образец SrSO<sub>4</sub> · 0.5H<sub>2</sub>O [II] содержит следы безводной ромбической модификации SrSO<sub>4</sub>. В течение 120 мин SrSO<sub>4</sub> · 0.5H<sub>2</sub>O полностью разрушается с потерей кристаллогидратной воды и переходит в безводную модификацию SrSO<sub>4</sub>. Фазовое превращение практически не сопровождается изменением профилей и интенсивностей дифракционных линий SrSO<sub>4</sub> · 0.5H<sub>2</sub>O. Параметры элементарных ячеек, представленные в табл. 1, после их уточнения методом МНК сохраняют свои значения в пределах ошибки определения  $2\theta = 0.015^{\circ} - 0.020^{\circ}$ .

В связи с ограниченным временем существования  $SrSO_4 \cdot 0.5H_2O$  и необходимостью поиска методов стабилизации его структуры, а также применения более высокоточного оборудования дальнейшие исследования проводили с помощью камеры-монохроматора G-670 фирмы Huber ( $CuK_{\alpha 1}$ -излучение, шаг измерения 20 0.005°) и программного комплекса WinXPOW (version 2.20 2006 г.)



**Рис. 2.** Цепочка полиэдров SO<sub>4</sub> и CaO<sub>9</sub> в структуре CaSO<sub>4</sub>  $\cdot$  0.5H<sub>2</sub>O.

фирмы STOE. Погрешность в определении параметров элементарных ячеек составляла не более 0.002 Å.

В качестве исследуемого образца был выбран образец твердого раствора состава  $K_{0.25}La_{0.25}Sr_{0.5}(SO_4) \cdot 0.5H_2O$ , кристаллизующийся в структурном типе SrSO<sub>4</sub> · 0.5H<sub>2</sub>O. Он был получен нами ранее при исследовании системы KLa(SO<sub>4</sub>)<sub>2</sub> · H<sub>2</sub>O–SrSO<sub>4</sub> · 0.5H<sub>2</sub>O [3]. В справочной литературе (ICSD) отсутствуют сведения о структуре SrSO<sub>4</sub> · 0.5H<sub>2</sub>O вследствие ее нестабильности. Учитывая возможную изоструктурность соединений SrSO<sub>4</sub> · 0.5H<sub>2</sub>O и CaSO<sub>4</sub> · 0.5H<sub>2</sub>O, в качестве исходной модели для построения структуры  $K_{0.25}La_{0.25}Sr_{0.5}(SO_4) \cdot 0.5H_2O$  выбрана структура тригональной модификации CaSO<sub>4</sub> · 0.5H<sub>2</sub>O, параметры которой содержатся в ICSD.

Параметры элементарной ячейки тригональной модификации  $CaSO_4 \cdot 0.5H_2O$  и ее структура определены работе [13]: пр. гр.  $P3_121$ . Структура  $CaSO_4 \cdot 0.5H_2O$  построена из бесконечных цепо-

чек тетраэдров SO<sub>4</sub> и девятивершинников CaO<sub>9</sub>, вытянутых в направлении параметра *с* элементарной ячейки (рис. 2). Один кислородный атом молекулы H<sub>2</sub>O входит в девятивершинник CaO<sub>9</sub> и обозначен большим кружком. Остальные 8 атомов кислорода одновременно включены в соответствующие тетраэдры SO<sub>4</sub> и девятивершинники CaO<sub>9</sub>. Цепочки полиэдров SO<sub>4</sub> и СаO<sub>9</sub> координируются вокруг псевдогексагональной оси 6<sub>1</sub>, образуя гексагональные колодцы, в центре которых расположены кислородные атомы молекул воды. На рис. 2 показано расположение девятивершинников CaO<sub>9</sub> и тетраэдров SO<sub>4</sub> в структуре CaSO<sub>4</sub> · 0.5H<sub>2</sub>O.

