СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 544.228+544.6.018.42-16

СТРУКТУРА И ЭЛЕКТРОПРОВОДНОСТЬ ЗАМЕЩЕННЫХ ВИСМУТОМ И ГЕРМАНИЕМ МОЛИБЛАТОВ КАЛЬЦИЯ

© 2023 г. О. С. Каймиева^{*a*, *}, З. А. Михайловская^{*a*, *b*}, Е. С. Буянова^{*a*}, С. А. Петрова^{*c*}, Е. А. Панкрушина^{*b*}

^аУральский федеральный университет им. Первого Президента России Б.Н. Ельцина, Институт естественных наук и математики, пр-т Ленина, 51, Екатеринбург, 620000 Россия ^bИнститут геологии и геохимии им. академика А.Н. Заварицкого УрО РАН, ул. Академика Вонсовского, 15, Екатеринбург, 620110 Россия ^cИнститут металлургии УрО РАН, ул. Амундсена, 101, Екатеринбург, 620016 Россия *e-mail: kaimi-olga@mail.ru Поступила в редакцию 28.09.2022 г. После доработки 30.11.2022 г.

Принята к публикации 28.12.2022 г.

По стандартной керамической технологии получены твердые растворы $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$ с шеелитоподобной структурой (пр. гр. $I4_1/a$) и областью гомогенности x = 0.0-0.4. С ростом концентрации допантов происходит рост параметра *c* и объема элементарной ячейки, обусловленный изменением размера полиэдров Ca/BiO_8 . На основании анализа температурных функций параметров элементарной ячейки и вида спектров комбинационного рассеяния показано преимущественно тепловое расширение полиэдров Ca/BiO_8 . Рассчитаны длины связей Ca/Bi-O и Mo/Ge-O. Увеличение концентрации допантов приводит к уменьшению коэффициента термического расширения керамических образцов, увеличению значений электропроводности и энергии активации сложных оксидов по сравнению с матричным соединением. Определен эффективный коэффициент диффузии кислорода.

Ключевые слова: синтез, шеелит, высокотемпературная рентгенография, тензор, термическое расширение

DOI: 10.31857/S0044457X22602048, EDN: FMYDUZ

ВВЕДЕНИЕ

Соединения со структурой шеелита АВО₄, обладающие тетрагональной структурой с пр. гр. *I*4₁/*a*, где А – двухзарядный ион, В – шестизарядный ион, активно исследовались как материалы для фотокатализаторов, люминофоров, СВЧ-диэлектриков [1-4]. Электропроводность таких составов в температурном интервале 400-800°С имеет преимущественно кислородно-ионный характер и составляет около 10⁻⁸-10⁻⁴ Ом⁻¹ см⁻¹ [5-14]. Замещение позиций катиона в каждой из подрешеток АВО₄ на другие катионы предполагает широкие возможности для варьирования как структурных параметров, так и величины проводимости получаемых твердых растворов. При этом возможны различные механизмы образования соединений, например, внедрение трехвалентного иона Me³⁺ в А-подрешетку структуры шеелита требует компенсации заряда для сохранения электронейтральности структуры, которую можно обеспечить либо избыточными атомами кислорода (состав $A_{1-x}Me_x^{3+}BO_{4+x/2}$), либо возникновением катионных вакансий ($A_{1-3x}^{2+}Me_{2x}^{3+}\Phi_xMoO_4$) [15], либо одновременным введением совместно с Ме³⁺ в Вподрешетку иона с меньшей, чем у В⁶⁺, степенью окисления [15, 16] с образованием твердого раствора типа $A_{1-2x}Me_{2x}^{3+}B_{1-x}M_xO_4$, если в качестве допантов выступают ионы Ме³⁺ и М⁴⁺, или $A_{1-x}Me_x^{3+}B_{1-x}M_xO_4$ для пятизарядного иона M^{5+} . В качестве трехвалентного иона на позицию А можно предложить Bi³⁺, а на позицию В – ионы Ge⁴⁺. Известно, что сами сложные оксиды германия и/или висмута зачастую являются хорошими кислородно-ионными проводниками [17-20], а образование твердых растворов A_{1 - 2x}Bi_{2x}B_{1 - x}M_xO₄ может оказать положительное влияние на проводящие характеристики изучаемых шеелитов за счет изменений длины и силы связи между ионами, структурных искажений.

