СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.654

ГИДРОТЕРМАЛЬНЫЙ СИНТЕЗ СУЛЬФИДА СЕРЕБРА

© 2023 г. С. И. Садовников*

Институт химии твердого тела УрО РАН, ул. Первомайская, 91, Екатеринбург, 620990 Россия *e-mail: sadovnikov@ihim.uran.ru

> Поступила в редакцию 21.11.2022 г. После доработки 28.12.2022 г. Принята к публикации 09.01.2023 г.

Гидротермальным методом при температуре от 373 до 453 К в водных и спиртовых растворах нитрата серебра, сульфида и цитрата натрия, серы и тиокарбамида синтезированы порошки сульфида серебра с субмикро- и микрометровым размером частиц. Кристаллическая структура синтезированных порошков, морфология, состав и размер частиц сульфида серебра проанализированы методами рентгеновской дифракции, сканирующей электронной микроскопии, энергодисперсионного рентгеновского анализа и газовой адсорбции. Частицы порошков имеют сходную морфологию в виде прямоугольных параллелепипедов и кубов со сглаженными ребрами, размер частиц порошков зависит от условий синтеза и составляет от ~500 до 2000 нм.

Ключевые слова: сульфид серебра, гидротермальный синтез, размер и морфология частиц, EDXанализ

DOI: 10.31857/S0044457X22602000, EDN: SNAAWI

введение

В последние годы большое внимание уделяется получению сульфида серебра как перспективного полупроводникового материала. Большие усилия направлены на разработку методов синтеза наноструктурированного сульфида серебра в виде нанокристаллических порошков, тонких пленок, коллоидных растворов [1]. Основным методом синтеза разных форм наноструктурированного сульфида серебра является осаждение из водных растворов, хотя этот метод при достаточно больших концентрациях исходных реагентов позволяет получать и крупнокристаллические порошки Ag₂S [1]. Принципиальным отличием гидротермального синтеза от других методов является возможность получения как нанокристаллических, так и крупнокристаллических сульфидов с разной регулируемой морфологией частиц.

В последнее пятилетие в литературе опубликованы десятки работ по гидротермальному синтезу нано- и крупнокристаллических частиц сульфида серебра с различной морфологией, а также работ по синтезу композитов на основе сульфида серебра [2–8]. Гидротермальный метод является одним из наиболее перспективных методов синтеза порошков с контролируемыми размерами и морфологией. Важным преимуществом гидротермального синтеза является ускоренное взаимодействие между твердыми и жидкими частицами, а также образование чистых и однородных однофазных сульфилных материалов. Благодаря использованию повышенных температур и давления достигается ускоренная кинетика реакций сульфидообразования. Это особенно важно для сульфида серебра, который обладает фазовыми превращениями в достаточно узком температурном интервале. Согласно [4, 5], гидротермальный синтез композитных сульфидных наночастиц с контролируемым размером и морфологией обеспечивает получение сульфидных Ag/Au/Si-материалов, обладающих стабильными и регулируемыми флуоресцентными эмиссионными свойствами с желто-зеленым свечением в области 400-580 нм. Покрытые кремнеземом нанокластеры серебра SiO₂@AgNCs были созданы для флуоресцентного обнаружения ионов S^{2-} [9].

В результате исследований, проведенных в работах [10, 11], были успешно получены многогранные частицы, включая гранецентрированные кубические сульфидные кристаллы. В частности, в работе [11] термическим разложением металлоорганического прекурсора Ag[S₂P(OR)₂] ($\mathbf{R} = C_n \mathbf{H}_{2n+1}$) получены кристаллы Ag₂S. Гидротермальный метод [11] был усовершенствован в работе [12] путем изменения соотношения концентраций AgNO₃ и (NH₂)₂CS в водных растворах и добавления бромида цетилтриметиламмония $C_{19}\mathbf{H}_{42}$ BrN. Согласно [12], совместное действие бромида цетилтриметиламмония и тиокарбамида (NH₂)₂CS отвечает за формирование специфической морфологии получаемых кристаллов Ag_2S — от сферической до кубической. Большинство частиц Ag_2S , полученных в работе [12], выглядело шестиугольными.

Авторы работы [13] получили листовидные нанопластины Ag_2S гидротермальным методом в смеси спиртового раствора CS_2 с водным раствором $AgNO_3$ и NH_3 . Сероуглерод CS_2 был использован как источник серы.