На рис. 3 приведены кислородные атомы  $H_2O$ , расположенные внутри псевдогексагонального колодца, отмеченные как  $O_3$ . Кислородные атомы (малые кружки)  $O_1$  и  $O_2$  принадлежат тетраэдрам  $SO_4$ . Тетраэдры  $SO_4$ , в центре которых находится атом серы (средние по величине кружки), и полиэдр  $CaO_9$ , в центре которого находится атом кальция (большие кружки), чередуются по оси *с*.

Внутри псевдогексагонального колодиа. образованного полиэдрами CaO<sub>9</sub>, теоретически может находиться одна молекула воды, располагаясь по трем возможным позициям вокруг винтовой оси 31, что соответствует химической формуле моногидрата  $CaSO_4 \cdot H_2O$ , не существующего в природе. В нем межатомное расстояние между кислородными атомами воды составляло бы 2 Å по сравнению с теоретически возможным межатомным расстоянием О-О 2.8 Å (радиус аниона О<sup>2-</sup> 1.4 Å). Невозможность соблюдения расстояния 2 Å между атомами кислорода молекул воды приводит к 1/2 заселенности теоретически возможных позиций кислородных атомов воды с образованием полугидрата сульфата кальция CaSO<sub>4</sub> · 0.5H<sub>2</sub>O. При 50%-ной статистической заселенности позиций молекулами воды реализуется тригональная структура CaSO<sub>4</sub> · 0.5H<sub>2</sub>O. Избыточное содержание кристаллогидратной воды может приводить к удвоению параметра с и моноклинному искажению структуры полугидрата с предельным содержанием 0.67H<sub>2</sub>O, что соответствует метастабильной моноклинной модификации CaSO<sub>4</sub> · 0.67H<sub>2</sub>O. На практике обычно используется тригональная модификация  $CaSO_4 \cdot 0.5H_2O$ без удвоения параметра с. Частичная заселенность позиций кислородными атомами воды в полиэдре СаО<sub>9</sub> является причиной неустойчивости структуры CaSO<sub>4</sub> · 0.5H<sub>2</sub>O. При нагревании выше 180°С кристаллогидратная вода удаляется с образованием более устойчивой ромбической модификации CaSO<sub>4</sub>. Структура ромбической безводной модификации CaSO4 построена только из октаэдров CaO<sub>8</sub> и тетраэдров SO<sub>4</sub>, в которой отсутствуют полиэдры CaO9. Наличие влаги приво-



**Рис. 3.** Расположение атомов кислорода  $O_3$  воды в структуре  $CaSO_4 \cdot 0.5H_2O$ : малые кружки – атомы кислорода, средние кружки – атомы серы, большие кружки – атомы кальция.

дит к быстрой гидратации  $CaSO_4 \cdot 0.5H_2O$  и образованию более устойчивой моноклинной структуры гипса  $CaSO_4 \cdot 2H_2O$ , что лежит в основе использования вяжущих строительных материалов.

Структура  $SrSO_4 \cdot 0.5H_2O$ аналогична структуре полугидрата сульфата кальция  $CaSO_4 \cdot 0.5H_2O$ . Связь между атомом кислорода воды и Sr<sup>2+</sup> в девятивершиннике слабее аналогичной связи в девятивершиннике СаО<sub>9</sub> вследствие большего ионного радиуса  $Sr^{2+}$  (1.20 Å) по сравнению с  $Ca^{2+}$ (1.04 Å) [14]. Молекулы воды в псевдогексагональном колодце, образованном полиэдрами SrO<sub>9</sub>, имеют меньшую степень свободы внутри колодца. Вследствие этого устойчивость полиэдров SrO<sub>9</sub> в структуре SrSO<sub>4</sub>  $\cdot$  0.5H<sub>2</sub>O значительно ниже устойчивости полиэдров CaO<sub>9</sub>, что приводит к разрушению структуры  $SrSO_4 \cdot 0.5H_2O$  с образованием безводной ромбической модификации  $SrSO_4$  как на воздухе, так и в водной среде в течение 2 ч. В отличие от фазового превращения в процессе гидратации  $CaSO_4 \cdot 0.5H_2O \rightarrow$  $\rightarrow$  CaSO<sub>4</sub> · 2H<sub>2</sub>O, такой фазовый переход для  $SrSO_4 \cdot 0.5H_2O \rightarrow SrSO_4 \cdot 2H_2O$  неизвестен ввиду отсутствия сведений о существовании SrSO<sub>4</sub> · 2H<sub>2</sub>O. Фазовые переходы в процессе гидратации и дегидратации CaSO<sub>4</sub> · 0.5H<sub>2</sub>O исследованы в работах [15, 16].