Целью настоящей работы является детальное исследование структуры и электропроводности

шеелитоподобных твердых растворов с общей формулой $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$ (x = 0.0-0.5), образующихся при одновременном замещении молибдата кальция ионами висмута по A-подрешетке и ионами германия по B-подрешетке.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы с общей формулой $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$ (x = 0.0 - 0.5) получали твердофазным синтезом в интервале температур 600-900°С с шагом 100°С из стехиометрических смесей CaCO₃ "ч. д. а.", Bi₂O₃ "ос. ч.", MoO₃ "ос. ч." и GeO₂ "ос. ч.". Аттестацию образцов проводили с помощью рентгенофазового анализа (дифрактометр D8 Advance (Bruker, Германия), Си K_{α} -излучение, позиционно-чувствительный детектор Våntec-1, интервал углов 5°-136°, выдержка в точке 493 с). Для расчета параметров элементарных ячеек методом наименьших квадратов использовали программу Celref [20]. Высокотемпературные данные были получены с использованием камеры Anton-Paar XRK-900 с шагом 10°С при нагревании. Для определения параметров тензора термического расширения по данным порошковой рентгеновской дифракции использовали программный комплекс ThetaToTensor [22]. Высокотемпературные спектры комбинационного рассеяния (КР) получали in situ с помощью KP-спектрометра LabRam HR 800 (длина волны возбуждения 633 нм, решетка 1800 штр/мм), оборудованного термостоликом Linkam THMS600, в диапазоне температур 190- 600° С для образцов с x = 0.05 и 0.2. Вариации изменения зависимостей положения колебательных мод (v) от температуры (v(T)) были построены с помощью изобарического параметра Грюнайзена [23]. Денситометрическую плотность образцов определяли методом гидростатического взвешивания по методике [24]. Исследования методами ДТА и ТГ проводили с помощью дериватографа Diamond TG-DTA Perkin Elmer в атмосфере воздуха в температурном интервале 20-740°С. В качестве материала сравнения использовали Al₂O₃. Коэффициент термического расширения спеченных в виде прямоугольных брусков (3 × 4 × 20 мм) образцов рассчитывали из данных высокотемпературной дилатометрии (дилатометр DIL-402C, Netzsch, Германия). Исследование электропроводности таблетированных образцов высотой 3-4 мм и диаметром 10 мм проводили в двухконтактной ячейке с платиновыми электродами с помощью импедансметра Z-3000 (Elins, Россия) в режиме охлаждения в интервале температур 800-300°С. Для анализа годографов импеданса использовали метод эквивалентных схем (Zview software, Version 2.6b, Scribner Associates, Inc.).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

По полученным дифрактограммам (рис. 1) установлено, что образцы серии $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$ изоструктурны CaMoO₄ (пр. гр. $I4_1/a$), область гомогенности твердого раствора простирается вплоть до $x \le 0.4$. При увеличении концентрации допантов прослеживается рост параметра с и объема элементарной ячейки, в то время как параметры *а* и *b* практически неизменны с небольшой тенденцией к уменьшению (рис. 2). Коэффициенты концентрационной зависимости параметров элементарной ячейки однофазных образцов с общей формулой $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$ (x = 0.0-0.4) приведены в табл. 1. Кристаллическая структура СаМоО₄ построена из полиэдров СаО₈ и тетраэдров MoO₄, при этом многогранники CaO₈ имеют четыре общих ребра с четырьмя другими многогранниками CaO₈, вытянутыми в направлении оси с. Каждый атом кислорода в полиэдрах CaO₈ связан с одним атомом Мо. Таким образом, каждый атом кислорода координирован с двумя атомами Са и одним атомом Мо. Тетраэдры МоО₄ образуют жесткий каркас, полиэдры CaO₈ более подвижны вдоль оси с [7, 25]. Исходя из разницы ионных радиусов замещаемых и замещающих ионов ($r_{Ca_{VIII}^{2+}} = 1.12$ Å, $r_{Bi_{VIII}^{3+}} = 1.17$ Å, $r_{Mo_{IV}^{6+}} = 0.41$ Å, $r_{Ge_{IV}^{4+}} = 0.39$ Å [26]) и в два раза большего количества атомов висмута по сравнению с атомами германия в решетке Ca_{1 - 2x}Bi_{2x}Mo_{1 - x}Ge_xO₄ при заданном значении х, можно считать, что рост параметра с обусловлен в первую очередь изменением размера полиэдров Ca/BiO₈. Подтверждением правильности механизма замещения ионами Bi³⁺ и Ge⁴⁺ позиций кальция и молибдена соответственно является близость значений денситометрической и рентгенографической плотности образцов (рис. 3). Отмечено, что с ростом содержания висмута и германия в молибдатах кальция происходит небольшое снижение плотности спекания брикетов, что особенно заметно по значениям денситометрической плотности образцов $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$ при x == 0.35 и 0.40 (рис. 3). Полученные данные связаны с ростом размера зерен порошков за счет снижения температуры спекания, что приводит к формированию менее плотной керамики.