Монодисперсные наночастицы Ag₂S с контролируемым размером были успешно синтезированы с помощью такого варианта гидротермального синтеза как термолиз ксантатов серебра, служащих источником серебра и серы [14]. В работе [14] термолиз проводили без использования поверхностно-активных веществ и растворителей.

В работе [15] частицы Аg₂S в форме зерен риса

были получены реакцией между $Ag(NH_3)_2^+$ и Na_2S в присутствии поливинилпирролидона с помощью гидротермального метода. Смесь растворов подвергали термообработке при температуре 433 К в течение 10 ч. Согласно [15], образование рисообразных частиц Ag_2S зависит в основном от типа источника серебра, влияния пирролидоновых колец, продолжительности реакции и температуры.

Крупные частицы Ag_2S в форме зерен риса были также синтезированы гидротермальным химическим осаждением из водной реакционной смеси нитрата серебра, сульфида натрия и цитрата натрия с концентрацией 0.05, 0.4 и 0.005 моль/л соответственно [16]. Реакционную смесь нагревали в закрытом сосуде при температуре 373 К под давлением ~2 × 10⁵ Па в течение 2 ч. Синтезированный порошок Ag_2S содержал отдельные рисообразные частицы длиной ~2000 нм и шириной ~400 нм.

Крупнокристаллический порошок Ag_2S получен гидротермальным синтезом в закрытом сосуде при 453 К в течение 4 ч из водного раствора AgNO₃ и тиокарбамида (NH₂)₂CS как источника серы. Давление насыщенного пара над раствором достигало ~1 × 10⁶ Па [17].

В последнее время гидротермальный синтез применяется для получения композитных материалов на основе сульфида серебра. Например, в работе [18] композитные наночастицы AgBiS₂ на основе сульфида серебра были приготовлены гидротермальным методом при температуре 473 К в течение 12, 48 и 72 ч. Для синтеза использовали водный раствор AgNO₃ и Bi(NO₃) и L-цистеин $C_3H_7NO_2S$ как источник ионов серы.

Жидкофазный синтез частиц сульфида серебра в диапазоне размеров от 40—50 до ~1000 и более нм осуществлен в работе [19] путем изменения соотношения между концентрациями нитрата серебра, сульфида натрия и цитрата натрия.

В работе [20] наноструктуры Ад₂S были синтезированы в таких растворителях, как олеиламин $C_{18}H_{35}NH_2$ и смесь октадецена $C_{18}H_{36}$ и додекантиола CH₃(CH₂)₁₁SH с использованием диэтилдитиолкарбамата серебра $(C_2H_5)_2NCS_2Ag$ как источника ионов серебра с помощью термического разложения реакционной смеси при температуре от 398 до 498 К при пропускании азота через смесь в течение 1 ч. Гидротермальный метод в совокупности с капиллярным эффектом был использован для получения сэндвичевой структуры Ag₂S/Fe₃O₄/AgVO₃@графен, предназначенной для фотокатализа [21]. Благодаря примененному гидротермальному синтезу, в этой композитной структуре слой сульфида серебра, закрепленный на внешней стенке графенового слоя, обеспечивает ее высокую фотокаталитическую активность. В работе [22] гидротермальный метод был использован при синтезе наночастиц сульфида серебра из водных растворов нитрата серебра AgNO₃ и сульфида натрия Na₂S, взятых в соотношении 2:1. Реакционную смесь нагревали до 408 К в течение 24 ч.

Гидротермальный и сольвотермальный синтез являются самыми многообещающими методами получения сульфида серебра в виде достаточно больших объектов с различной морфологией (листовидные нанопластины, пластинчатые или звездообразные кристаллиты, ограненные кристаллы, тетраэдрические и гексагональные частицы, пустотелые частицы и т.д.). Такие объекты имеют размер от сотен нанометров до десятков микрометров.

