_____ ФИЗИЧЕСКИЕ МЕТОДЫ ____ ИССЛЕДОВАНИЯ

УДК 544.971546.02661.847

ТЕРМОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПИВАЛАТОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ (CH₃)₃CCOOM (M = Li, Na, K, Rb, Cs)

© 2023 г. И. П. Малкерова^{*a*}, Е. В. Белова^{*b*}, Д. Б. Каюмова^{*a*}, А. С. Алиханян^{*a*}, *

^а Институт общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ^b Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия *e-mail: alikhan@igic.ras.ru Поступила в редакцию 19.12.2022 г. После доработки 15.02.2023 г. Принята к публикации 15.02.2023 г.

Методами масс-спектрометрии, термогравиметрии и дифференциальной сканирующей калориметрии исследованы термодинамические свойства пивалатов щелочных металлов (CH₃)₃CCOOM, где M = Li, Na, K, Rb, Cs. Установлен конгруэнтный характер сублимации соединений. Насыщенный пар содержит олигомерные формы $M_n Piv_n$ (n = 1-6) с преобладанием димерных и тетрамерных молекул в случае пивалатов Na и K, в случае пивалатов Rb и Cs доминируют мономерные и димерные молекулы. Рассчитано парциальное давление основных компонентов газовой фазы, их зависимость от температуры и стандартные энтальпии сублимации. Определены значения энтальпий диссоциации димерных и тетрамерных молекул. Оценены стандартные энтальпии образования MPiv(тв) и MPiv(г).

Ключевые слова: масс-спектрометрия, термогравиметрия, дифференциальная сканирующая калориметрия, масс-спектрометрия, парообразование, энтальпии образования, энтальпии диссоциации

DOI: 10.31857/S0044457X22602255, EDN: SNMBME

введение

Легколетучие комплексные соединения металлов с органическими лигандами, например βдикетонаты и карбоксилаты [1, 2], - перспективные прекурсоры, используемые в CVD-технологиях для получения функциональных материалов высокой чистоты и однородных металлических, оксидных, карбидных покрытий. К их числу относятся и соли триметилуксусной (пивалиновой) кислоты HPiv. Комплексы щелочных металлов играют важную роль в биологических системах [3], а также могут использоваться при синтезе тонких пленок ниобатов, танталатов, манганатов щелочных элементов, проявляющих электрооптические, пьезоэлектрические, акустические и магнитные свойства [4-6]. В частности, материалы на основе соединений (К, Na)ТаО3 представляют интерес для современной электроники в качестве ферроэлектриков и пьезокерамических материалов [7, 8]. Возможность применения новых прекурсоров в методах парофазного осаждения требует знания термодинамических характеристик процессов парообразования. До этой работы достаточно подробно были исследованы

термодинамические характеристики пивалата лития [9], что касается пивалатов других щелочных металлов, то в литературе есть несколько публикаций [10-16], в которых приведены термолинамические характеристики процессов парообразования этих соединений. Однако, с нашей точки зрения, данные, представленные в указанных работах, не полные, например, в них отсутствует описание термодинамических характеристик тетрамерных молекул насыщенного пара и недостаточно подробно исследован процесс парообразования пивалата калия [17]. В связи с этим целью настоящей работы было изучение летучести, состава газовой фазы, температурного интервала термической стабильности, определение термодинамических характеристик пивалатов натрия, калия, рубидия, цезия в газовой и конденсированной фазах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. Комплексы пивалатов щелочных металлов синтезировали по описанной ранее методике [9] путем взаимодействия карбонатов, растворенных в дистиллированной воде, со стехиометрическим количеством кристаллической триметилуксусной (пивалиновой) кислоты (99%) AcrosOrganic) при 80°С до ее полного растворения и прекращения выделения газа. Медленное упаривание раствора приводило к образованию осадка, который сушили на воздухе до постоянной массы. Отметим, что в работе [18] при получении пивалата лития получаемое соединение имело полимерное строение, а исследование таких соединений затруднено из-за их разложения [19]. В результате проведенного синтеза получали препараты пивалатов натрия, калия, рубидия и цезия в виде белого порошка с выходом 75-90% от теоретического. Состав конечных продуктов подтвержден данными элементного анализа (CHN-анализатор Евровектор 300, ЦКП ИОНХ РАН) и соответствует брутто-формулам КРіч \cdot H₂O, NaPiv \cdot 0.3H₂O, RbPiv \cdot H₂O, CsPiv \cdot H₂O.