Высокотемпературные рентгенографические исследования составов $Ca_{0.6}Bi_{0.4}Mo_{0.8}Ge_{0.2}O_4$ и $Ca_{0.2}Bi_{0.8}Mo_{0.6}Ge_{0.4}O_4$ показали, что изменение параметров *a*, *c* элементарной ячейки с ростом температуры имеет почти линейный вид, аналогичный незамещенному составу CaMoO₄, причем изменение по параметру *c* более существенное. Сравнение литературных данных [25] и эксперимента приведено на рис. 4. Близкий ход зависимостей незамещенного и замещенных составов под-

Рис. 1. Дифрактограммы однофазных образцов с общей формулой $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$ (x = 0.0-0.4). На врезке представлена увеличенная область углов $28^{\circ}-35^{\circ}$.

тверждает мнение об анизотропии температурного расширения структуры шеелита [25]. Рассчитанные для $Ca_{0.6}Bi_{0.4}Mo_{0.8}Ge_{0.2}O_4$ и $Ca_{0.2}Bi_{0.8}Mo_{0.6}Ge_{0.4}O_4$ коэффициенты полиномов температурных функций параметров элементарной ячейки приведены в табл. 2. На основе полученных данных были построены тензоры теплового расширения $Ca_{0.6}Bi_{0.4}Mo_{0.8}Ge_{0.2}O_4$ и $Ca_{0.2}Bi_{0.8}Mo_{0.6}Ge_{0.4}O_4$, значения которых при различных температурах приведены в табл. 3. На рис. 5 представлены типичные фигуры коэффициентов теплового расширения для $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$ (x = 0.2, 0.4) в интервале

температур 27–800°С. Видно, что расширение по оси *с* практически вдвое больше, чем по оси *а*, что, как и для незамещенного CaMoO₄, свидетельствует о преимущественном тепловом расширении полиэдров Ca/BiO₈, а не Mo/GeO₄. Типичные длины связей Ca/Bi–O и Mo/Ge–O приведены в табл. 4. Видно, что длина связи Ca/Bi–O или Ca–O более заметно увеличивается с температурой по сравнению со связью Mo–O, которая варьируется в пределах погрешности ~1.76 Å для CaMoO₄ и испытывает тенденцию к снижению от 1.85 до 1.76 Å с ростом температуры при частич-

Таблица 1. Коэффициенты полинома $y = a_0 + a_1 x + a_2 x^2$ концентрационной зависимости параметров элементарной ячейки однофазных образцов с общей формулой Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO₄ (x = 0.0-0.4)

		- • I 227 227	1 7 7 1	
Параметр	a_0	a_1	<i>a</i> ₂	R^2
а	5.2235	0.02123	-0.08034	0.98052
С	11.44963	0.40204	—	0.99535
V	312.31434	14.91376	-13.10225	0.99764

Рис. 2. Зависимость параметров элементарной ячейки $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$ (пр. гр. $I4_1/a$) от состава.

ной замене молибдена на германий, что вполне соответствует всем выдвинутым ранее предположениям о структурных особенностях шеелита.

КР-спектры серии при комнатной температуре имеют вид, типичный для шеелитоподобных соединений типа ABO_4 и соответствуют колебательному представлению вида $\Gamma = 3A_g + 5A_u + 5B_g +$ $+ 3B_u + 5E_g + 5E_u$ [27]. Спектральные параметры

Рис. 3. Рентгенографическая (\Box) и пикнометрическая (\triangle) плотность однофазных образцов в серии $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$ (пр. гр. $I4_1/a$).