В настоящей работе изучен гидротермальный синтез крупнокристаллических порошков сульфида серебра с использованием реакционных смесей из нитрата серебра как источника ионов серебра и сульфида натрия, элементарной серы или тиокарбамида как источников ионов серы. Полученный гидротермальным синтезом сульфид серебра может быть использован для повышения фотокаталитического выделения водорода из водных растворов Na₂S/Na₂SO₃ [23].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Гидротермальный синтез сульфида серебра проводили в водных или спиртовых реакционных смесях. В спиртовых смесях в качестве растворителя использовали этиленгликоль $C_2H_6O_2$, во всех случаях в качестве источника ионов серебра нитрат серебра AgNO₃. Источником ионов серы S^{2-} служили сульфид натрия Na₂S, элементарная сера S или тиокарбамид (NH₂)₂CS, выполняющий также роль комплексообразователя. При синтезе в водном растворе применяли цитрат натрия Na₃C₆H₅O₇ (Na₃Cit) в качестве стабилизато-

№ порошка	Раство- ритель	Концентрация реагентов в реакционной смеси, ммоль/л					Условия синтеза		$S_{\rm sp}$	Размер <i>D</i> частиц, нм	
		AgNO ₃	Na ₂ S	Na ₃ Cit	S	(NH ₂) ₂ CS	<i>Т</i> , К	τ, ч	(M /I')	<i>D</i> БЭТ	D _{CЭM}
1	Вода	0.05	0.4	0.005	_	_	373	2	0.9305	890	1000
2*	ЭГ ***	0.05	—	—	0.05	—	423	4	0.5835	1420	1200-1500
3**	ЭГ	0.05	_	_	0.05	_	423	16	1.6274	510	600-900
4	Вода	0.05	—	_	0.05	_	453	4	1.0272	810	1000-2000
5	Вода	0.05	—	—	—	0.05	453	4	0.4501	1840	1500-1700

Таблица 1. Состав реакционных смесей, температура (*T*) и длительность (τ) гидротермального синтеза сульфида серебра, удельная поверхность (S_{sp}) и средний размер частиц ($D_{D \ominus T}$ и $D_{C \ominus M}$) синтезированных порошков

*Двухфазный порошок наряду с α-Ag₂S содержит 8 вес. % металлического серебра.

**Двухфазный порошок наряду с α-Ag₂S содержит 9 вес. % металлического серебра.

*** $\Im \Gamma$ – этиленгликоль $C_2H_6O_2$.

ра. Состав реакционных смесей приведены в табл. 1.

Для того, чтобы реакция сульфидообразования в спиртовом растворе не протекала при нормальных условиях, а начиналась только в автоклаве, в качестве источника ионов серы S^{2-} была выбрана элементарная сера S. В спиртовых растворах для снижения температуры сульфидообразования в качестве среды синтеза использовали этиленгликоль $C_2H_6O_2$.

Сливание и последующее перемешивание исходных реагентов проводили с помощью магнитной мешалки ЭКРОС-6100 в течение 1 ч в темноте при красном освещении. Подготовленную реакционную смесь переливали в вакуум-плотный тефлоновый стакан объемом 50 мл, в котором непосредственно проводили гидротермальный синтез. Для этого закрытый тефлоновый стакан с реакционной смесью помешали в специально изготовленный по размерам тефлонового стакана толстостенный стальной реактор с закручивающейся стальной крышкой. Такая закрытая система исключала контакт с внешней средой и возможное испарение раствора, обеспечивала полное сохранение реакционного раствора во время гидротермального синтеза. Стальной реактор с тефлоновым стаканом, заполненным реакционной смесью, в течение 1 ч нагревали до требуемой температуры синтеза и затем выдерживали при температуре от 373 до 453 К на протяжении 2, 4 или 16 ч (табл. 1).

Все полученные порошки изучали методом рентгеновской дифракции на дифрактометре STADI-P (STOE, Germany) в Cu $K_{\alpha 1}$ -излучении. Рентгеновские измерения проводили в интервале углов $2\theta = 20^{\circ}-95^{\circ}$ с шагом $\Delta(2\theta) = 0.02^{\circ}$. Время сканирования при рентгеновских измерениях подбиралось индивидуально для каждого синтезированного порошка и составляло 50 с в точке

для порошка 1, 20 с для порошков 2, 3 и 4 и 15 с для порошка 5. Качественный и количественный фазовый состав порошков оценивали с помощью программного пакета Match! Version 1.10 [24]. Определение параметров кристаллической решетки и окончательное уточнение структуры синтезированных порошков сульфида серебра проводили с помощью программного пакета X'Pert HighScore Plus [25].