В табл. 2 приведены рентгенографические характеристики  $K_{0.25}La_{0.25}Sr_{0.5}(SO_4) \cdot 0.5H_2O$  и результаты индицирования рентгенограммы с достаточно высоким фактором  $R_{30} = 57.2$ . Уточненные параметры элементарной тригональной

ячейки (пр. гр.  $P3_121$ ) составляют: a = 7.2083(18), c = 6.6412(14) Å, V = 298.85(14) Å<sup>3</sup>.

На рис. 4 показано сравнение профилей дифракционных линий исследуемого образца состава  $K_{0.25}La_{0.25}Sr_{0.5}(SO_4) \cdot 0.5H_2O$  и рассчитанных теоретически по модели структуры  $CaSO_4 \cdot 0.5H_2O$  (ICSD-73262, пр. гр.  $P3_121$ ) с учетом статистического замещения атомов Са атомами 0.25K + 0.25La + 0.5Sr,  $R_p = 10.99\%$ .

В табл. 3 приведены координаты атомов в структуре  $K_{0.25}La_{0.25}Sr_{0.5}(SO_4) \cdot 0.5H_2O$  с учетом статистического размещения атомов K, La и Sr по позициям атомов Ca в структуре  $CaSO_4 \cdot 0.5H_2O$  ( $R_p = 12.43\%$ ).

Как уже отмечалось, гетеровалентное замещение атомов Sr с образованием твердых растворов в системе KLa(SO<sub>4</sub>)<sub>2</sub> · H<sub>2</sub>O–SrSO<sub>4</sub> · 0.5H<sub>2</sub>O [3] приводит к стабилизации их структуры на основе тригональной структуры SrSO<sub>4</sub> · 0.5H<sub>2</sub>O. Аналогичная стабилизация структурного типа SrSO<sub>4</sub> · 0.5H<sub>2</sub>O может иметь место и в других системах, образованных близкими по структуре соединениями. В табл. 4 приведены параметры элементарных ячеек некоторых изоструктурных соединений, которые образуют твердые растворы между собой, что может приводить, в частности, к стабилизации структур CaSO<sub>4</sub> · 0.5H<sub>2</sub>O или SrSO<sub>4</sub> · 0.5H<sub>2</sub>O в результате изовалентного или гетеровалентного замещения.

В работах [1, 2] приводятся сведения о существовании широкой области твердых растворов в системе  $CaSO_4 \cdot 0.5H_2O$ –SrSO<sub>4</sub> · 0.5H<sub>2</sub>O в результате изовалентного замещения ионов Sr на Ca.