мод варьируют в зависимости от состава, что подробно рассмотрено в [28], при этом внешним колебаниям связей О-Мо-О и О-Са-О соответствуют низкочастотные колебания, а внутренним колебаниям полиэдра МоО₄ - средне-и высокочастотные моды: $\sim 320 - 330 \,\mathrm{cm}^{-1}(v_2)$, $\sim 390 - 400 \,\mathrm{cm}^{-1}(v_4)$, $\sim 790 - 795$, 845-850 см⁻¹ (v₃) и ~875-880 см⁻¹ (v₁). Замещение висмутом и германием приводит к уширению мод в КР-спектре и появлению дополнительных мод [28], связанных с искажением тетраэдров МО₄. Высокотемпературные измерения КР-спектров сопряжены с дополнительными уширениями линий, поэтому адекватная расшифровка подобных спектров возможна только для низких концентраций допанта ($x \le 0.2$). Вариации изменения зависимостей положения колебательных мод от температуры, выраженного в виде параметра Грюнайзена (γ_{iP}) , приведены на примере $Ca_{0.9}Bi_{0.1}Mo_{0.95}Ge_{0.05}O_4$ и Ca_{0.6}Bi_{0.4}Mo_{0.8}Ge_{0.2}O₄ в табл. 5. Показано, что ан-

Таблица 2. Коэффициенты полиномов $y = P_0 + P_1T + P_2T^2$ зависимости параметров элементарной ячейки $Ca_{0.6}Bi_{0.4}Mo_{0.8}Ge_{0.2}O_4$ и $Ca_{0.2}Bi_{0.8}Mo_{0.6}Ge_{0.4}O_4$ от температуры

Параметр	<i>T</i> ₁ , K	<i>T</i> ₂ , K	п	<i>P</i> ₀	$P_1 T \times 10^{-3}$	$P_2 T^2 \times 10^{-6}$	R^2
$Ca_{0.6}Bi_{0.4}Mo_{0.8}Ge_{0.2}O_4$							
a	300.0	1073.0	2	5.20847(19)	0.04482(62)	0.00849(45)	0.99997
С	300.0	1073.0	2	11.47174(63)	0.1804(20)	0.0367(15)	0.99996
V	300.0	1073.0	2	311.2198	10.1851	2.2158	0.99989
$Ca_{0.2}Bi_{0.8}Mo_{0.6}Ge_{0.4}O_4$							
a	303.0	1073.0	2	5.20501(24)	0.03771(77)	0.00783(57)	0.99995
С	303.0	1073.0	2	11.54782(45)	0.1774(15)	0.0401(11)	0.99996
V	303.0	1073.0	2	312.8662	9.2835	2.2009	0.99987

Примечание. *n* – степень полинома.

гармонизм собственных колебаний тетраэдров МоО₄ незначительно увеличивается для деформационных колебаний V₂ и V₄ или остается неизменным в пределах стандартного отклонения для валентных колебаний v_1 и v_3 по мере увеличения концентрации допантов. При этом значения γ_{ip} внутренних колебаний на порялок меныше, чем внешних колебаний. Для последних при повышении концентрации допанта значение у_{ір} возрастает от 7.7 (205 см⁻¹) до 10.4 (203 см⁻¹). Указанное значимое возрастание γ_{iP} для внутренних мод согласуется с вышеописанным преимущественным тепловым расширением полиэдров Ca/BiO₈ по сравнению с Mo/GeO₄. Наблюдаемая дифференциация γ_{iP} для деформационных колебаний ν_2 и ν_4 свидетельствует о возрастании анизотропийных эффектов с ростом концентрации допантов.

термогравиметрической кривой Ha лля Са_{0.2}Ві_{0.8}Мо_{0.6}Ge_{0.4}О₄ и Са_{0.6}Ві_{0.4}Мо_{0.8}Ge_{0.2}О₄ при нагревании ло 740°С наблюлается незначительное (в пределах погрешности) изменение массы образцов ~0.15% (рис. 6). Ему соответствует эндотермический эффект. смешаемый в область больших температур от 362.7°C для x = 0.2 до 378.4°C для x = 0.4, что может быть связано с удалением адсорбированной воды из образцов. В то время как термические эффекты при ~537°C для $Ca_{0.2}Bi_{0.8}Mo_{0.6}Ge_{0.4}O_4$ ~504°C И при лля $Ca_{0.6}Bi_{0.4}Mo_{0.8}Ge_{0.2}O_4$, по-видимому, также связаны с вылелением кислорола и сопровожлаются смещением атомов кислорода, что подтверждается результатами полнопрофильного анализа методом Ритвельда [29] данных высокотемпературной рентгенографии. Полученные температурные зависимости координаты кислорода z и угла ОМоО для образца Ca_{0.2}Bi_{0.8}Mo_{0.6}Ge_{0.4}O₄, у которого наблюдается наибольший термический эффект, приведены на рис. 7. Из рисунка видно, что за пределами интервала 400-600°С координата z