Удельную поверхность порошков S_{sp} определяли газово-адсорбционным методом Брунауэра—Эммета—Теллера (**БЭТ**) [26] с помощью анализатора площади поверхности Gemini VII 2390 V1.03 (V1.03.t) и по ней оценивали средний размер *D* неагломерированных частиц осажденных порошков. В приближении одинакового размера и шарообразной формы всех частиц средний размер частиц $D = 6/\rho S_{sp}$ ($\rho = 7.25$ г/см³ – плотность сульфида серебра). Такая оценка дает размер частиц, усредненный по объему (табл. 1).

Микроструктуру, размер частиц и элементный химический состав порошков Ag_2S изучали методом сканирующей электронной микроскопии (**СЭМ**) на микроскопе JEOL-JSM LA 6390 с анализатором JED 2300 Energy Dispersive X-ray Analyzer.

Температуру и энтальпию фазового перехода акантит—аргентит определяли методом ДТА-ДТГ на термоанализаторе Setaram SETSYS Evolution 1750. Измерения проводили в потоке аргона Ar 20 мл/мин в области температур 293–493 K со скоростью нагрева 5 К/мин.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рентгенограммы порошков сульфида серебра, полученных гидротермальным синтезом, показаны на рис. 1. Количественное уточнение дифракционных результатов и сравнение с данными [16] показали, что порошки **1**, **4** и **5**, синтезированные в водных растворах, содержат только моноклинный (пр. гр. $P2_1/c$) сульфид серебра со структурой акантита α -Ag₂S. Кристаллическая решетка моноклинного сульфида серебра имеет следующие параметры: a = 0.4224 - 0.4226 нм, b = 0.6922 - 0.6928 нм, c = 0.9524 - 0.9532 нм, $\beta = 125.54^{\circ} - 125.57^{\circ}$.

Порошки 2 и 3 являются двухфазными и наряду с моноклинным сульфидом серебра содержат кубическое (пр. гр. $Fm\overline{3}m$) металлическое серебро Ад в количестве 8 и 9 вес. % соответственно. Серебро имеет период кристаллической решетки a = 0.4085-0.4086 нм. Порошки 2 и 3 синтезировали в спиртовом растворе этиленгликоля C₂H₆O₂ с использованием элементарной серы как источника ионов S^{2–}. По-видимому, температура синтеза этих порошков (150°С) была недостаточна для полного протекания реакции сульфидообразования.

Отсутствие уширения дифракционных отражений порошков 1–5 свидетельствует о крупном (субмикро- или микрометровом) размере частиц порошков. Крупный размер частиц синтезированных порошков подтверждают данные электронной микроскопии и метода БЭТ.

На рис. 2 и 3 показаны СЭМ-изображения синтезированных порошков 1 и 3 сульфида серебра и их элементный EDX-анализ. По электронно-микроскопическим данным, размер частиц порошка 1 сульфида серебра составляет ~1000 нм (рис. 2). Согласно результатам энергодисперсионного рентгеновского анализа EDX, сделанного в точке на частице порошка 1, синтезированный образец помимо S (25.05 ат. %) и Ад (46.57 ат. %) содержит также Na (10.24 ат. %), углерод С и кислород О (рис. 2б), т. е. элементы, входящие в состав сульфида натрия Na₂S и цитрата натрия Na₃C₆H₅O₇, использованные при синтезе порошка 1 (табл. 1). Избыточное относительное содержание серы по сравнению со стехиометрическим сульфидом серебра и наличие натрия обусловлены синтезом порошка 1 из реакционной смеси с переизбытком Na₂S. Присутствие С и О связано с образованием на поверхности частиц Ag₂S тонкого слоя из цитрата натрия, что было обнаружено ранее в работе [27].

Размер частиц сульфида серебра в порошке **3**, по данным СЭМ, составляет 600–900 нм (рис. 3а). Согласно EDX-анализу, частицы содержат только серебро (70.18 ат. %) и серу (29.82 ат. %) (рис. 3б). По рентгеновским данным, этот порошок содержит ~91 вес. % Ag_2S и ~9 вес. % металлического Ag. Именно наличием в порошке **3** металлического серебра обусловлено повышенное общее содержание серебра по данным EDX. По-видимому, синтез этого порошка при температуре 423 К не обеспечил полное протекание сульфидообразования.