| d, Å   | $2\theta_{pacy}$ | $\Delta(2\theta_{3KC\Pi} - 2\theta_{pacy})$ | I, %  | hkl |
|--------|------------------|---------------------------------------------|-------|-----|
| 6.243  | 14.176           | 0.0030                                      | 51.2  | 100 |
| 4.549  | 19.500           | 0.0053                                      | 16.1  | 101 |
| 3.604  | 24.681           | -0.0034                                     | 62.0  | 110 |
| 3.168  | 28.147           | 0.0564                                      | 2.7   | 111 |
| 3.121  | 28.575           | -0.0066                                     | 98.2  | 200 |
| 2.932  | 30.467           | 0.0001                                      | 100.0 | 102 |
| 2.825  | 31.648           | -0.0080                                     | 0.9   | 201 |
| 2.442  | 36.772           | -0.0041                                     | 15.0  | 112 |
| 2.359  | 38.109           | -0.0004                                     | 10.4  | 210 |
| 2.274  | 39.595           | 0.0057                                      | 6.1   | 202 |
| 2.223  | 40.542           | 0.0047                                      | 0.2   | 211 |
| 2.214  | 40.725           | 0.0251                                      | 9.8   | 003 |
| 2.086  | 43.332           | 0.0031                                      | 2.2   | 103 |
| 1.9857 | 45.651           | -0.0060                                     | 12.9  | 301 |
| 1.9234 | 47.218           | -0.0076                                     | 55.0  | 212 |
| 1.8863 | 48.203           | -0.0007                                     | 3.3   | 113 |
| 1.8057 | 50.503           | 0.0454                                      | 11.6  | 203 |
| 1.7633 | 51.808           | -0.0121                                     | 20.1  | 302 |
| 1.7392 | 52.579           | -0.0124                                     | 1.5   | 221 |
| 1.7314 | 52.834           | -0.0124                                     | 18.4  | 310 |
| 1.6754 | 54.745           | -0.0003                                     | 2.7   | 311 |
| 1.6144 | 56.997           | -0.0548                                     | 1.0   | 213 |
| 1.6045 | 57.381           | -0.0154                                     | 4.9   | 104 |
| 1.5839 | 58.200           | -0.0127                                     | 4.3   | 222 |
| 1.5606 | 59.152           | -0.0460                                     | 1.2   | 400 |
| 1.5352 | 60.232           | -0.0156                                     | 5.3   | 312 |
| 1.5193 | 60.931           | -0.0134                                     | 1.6   | 401 |
| 1.5080 | 61.436           | 0.0146                                      | 3.3   | 114 |
| 1.4658 | 63.404           | 0.0235                                      | 1.6   | 204 |
| 1.4124 | 66.100           | -0.0067                                     | 4.6   | 402 |
| 1.4000 | 66.765           | 0.0065                                      | 3.2   | 321 |
| 1.3622 | 68.869           | 0.0307                                      | 7.1   | 410 |
| 1.3578 | 69.125           | 0.0512                                      | 7.3   | 214 |
| 1.3345 | 70.513           | -0.0022                                     | 1.6   | 411 |
| 1.3151 | 71.713           | -0.0159                                     | 9.1   | 322 |
| 1.2992 | 72.729           | -0.0625                                     | 2.6   | 105 |
| 1.2978 | 72.817           | 0.0517                                      | 4.3   | 304 |
| 1.2603 | 75.352           | 0.0014                                      | 4.6   | 412 |
| 1.2485 | 76.191           | 0.0370                                      | 1.0   | 500 |
| 1.2270 | 77.773           | -0.0256                                     | 0.6   | 501 |
| 1.2211 | 78.225           | -0.0042                                     | 2.4   | 224 |
| 1.2014 | 79.759           | 0.0300                                      | 4.8   | 330 |
| 1.1797 | 81.527           | -0.0126                                     | 1.1   | 420 |

**Таблица 2.** Рентгенографические характеристики  $K_{0.25}La_{0.25}Sr_{0.5}(SO_4)\cdot 0.5H_2O$ 

**Таблица 3.** Координаты атомов в структуре  $K_{0.25}La_{0.25}Sr_{0.5}(SO_4) \cdot 0.5H_2O$ 

|                       |    |         | -      |        |        |        |
|-----------------------|----|---------|--------|--------|--------|--------|
| Атом                  | Ζ  | Позиция | x      | У      | z      | SDF    |
| K                     | 19 | 3b      | 0.5424 | 0.0000 | 0.8333 | 0.2500 |
| La                    | 57 |         |        |        |        | 0.2500 |
| Sr                    | 38 |         |        |        |        | 0.5000 |
| S                     | 16 | 3a      | 0.5481 | 0.0000 | 0.3333 | 1.0000 |
| $O_1$                 | 8  | 6c      | 0.5952 | 0.8564 | 0.4656 | 1.0000 |
| O <sub>2</sub>        | 8  | 6c      | 0.3693 | 0.8731 | 0.1897 | 1.0000 |
| <b>O</b> <sub>3</sub> | 8  | 3b      | 0.9143 | 0.0000 | 0.8300 | 1.0000 |
|                       |    |         |        |        |        |        |