Рис. 4. Зависимость параметров *a с* элементарной ячейки шеелита от температуры: темные символы — $CaMoO_4$ [19]; светлые символы — $Ca_{0.6}Bi_{0.4}Mo_{0.8}Ge_{0.2}O_4$ (настоящая работа); заштрихованные символы — $Ca_{0.2}Bi_{0.8}Mo_{0.6}Ge_{0.4}O_4$ (настоящая работа).

слабо зависит от температуры и в пределах ошибки может считаться постоянной, тогда как внутри этого интервала наблюдаются обратимые изме-

<i>Т</i> , К	$Ca_{0.6}Bi_{0.4}Mo_{0.8}Ge_{0.2}O_4$			$Ca_{0.2}Bi_{0.8}Mo_{0.6}Ge_{0.4}O_4$			
	$\alpha_{11} \times 10^{6}$	$\alpha_{33} \times 10^6$	$\alpha_{\rm V} \times 10^6$	$\alpha_{11} \times 10^{6}$	$\alpha_{33} \times 10^6$	$\alpha_V \times 10^6$	
303	9.566(66)	17.575(98)	36.71(22)	8.128(84)	17.364(71)	33.62(23)	
403	9.882(50)	18.180(74)	37.94(17)	8.422(63)	18.024(53)	34.87(17)	
503	10.196(34)	18.781(50)	39.17(11)	8.714(43)	18.680(36)	36.11(12)	
603	10.509(21)	19.379(31)	40.398(70)	9.005(27)	19.332(22)	37.343(73)	
703	10.822(18)	19.974(26)	41.618(60)	9.296(22)	19.981(19)	38.573(61)	
803	11.133(28)	20.565(41)	42.832(93)	9.586(35)	20.625(29)	39.798(94)	
903	11.444(43)	21.152(63)	44.04(14)	9.875(53)	21.266(45)	41.02(14)	
1003	11.753(59)	21.736(86)	45.24(19)	10.164(74)	21.902(62)	42.23(20)	
1073	11.969(70)	22.14(10)	46.08(23)	10.374(89)	22.364(74)	43.11(24)	
						•	

Таблица 3. Значения коэффициентов тензора теплового расширения $Ca_{0.6}Bi_{0.4}Mo_{0.8}Ge_{0.2}O_4$ и $Ca_{0.2}Bi_{0.8}Mo_{0.6}Ge_{0.4}O_4$

Рис. 5. Фигуры коэффициентов теплового расширения $Ca_{0.6}Bi_{0.4}Mo_{0.8}Ge_{0.2}O_4$ и $Ca_{0.2}Bi_{0.8}Mo_{0.6}Ge_{0.4}O_4$ в интервале температур 27–800°С.

нения *z*, приводящие к дополнительному (сверх термического расширения) удлинению связи Мо–О и изменению угла ОМоО.

Значения линейного коэффициента термического расширения образцов серии $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$ рассчитаны из данных высокотемпературной дилатометрии (рис. 8). С ростом содержания висмута и германия в образцах коэффициент термиче-

ского расширения уменьшается с $13.5 \times 10^{-6\circ} C^{-1}$ до $12 \times 10^{-6\circ} C^{-1}$ в интервале $30-800^{\circ} C$ для $Ca_{0.90}Bi_{0.10}Mo_{0.95}Ge_{0.05}O_4$ и $Ca_{0.60}Bi_{0.40}Mo_{0.80}Ge_{0.20}O_4$ соответственно и отвечает величинам, определенным из высокотемпературных рентгеновских данных.