По данным СЭМ, частицы всех синтезированных порошков имеют сходную морфологию в виде прямоугольных параллелепипедов и кубов со сглаженными ребрами, но отличаются по размеру.

Размер $D_{\rm БЭТ}$ частиц порошков, усредненный по их объему, оценивали по величине удельной поверхности $S_{\rm sp}$, измеренной методом БЭТ. На рис. 4 показаны изотермы адсорбции $1/{Q[(P_0/P) - 1]}$ азота при 77 К порошками 1–5 сульфида серебра, полученными гидротермальным синтезом из разных реакционных смесей (P/P_0 – относительное давление азота). Удельная поверхность $S_{\rm sp}$ пропорциональна количеству Q адсорбированного азота [26], а абсолютная величина наклона изотерм адсорбции в первом приближении обратно пропорциональна величине удельной поверхности $S_{\rm sp}$. Величины удельной поверхности $S_{\rm sp}$ и среднего размера $D_{\rm БЭТ}$ частиц порошков 1–5 приведены в табл. 1.

Результаты определения среднего размера частиц синтезированных порошков, найденные по данным СЭМ и БЭТ, удовлетворительно согласуются между собой (табл. 1).

По данным EDX-анализа, порошок 4 содержит только серебро и серу в количестве 31.18 и 68.82 ат. %. Дифференциальная сканирующая калориметрия порошка 4 сульфида серебра, совмещенная с термогравиметрическим измерением, обнаружила, что при нагреве порошка 4 до ~350 К наблюдается небольшая потеря массы $\Delta m ~ 0.07\%$ (рис. 5). Это обусловлено испарением незначительного количества влаги, адсорбированной поверхностью порошка, которая сохраняется после обычного просушивания. Абсолютная величина изменения массы синтезированного крупнокристаллического порошка сульфида серебра пренебрежимо мала (~0.03 мг) и находится в пределах ошибки измерений.

Проведенные исследования порошка 4 сульфида серебра в атмосфере синтетического воздуха на масс-спектрометре, связанном с термоанализатором STA 449 C, показали, что в области температур 350-400 К на температурных зависимостях ионного тока I_{ion} наблюдаются пики для массовых чисел 64 и 48, соответствующих SO₂ [18, 29]. По-видимому, наблюдаемая в этой температурной области слабая потеря массы (~0.07%) связана также с выделением серы в виде газообразного SO₂. Выделение серы из Ag₂S приводит к высвобождению малого количества серебра из поверхностного слоя сульфида серебра. Поэтому при последующем нагреве порошка 4 до ~490 К (рис. 5) наблюдается слабое увеличение массы на ~0.1% в результате окисления этого серебра адсорбированной остаточной примесной влагой.

Рис. 1. Экспериментальные (×) и расчетные (—) рентгенограммы синтезированных порошков 1–5 сульфида серебра. В нижней части рисунков показаны разности ($I_{\text{набл}} - I_{\text{расч}}$) между экспериментальной и расчетной рентгенограммами. Порошки 1, 4 и 5 содержат только моноклинный (пр. гр. $P2_1/c$) сульфид серебра со структурой акантита α -Ag₂S, порошки 2 и 3 наряду с сульфидом серебра содержат кубическое (пр. гр. $Fm\overline{3}m$) серебро в количестве 8 и 9 вес. % соответственно. Длинные и короткие штрихи на рентгенограммах соответствуют отражениям моноклинного сульфида серебра Ag₂S и кубического металлического Ag соответственно. Нумерация указана в соответствии с табл. 1.

Рис. 2. СЭМ-изображение порошка 1 сульфида серебра (а) и данные EDX-анализа (б).

Рис. 3. СЭМ-изображение порошка 3 сульфида серебра (а) и данные EDX-анализа (б).

Рис. 4. Изотермы адсорбции (T = 77 K) молекулярного азота N₂ поверхностью порошков 1–5 сульфида серебра, синтезированных гидротермальным методом из реакционных смесей 1–5. Нумерация указана в соответствии с табл. 1.