Такое замещение приводит к увеличению устойчивости структуры  $SrSO_4 \cdot 0.5H_2O$  за счет усиления связи молекулы воды с меньшим по размеру ионом  $Ca^{2+}$  по сравнению с ионом  $Sr^{2+}$ .

Стабилизация тригональной модификации CaSO<sub>4</sub> · 0.5H<sub>2</sub>O может происходить в результате гетеровалентного замещения по схеме:  $2Ca^{2+} \rightarrow$ → Na<sup>+</sup> + Ln<sup>3+</sup> при совместной кристаллизации их сульфатов, что объясняется близостью ионных радиусов замещаемых атомов Na<sup>+</sup>(0.98 Å), La<sup>3+</sup>(1.04 Å), Ce<sup>3+</sup>(1.02Å) и Ca<sup>2+</sup>(1.04 Å) [13]. Образование твердых растворов в бинарных систе- $\max \operatorname{CaSO}_4 \cdot 0.5 \operatorname{H}_2 \operatorname{O}-\operatorname{NaLn}(\operatorname{SO}_4)_2 \cdot \operatorname{H}_2 \operatorname{O}(\operatorname{Ln} = \operatorname{La},$ Ce, Nd) отмечено в работах [17, 18] вследствие близости строения соединений CaSO<sub>4</sub> · 0.5H<sub>2</sub>O и NaLn(SO<sub>4</sub>)<sub>2</sub> ·  $H_2O$ . Исходные образцы NaCe(SO<sub>4</sub>)<sub>2</sub> · H<sub>2</sub>O или KLa(SO<sub>4</sub>)<sub>2</sub> · H<sub>2</sub>O имеют удвоенный параметр элементарной ячейки по оси с по сравнению с элементарной ячейкой CaSO<sub>4</sub> · 0.5H<sub>2</sub>O вследствие чередования катиона щелочного металла и  $Ln^{3+}$  по оси c. В результате этого чередования появляются сверхструктурные линии на рентгенограммах  $NaLa(SO_4)_2 \cdot H_2O$  и  $KLa(SO_4)_2 \cdot H_2O$ . Статистическое размещение катионов в структуре твердых растворов в системе  $CaSO_4 \cdot 0.5H_2O$ -NaLa $(SO_4)_2 \cdot H_2O$  или в исследуемой системе  $SrSO_4 \cdot 0.5H_2O-KLa(SO_4)_2 \cdot H_2O$  приводит к исчезновению сверхструктурных линий на рентгенограммах. При этом сохраняется величина параметра с без его удвоения, что способствует структурной близости исследуемых твердых растворов к структуре  $CaSO_4 \cdot 0.5H_2O$  или  $SrSO_4 \cdot 0.5H_2O$ .

Стабилизация тригональной модификации  $CaSO_4 \cdot 0.5H_2O$  может происходить и в результате гетеровалентного замещения в сложной бинарной системе  $CaSO_4 \cdot 0.5H_2O$ —LaPO<sub>4</sub> · 0.5H<sub>2</sub>O с одновременным замещением по катионному и анионному каркасу изоструктурных соединений CaSO<sub>4</sub> · 0.5H<sub>2</sub>O и LaPO<sub>4</sub> · 0.5H<sub>2</sub>O [19, 20]. Частичное замещение ионов Ca<sup>2+</sup> на трехзарядный ион La<sup>3+</sup> в полиэдре CaO<sub>9</sub> приводит к усилению связи с молекулой кристаллогидратной воды, входящей в



**Рис. 4.** Профили дифракционных линий исследуемого образца  $K_{0.25}La_{0.25}Sr_{0.5}(SO_4) \cdot 0.5H_2O$  (черные линии) и рассчитанных теоретически (красные линии) по модели  $CaSO_4 \cdot 0.5H_2O$  (ICSD-73262, пр. гр.  $P3_121$ ).