По результатам импедансных измерений получены годографы импеданса Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO₄

Т, К	Ca/Bi–O1, Å	Mo/Ge–O, Å	Ca–O, Å [25]	Мо–О, Å [25]
373	2.4065(67)	1.8534(69)	2.476(8)	1.762(8)
473	2.4186(69)	1.8360(71)	2.444(8)	1.765(8)
573	2.4248(74)	1.8369(76)	2.469(8)	1.759(8)
673	2.4397(79)	1.8262(81)	2.474(8)	1.763(8)
773	2.4526(85)	1.7971(87)	2.474(8)	1.767(8)
873	2.4583(90)	1.7938(93)	2.482(8)	1.758(9)
973	2.4738(95)	1.7867(98)	2.495(9)	1.757(9)
1073	2.489(10)	1.762(10)	2.501(8)	1.760(9)

Таблица 4. Типичные длины связей Ca/Bi-O и Mo/Ge-O

Колебания решетки	Положение моды, см ⁻¹	γ_{iP}	Положение моды, см ⁻¹	$\gamma_{ m iP}$	
	Ca _{0.9} Bi _{0.1} M	Io _{0.95} Ge _{0.05} O ₄	$Ca_{0.6}Bi_{0.4}Mo_{0.8}Ge_{0.2}O_4$		
(О-Мо-ОиО-Са-О)	$205.0(1) - A_g$	7.7(1)	$203.5(5) - A_g$	10.4(1)	
$v_2(MoO_4)$	$322.5(2) - A_g$	1.5(1)	$325.5(1) - A_g$	2.5(1)	
$v_4(MoO_4)$	$390.1(2) - B_g$	0.86(1)	$386.8(7) - B_{g}$	0.36(1)	
v ₃ (MoO ₄)	$793.9(1) - E_{g}$	0.92(1)	$793.3(2) - E_{g}$	0.92(1)	
$v_1(MoO_4)$	$878.4(2) - B_{g}$	0.72(1)	$878.4(2) - B_{g}$	0.72(1)	

Таблица 5. Сравнение положения колебательных мод Ca_{0.9}Bi_{0.1}Mo_{0.95}Ge_{0.05}O₄ и Ca0_{0.6}Bi_{0.4}Mo_{0.8}Ge_{0.2}O₄ и параметров Грюнайзена (γ_{iP})

(рис. 9), которые для всех изученных составов имеют вид полуокружности, исходящей из начала координат, что характерно и для других шеелитов [5, 7, 8, 30], и могут быть описаны эквивалентной схемой (рис. 9), состоящей из параллельно соединенного сопротивления R1 и элемента постоянной фазы (CPE1), моделирующего процессы различной природы. Значение CPE ~ 10^{-11} Ф отвечает общему сопротивлению электролита [31], исходя из которого была рассчитана общая электропроводность образцов без разделения на объемную и зернограничную составляющие.

На температурных зависимостях общей электропроводности замещенных молибдатов кальция (рис. 10) можно выделить два линейных участка с температурой перехода между ними в области ~650°С. Подобные переходы были отмечены для целого ряда шеелитоподобных структур, в том числе CaMoO₄ [8–11], причем температурный коэффициент электропроводности (энергия активации электропроводности) выше в высокотемпературной области, что свидетельствует о смене типа носителей (дефектов) с ростом температуры с примесных на собственные [9].

Рис. 6. ТГ- и ДТА-зависимости для $Ca_{0.2}Bi_{0.8}Mo_{0.6}Ge_{0.4}O_4$ (1) и $Ca_{0.6}Bi_{0.4}Mo_{0.8}Ge_{0.2}O_4$ (2) в интервале температур 25–740°С.

Рис. 7. Температурные зависимости координаты кислорода z и угла ОМоО для состава Ca_{0.2}Bi_{0.8}Mo_{0.6}Ge_{0.4}O₄.

Рис. 8. Зависимость линейных размеров брикетов и коэффициента термического расширения замещенных молибдатов кальция от температуры.

Для $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$ с ростом *x* энергия активации электропроводности возрастает от 1.45 до 1.65 эВ на участке выше 650°С и от 0.68 до 0.99 эВ на участке ниже 650°С, что может быть связано с увеличением размера элементарной ячейки. С ростом концентрации допантов растет также и величина общей электропроводности. Очевидно, что небольшое снижение плотности спекания брикетов не препятствует росту электропроводности, так как в данном случае на ее значения существенное влияние оказывает возрастание анизотропийных эффектов в кристаллической структуре молибдата кальция. При помощи расчетов электронной структуры и экспериментальных данных по электропроводности из литературы [5, 12, 32, 33] показано, что основны-

Рис. 9. Годографы импеданса образца Ca_{0.2}Bi_{0.8}Mo_{0.6}Ge_{0.4}O₄ при 650, 700 и 850°C.

Рис. 10. Зависимость электропроводности от температуры для системы $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$ (x = 0.05-0.4). На врезке представлена зависимость электропроводности от состава при 500 и 850°С.