Для уточнения температуры фазового превращения акантит-аргентит порошки сульфида серебра исследовали методом ДТА-ДТГ как при нагреве, так и при охлаждении (рис. 5). При нагреве на кривых ДТА наблюдается один эндотермический пик при температуре ~451.3 К, соответствующий фазовому переходу α-Ag₂S (акантит)-β-Ag₂S (аргентит). При охлаждении от 495 К до комнатной температуры на зависимостях ДТА наблюдается экзотермический пик при температуре ~434.9 К, соответствующий фазовому переходу аргентита в акантит и смещенный в область пониженных темпера-~16 K. Наличие температурного тур на гистерезиса T_{trans} указывает на первый род обратимого превращения акантит-аргентит. Найденная энтальпия фазового превращения составляет $\sim 3.8 - 3.9$ кДж/моль, что близко к величине $\Delta H_{\rm trans} = 4.0 \pm 0.5$ кДж/моль, определенной на крупнокристаллическом сульфиде серебра в работах [30-33]. Сходные результаты были получены при измерениях ДТА-ДТГ других синтезированных порошков сульфида серебра.

Рис. 5. Зависимости ДТА-ДТГ, измеренные при нагреве и охлаждении синтезированного порошка **4** сульфида серебра. Направления изменения температуры при измерениях ДТА-ДТГ показаны стрелками.

ЗАКЛЮЧЕНИЕ

Крупнокристаллические порошки сульфида серебра Ag_2S разного размера синтезированы гидротермальным методом из водных растворов нитрата серебра $AgNO_3$, сульфида натрия Na_2S и цитрата натрия $Na_3C_6H_5O_7$ или $AgNO_3$ и элементарной серы S или тиокарбамида как источников ионов S^{2-} . Порошки сульфида серебра получены гидротермальным методом также в спиртовых растворах $AgNO_3$ и элементарной серы с использованием этиленгликоля как растворителя.

Порошки сульфида серебра, синтезированные в водных растворах, содержат только моноклинный (пр. гр. $P2_1/c$) акантит α -Ag₂S. Порошки, синтезированные в среде этиленгликоля как растворителя, наряду с моноклинным (пр. гр. $P2_1/c$) акантитом α -Ag₂S содержат примесную фазу металлического серебра.

Частицы всех полученных порошков имеют сходную морфологию в виде прямоугольных параллелепипедов и кубов со сглаженными ребрами, но отличаются по размеру. Размер частиц синтезированных порошков сульфида серебра, определенный методами СЭМ и БЭТ, составляет от ~500 до ~2000 нм.

По данным ДТА-ДТГ, в синтезированных гидротермальным методом крупнокристаллических порошках сульфида серебра в области температур 435—451 К происходит обратимый фазовый переход акантит—аргентит.

БЛАГОДАРНОСТЬ

Работа выполнена по государственному заданию № АААА-А19-119031890029-7 (0397-2019-0001) в Институте химии твердого тела Уральского отделения РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Автор заявляет об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- Sadovnikov S.I., Gusev A.I. // J. Mater. Chem. A. 2017. V. 5. № 34. P.17676. https://doi.org/10.1039/C7TA04949H
- Wang X., Yang S., Ma S. et al. // Catal. Sci. Technol. 2016. V. 6. № 1. P. 242. https://doi.org/10.1039/C5CY00787A
- Gao L., Li Z., Liu J. // RSC Adv. 2017. V. 7. № 44. P. 27515. https://doi.org/10.1039/C7RA03955G
- Yang Y., Ashraf M.A., Fakhri A. et al. // Spectrochim. Acta A. 2021. V. 249. P. 119324. 7 pp. https://doi.org/10.1016/j.saa.2020.119324
- Yang C., Li T., Guo Y. et al. // Spectrochim. Acta A. 2022. V. 273. P. 121048. https://doi.org/10.1016/j.saa.2022.121048
- Ren Z., Shen C., Yuan K. et al. // Mater. Today Commun. 2022. V. 31. P. 103719. https://doi.org/10.1016/j.mtcomm.2022.103719
- Igbal M.W., Faisal M.M., Hassan ul H. et al. // J. Energy Stor. 2022. V. 52. Part A. P. 104847. 8 pp. https://doi.org/10.1016/j.est.2022.104847