**Таблица 4.** Параметры элементарных ячеек некоторых изоструктурных соединений, пр. гр. *P*3<sub>1</sub>21

| Соединение                | a, Å  | c, Å   |
|---------------------------|-------|--------|
| $CaSO_4 \cdot 0.5H_2O$    | 6.946 | 6.346  |
| $NaCe(SO_4)_2 \cdot H_2O$ | 7.013 | 12.920 |
| $KLa(SO_4)_2 \cdot H_2O$  | 7.172 | 13.296 |
| $SrSO_4 \cdot 0.5H_2O$    | 7.178 | 6.589  |
| $CePO_4 \cdot 0.5H_2O$    | 7.101 | 6.490  |

его координационную сферу, за счет увеличения электростатического взаимодействия. Аналогично происходит усиление связи с молекулой воды и в результате гетеровалентного замещения  $Sr^{2+}$  на  $La^{3+}$ .

Полученные результаты могут быть полезны при разработке технологии выделения редкоземельных элементов через образование твердых растворов на основе  $SrSO_4 \cdot 0.5H_2O$  путем изовалентного и гетеровалентного замещения.

#### ЗАКЛЮЧЕНИЕ

При совместной кристаллизации NaCl  $\cdot$  2H<sub>2</sub>O и кристаллогидрата сульфата стронция SrSO<sub>4</sub>  $\cdot$  0.5H<sub>2</sub>O при температуре ниже 0°C образуется сложный кристаллический комплекс, имеющий индивидуальную кристаллическую структуру. Удаление дигидрата хлорида натрия в процессе плавления выше

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 4 2023

 $0^{\circ}$ С позволяет получить достаточно крупные кристаллы (0.5—1.0 мм) тригональной модификации SrSO<sub>4</sub> · 0.5H<sub>2</sub>O со структурой, аналогичной структуре CaSO<sub>4</sub> · 0.5H<sub>2</sub>O.

Рассмотрена структура тригональной модификации  $SrSO_4 \cdot 0.5H_2O$ , которая относится к пр. гр.  $P3_121$ . Кристаллогидратная вода входит в координационную сферу полиэдра  $SrO_9$  и слабо удерживается в ней. Полное разрушение структуры чистой фазы  $SrSO_4 \cdot 0.5H_2O$  завершается через 2 ч.

Предложены способы стабилизации SrSO<sub>4</sub> · 0.5H<sub>2</sub>O на основе изовалентного замещения ионов стронция по схеме: Sr<sup>2+</sup>  $\rightarrow$  Ca<sup>2+</sup> и гетеровалентного замещения ионов стронция по схеме: 2Sr<sup>2+</sup>  $\rightarrow$  K<sup>+</sup> + La<sup>3+</sup>.

В отличие от нестабильной тригональной модификации SrSO<sub>4</sub> · 0.5H<sub>2</sub>O, время существования которой ограничено 2 ч, стабилизированная модификация в виде  $K_{0.25}La_{0.25}Sr_{0.5}(SO_4) \cdot 0.5H_2O$ устойчива в течение неограниченного времени. Уточнены параметры элементарной ячейки и выполнено индицирование линий рентгенограммы  $K_{0.25}La_{0.25}Sr_{0.5}(SO_4) \cdot 0.5H_2O$  ( $R_{30} = 57.2$ ). Предложена модель структуры SrSO<sub>4</sub> · 0.5H<sub>2</sub>O на примере соединения  $K_{0.25}La_{0.25}Sr_{0.5}(SO_4) \cdot 0.5H_2O$  ( $R_p =$ = 10.52) со статистическим размещением ионов калия, лантана и стронция по позициям атомов кальция в известной тригональной структуре CaSO<sub>4</sub> · 0.5H<sub>2</sub>O.

## КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

## СПИСОК ЛИТЕРАТУРЫ

- Satoshi Takahashi, Masanobu Seki, Katsumi Setoyama // Bull. Chem. Soc. Jpn. 1993. V. 66. P. 2219. https://doi.org/10.1246/bcsj.66.2219
- Бушуев Н.Н., Набиев А.Г. // Журн. неорган. химии. 1988. Т. 33. № 11. С. 2962.
- 3. Бушуев Н.Н., Тюльбенджян Г.С., Великодный Ю.А. // Журн. неорган. химии. 2021. Т. 66. № 3. С. 382. https://doi.org/10.31857/S0044457X21030041
- Carlos M. Pina, Alvaro Tamayo // Geochim. Cosmochim. Acta. 2012. V. 92. Р. 220. Материалы 17-й Всерос. конф. "Современные проблемы дистанционного зондирования Земли из космоса". М.: ИКИ РАН, С. 248.

https://doi.org/10.1016/j.gca.2012.06.018

- Akinfiev N.N., Mironenko M.V., Grant S.A. // J. Solution Chem. 2001. V. 30. № 12. P. 1065. https://doi.org/10.1023/A:1014445917207
- 6. Craig J.R., Light J.F., Parker B.C. et al. // Antarctic J. 1975. V. 10. № 4. P. 178.
- Chen N., Morikawa J., Hashimoto T. // Thermochim. Acta. 2005. V. 431. № 1–2. P. 106. https://doi.org/10.1016/j.tca.2005.01.050
- 8. Степанов К.А., Дмитриевский Б.А. // Изв. СПбГТИ(ТУ). 2012. Т. 40. № 14. С. 32.
- Бордонский Г.С., Гурулев А.А., Крылов С.Д. // Материалы 17-й Всерос. конф. "Современные пробле-

мы дистанционного зондирования Земли из космоса". М.: ИКИ РАН, 2010. С. 248.

- Шиманов А.А., Комаров И.А. // Инженерная геология. 2019. Т. 14. № 3. С. 68. https://doi.org/10.25296/1993-5056-2019-14-3-68-76
- 11. Черкасов Д.Г., Данилина В.В., Ильин К.К. // Журн. неорган. химии. 2021. Т. 66. № 6. С. 785. https://doi.org/10.31857/S0044457X21060076
- 12. Yaghoob Farnam, Dale Bentz, Aaron Sakulich et al. // Adv. Eng. Mater. 2014. V. 3. № 1. P. 23. https://doi.org/10.1520/ACEM20130095
- 13. *Бушуев Н.Н.* // Журн. неорган. химии. 1982. Т. 27. № 3. С. 609.
- Shannon R.D., Prewitt C.T. // Acta Crystallogr., Sect. B. 1969. V. 25. P. 925. https://doi.org/10.1107/S0567740869003220
- 15. *Бушуев Н.Н., Борисов В.М.* // Журн. неорган. химии. 1982. Т. 27. № 3. С. 604.
- 16. *Бушуев Н.Н., Масленников Б.М., Борисов В.М. //* Журн. неорган. химии. 1983. Т. 28. № 10. С. 2469.
- Бушуев Н.Н., Набиев А.Г., Петропавловский И.А. и др. // Журн. прикл. химии. 1988. Т. 61. № 10. С. 2153.
- Ove Lindgren // Acta Chem. Scand. 1977. V. 1. P. 591. https://doi.org/10.3891/acta.chem.scand.31a-0591
- 19. *Зинин Д.С., Бушуев Н.Н. //* Журн. прикл. химии. 2017. Т. 90. № 3. С. 266.
- 20. *Бушуев Н.Н., Колесников В.А.* // Хим. технология. 2022. Т. 23. № 3. С. 98. https://doi.org/10.31044/1684-5811-2022-23-3-98-104