ми носителями заряда в шеелитах являются ионы кислорода, причем за счет образования парных дефектов вакансия кислорода — междоузельный кислород по Френкелю. Число переноса ионов кислорода при температурах ниже 800° С близко к единице [5, 13, 14]. С учетом этого можно определить эффективный коэффициент диффузии кислорода (*D*), приняв вклад электронной составляющей проводимости близким к нулю, используя соотно-

шение Нернста–Эйнштейна $D = K_{\rm B} T \sigma / C z^2 e^2$, где C – концентрация ионов кислорода, выраженная в молях на единицу объема (см³). На рис. 11 приведены зависимости –lgD от состава при двух разных температурах, свидетельствующие об увеличении коэффициента диффузии кислорода с ростом x. Рост электропроводности и величины D коррелирует с ростом объема элементарной ячейки при введении допантов в CaMoO₄.

Рис. 11. Зависимость эффективного коэффициента диффузии кислорода от состава твердого раствора $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$.

ЗАКЛЮЧЕНИЕ

Таким образом, результаты данной работы свидетельствуют о возможности образования твердого раствора $Ca_{1-2x}Bi_{2x}Mo_{1-x}Ge_xO_4$ со структурой шеелита (пр. гр. $I4_1/a$) с областью гомогенности при *x* = 0.0–0.4. С помощью высокотемпературной рентгенографии и КР-спектроскопии показано преимущественно тепловое расширение полиэдров Ca/BiO₈, а не Мо/GeO₄. Рассчитаны длины связей Ca/Bi-O и Mo/Ge-O. Коэффициент термического расширения брикетированных образцов находится в диапазоне (12–13.5) × $10^{-6\circ}C^{-1}$. Данные, полученные методом импедансной спектроскопии, указывают на увеличение электропроводности молибдата кальция при введении в структуру ионов висмута и германия. Однако сопротивление изучаемых образцов остается достаточно высоким и логичнее рассматривать их с точки зрения исследования диэлектриков с малыми токами утечки.

БЛАГОДАРНОСТЬ

Рентгеноструктурные исследования выполнены на оборудовании ЦКП "Урал-М", ИМЕТ УрО РАН. КРспектры получены в ЦКП "Геоаналитик" ИГГ УрО РАН.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках госзадания ИГГ УрО РАН (тема № АААА-А19-119071090011-6). Дооснащение и развитие ЦКП "Геоаналитик" ИГГ УрО РАН осуществляются в рамках гранта Министерства ВО и Науки РФ (соглашение № 075-15-2021-680).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Kato H., Matsudo N., Kudo A. // Chem. Lett. 2004.
 V. 33. № 9. P. 1216. https://doi.org/10.1246/cl.2004.1216
- Ramarao S.D., Roopas Kiran S., Murthy V.R.K. // Mater. Res. Bull. 2014. V. 56. P. 71. https://doi.org/10.1016/j.materresbull.2014.04.064
- 3. *Choi G.-K., Kim J., Yoon S.H. et al.* // J. Eur. Ceram. Soc. 2007. V. 27. № 1. P. 3063. https://doi.org/10.1016/j.jeurceramsoc.2006.11.037
- 4. *Mikhailik V.B., Kraus H., Miller G. et al.* // J. Appl. Phys. 2005. V. 97. № 8. P. 083523. https://doi.org/10.1063/1.1872198
- Maji B.K., Jena H., Asuvathraman R. et al. // J. Alloys Compd. 2015. V. 640. P. 475. https://doi.org/10.1016/j.jallcom.2015.04.054
- 6. *Petrov A., Kofstad P.* // J. Solid State Chem. 1979. V. 30. P. 83.