- Hassan H.U., Igbal M.W., Afzal A.M. et al. // Intern. J. Energy Res. 2022. V. 46. № 8. P. 11346. https://doi.org/10.1002/er.7932
- 9. *Li C.V., Ding S.-N.* // Anal. Methods. 2015. V. 7. № 10. P. 4348. https://doi.org/10.1039/C5AY00685F
- Lim W.P., Zhang Z., Low H.Y. et al. // Angew. Chem. Int. Ed. 2004. V. 43. № 42. P. 5685. https://doi.org/10.1002/anie.200460566
- 11. Wang X.B., Liu W.M., Hao J.C. et al. // Chem. Lett. 2005. V. 34. № 12. P. 1664. https://doi.org/10.1246/cl.2005.1664
- Dong L.H., Chu Y., Liu Y. // J. Colloid Interface Sci. 2008. V. 317. № 2. P. 485. https://doi.org/10.1016/j.jcis.2007.09.055
- Chen M.H., Gao L. // Mater. Lett. 2006. V.60. № 8. P. 1059. https://doi.org/10.1016/j.matlet.2005.10.077
- 14. Zhang C.L., Zhang S.M., Yu L.G. et al. // Mater. Lett. 2012. V. 85. P. 77. https://doi.org/10.1016/j.matlet.2012.06.112
- 15. Lv L.Y., Wang H. // Mater. Lett. 2014. V. 121. P. 105. https://doi.org/10.1016/j.matlet.2014.01.121
- Sadovnikov S.I., Gusev A.I., Rempel A.A. // Superlat. Microstr. 2015. V. 83. P. 35. https://doi.org/10.1016/j.spmi.2015.03.024
- 17. *Sadovnikov S.I., Gusev A.I., Chukin A.V. et al.* // Phys. Chem. 2016. V. 18. № 6. P. 4617. https://doi.org/10.1039/c5cp07224g
- Kaowphong S. // J. Solid State Chem. 2012. V. 189. P. 108. https://doi.org/10.1016/i.issc.2011.12.010
- Sadovnikov S.I. // Russ. J. Inorg. Chem. 2019. V. 64. № 10. P. 1309. https://doi.org/10.1134/S0036023619100115

- Khaleelullah M.M.S.I., Dheivasigamani T., Natarajan P. et al. // J. Cryst. Growth. 2017. V. 468. P. 119. https://doi.org/10.1016/j.jcrysgro.2016.10.081
- Chen Y., Liang Y., Li T. et al. // J. Colloid Interface Sci. 2019. V. 555. https://doi.org/10.1016/j.jcis.2019.08.026
- Munaro J., Dolceta P., Nappini S. et al. // Appl. Surf. Sci. 2020. V. 514. P. 145856. 9 pp. https://doi.org/10.1016/j.apsusc.2020.145856
- Sadovnikov S.I., Kozlova E.A., Gerasimov E.Yu. et al. // Int. J. Hydrogen. Energy. 2017. V. 42. № 40. P. 25258. https://doi.org/10.1016/j.ijhydene.2017.08.145
- 24. Match! Version 1.10. Phase Identification from Powder Diffraction © 2003-2010 Crystal Impact.
- 25. X'Pert HighScore Plus. Version 2.2e (2.2.5). PANalytical B. V. Almedo, the Netherlands.
- Brunauer S., Emmett P.H., Teller E. // J. Am. Chem. Soc. 1938. V. 60. № 2. P. 309. https://doi.org/10.1021/ja01269a023
- Sadovnikov S.I., Gusev A.I., Gerasimov E.Yu. et al. // Chem. Phys. Lett. 2015. V. 642. P. 17. http//doi.org/ https://doi.org/10.1016/j.cplett.2015.11.004
- 28. *Greg S.J., Sing K.S.W.* Adsorption, Surface Area and Porosity. London: Acad. Press, 1982. 304 p.
- 29. http://webbook.nist.gov/chemistry/
- Perrott C.M., Fletcher N.H. // J. Chem. Phys. 1969.
 V. 50. № 6. P. 2344. https://doi.org/10.1063/1.1671386
- Thompson W.T., Flengas S.N. // Can. J. Chem. 1971. V. 49. № 9. P. 1550. https://doi.org/10.1139/v71-252
- Okazaki H., Takano A. // Z. Naturforsch. A. 1985.
 V. 40. № 10. P. 986. https://doi.org/10.1515/zna-1985-1004
- Grønvold F., Westrum E.F. // J. Chem. Thermodin. 1986. V. 18. № 4. P. 381. https://doi.org/10.1016/0021-9614(86)90084-4