https://doi.org/10.1016/0022-4596(79)90133-6

- Im H.-N., Choi M.-B., Jeon S.-Y. et al. // Ceram. Int. 2011. V. 37. P. 49. https://doi.org/10.1016/j.ceramint.2010.08.004
- Cheng J., Liu Ch., Cao W. et al. // Mater. Res. Bull. 2011. V. 46. P. 185. https://doi.org/10.1016/j.materresbull.2010.11.019
- 9. Arora S.K., Godbole R.S., Lakshminarayana D. // J. Mater. Sci. 1983. V. 18. P. 1359. https://doi.org/10.1007/BF01111955
- Cheng J., Bao W., Han Ch. et al. // J. Power Sources. 2010. V. 195. P. 1849. https://doi.org/10.1016/j.jpowsour.2009.10.017
- 11. *Cheng J., He J.* // Mater. Lett. 2017. V. 209. P. 525. https://doi.org/10.1016/j.matlet.2017.08.094
- 12. *Esaka T.* // Solid State Ionics. 2000. V. 136–137. P. 1. https://doi.org/10.1016/S0167-2738(00)00377-5
- Bollmann W. // Cryst. Res. Technol. 1978. V. 18. № 8. P. 100. https://doi.org/10.1002/crat.19780130816
- Rigdon M.A., Grace R.E. // J. Am. Ceram. Soc. 1973. V. 56. № 9. P. 475. https://doi.org/10.1111/j.1151-2916.1973.tb12527.x
- Guo H.-H., Zhou D., Pang L.-X. et al. // J. Eur. Ceram. Soc. 2019. V. 39. P. 2365. https://doi.org/10.1016/j.jeurceramsoc.2019.02.010
- 16. *Mikhaylovskaya Z.A., Buyanova E.S., Petrova S.A. et al.* // Chim. Techno Acta. 2021. V. 8. № 2. P. 20218204. https://doi.org/10.15826/chimtech.2021.8.2.04
- Мацкевич Н.И., Семерикова А.Н., Гельфонд Н.В. и др. // Журн. неорган. химии. 2020. Т. 65. № 5. С. 669. https://doi.org/10.31857/S0044457X20050165
- Дергачева П.Е., Кульбакин И.В., Ашмарин А.А. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1126. https://doi.org/10.31857/S0044457X21080043

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 4 2023

- 19. *Каймиева О.С., Сабирова И.Э., Буянова Е.С. и др. //* Журн. неорган. химии. 2022. Т. 67. № 9. С. 1211. https://doi.org/10.31857/S0044457X22090057
- 20. Емельянова Ю.В., Морозова М.В., Михайловская З.А. и др. // Электрохимия. 2009. Т. 45. № 4. С. 407.
- Laugier J., Bochu B. LMGP-Suite of Programs for the interpretation of X-ray Experiments/ENSP. Grenoble: Lab. Materiaux Genie Phys, 2003.
- 22. Бубнова Р.С., Фирсова В.А., Филатов С.К. // Физика и химия стекла. 2013. Т. 39. № 3. С. 505.
- Peercy P.S., Samara G.A. // Phys. Rev. B. 1973. V. 8. № 5. P. 2033. https://doi.org/10.1103/PHYSREVB.8.2033
- Климова А.В., Михайловская З.А., Буянова Е.С. и др. // Электрохимия. 2021. Т. 57. № 8. С. 457. https://doi.org/10.31857/S0424857021080053
- Achary S.N., Patwe S.J., Mathews M.D. et al. // J. Phys. Chem. Solids. 2006. V. 67. P. 774. https://doi.org/10.1016/j.jpcs.2005.11.009
- 26. Shannon R.D. // Acta Crystallogr., Sect. A: Found. Crystallogr. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551

- 27. Zverev P.G. // Phys. Stat Solid C. 2004. V. 1. № 11. P. 3101. https://doi.org/10.1002/PSSC.200405413
- 28. *Mikhaylovskaya Z.A., Buyanova E.S., Petrova S.A. et al.* // Chim. Techno Acta. 2022. V. 9. № 4. P. 20229410. https://doi.org/10.15826/chimtech.2022.9.4.10
- 29. *Rietveld H.M.* // J. Appl. Crystalogr. 1969. V. 2. P. 65. https://doi.org/10.1107/S0021889869006558
- Mikhaylovskaya Z.A., Abrahams I., Petrova S.A. et al. // J. Solid State Chem. 2020. V. 291. P. 121627. https://doi.org/10.1016/j.jssc.2020.121627
- 31. *Irvine J.T.S., Sinclair D.C., West A.R.* // Adv. Mater. 1990. V. 2. № 3. P. 132. https://doi.org/10.1002/adma.19900020304
- 32. Abraham Y.B., Holzwarth N.A.W., Williams R.T. et al. // Phys. Rev. B. 2001. V. 64. № 24. P. 245109. https://doi.org/10.1103/PhysRevB.64.245109
- Zhao H., Zhang F., Guo X. et al. // J. Phys. Chem. Solids. 2010. V. 71. P. 1639. https://doi.org/10.1016/j.jpcs.2010.08.013