	С, мас. %	Н, мас. %
Найдено KPiv:	37.97	7.33
Вычислено KPiv · H_2O :	37.95	6.96
Найдено NaPiv:	47.17	7.46
Вычислено NaPiv $\cdot 0.3H_2O$:	46.37	7.42
Найдено RbPiv:	29.19	5.69
Вычислено RbPiv · H_2O :	29.34	5.38
Найдено CsPiv:	23.69	4.70
Вычислено CsPiv · H_2O :	23.82	4.37

Термогравиметрия. Термогравиметрические исследования выполняли на термовесах TG 209 F1 Libra производства фирмы Netzsch со скоростью нагрева 10 град/мин в динамической атмосфере азота (поток газа 30 мл/мин) при защитном потоке инертного газа 10 мл/мин в алундовых тиглях без крышки. Максимальные температуры ($T_{\rm max}$) в программах изначально подбирали исходя из температуры начала разложения, полученной из кривой TГ, корректируя их по мере регистрации пика плавления на термограмме.

Дифференциальная сканирующая калориметрия. ДСК-исследования проводили на дифференциальном сканирующем калориметре DSC 204 F1 Phoenix производства фирмы Netzsch. Калибровку по температуре и чувствительности выполняли при атмосферном давлении в температурном диапазоне от 100 до 500°С по параметрам фазовых переходов высокочистых стандартов Hg, In, Sn, Zn, Bi, Pb, CsCl (Netszch) и C₆H₅COOH (99.99%), скорости нагрева 2, 5 и 10 град/мин согласно стандартам ASTM E967-08 (2014) и ASTM E968-02 (2014) соответственно. Калибровку при-

бора и все измерения осуществляли в динамической атмосфере азота (поток газа 40 мл/мин) при защитном потоке инертного газа 70 мл/мин в алюминиевых тиглях с проколотой крышкой.

После пробоподготовки первое измерение выполняли в интервале температур от комнатной до T_{тах} при скорости нагрева 10 град/мин. Для проверки воспроизводимости эффектов печь прибора охлаждали в ручном режиме газообразным азотом до температуры на 20-30°С ниже температуры начала первого эффекта, не связанного с потерей массы, после чего регистрировали кривую ДСК два раза при скоростях сканирования 5 и 2 град/мин. Для снижения времени измерения при выходе сигнала на базовую линию после первого обратимого эффекта скорость нагрева повышали до 15 град/мин вплоть до температуры, которая была на 10-20°С ниже температуры второго воспроизводимого эффекта. После достижения этой температуры скорость нагрева составляла 2 град/мин.

Масс-спектральные исследования. Изучение процессов парообразования комплексов выполняли на приборе MC 1301 эффузионным методом Кнудсена с масс-спектральным анализом состава газовой фазы в интервале температур 513–584 К (NaPiv), 500–585 К (KPiv, RbPiv) и 500–575 К (CsPiv). Подробное описание методики и аппаратуры приведено в [20]. В работе использовали молибденовые эффузионные ячейки Кнудсена с отношением площади испарения к площади эффузии ~600. Температуру измеряли Pt/Pt–Rh-термопарой и поддерживали постоянной с точностью $\pm 1^{\circ}$ С. Температурный интервал исследования выбирали с учетом температур плавления соединений, полученных в этой работе методами TГ и ДСК.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты ТГ- и ДСК-исследований подробно представлены в приложении. Из полученных данных можно сделать вывод, что разложение всех синтезированных соединений протекает в две стадии: после первоначальной дегидратации следует разложение самих пивалатов. Полученные результаты по температурам и энтальпиям (кДж/моль) фазовых переходов суммированы в табл. 1.

Пивалат лития. Это соединение на первом этапе в диапазоне температур $50-150^{\circ}$ С теряет 5.4 мас. %, что соответствует его первоначальному составу LiPiv $\cdot 0.35H_2O$, далее при 320° С происходит разложение бессольватного пивалата лития до оксида лития с потерей массы 80.3 мас. %. На кривой ДСК присутствуют три эндотермических эффекта. Первый эффект, с плечом, в диапазоне $50-150^{\circ}$ С связан с дегидратацией и соответствует первой ступени на кривой ТГ. Следующие два эффекта с началом при 152.2 и 230°С связаны, предположительно, с обратимыми фазовыми переходами, возможно, с твердотельным фазовым переходом и плавлением чистого вещества. Для проверки этой гипотезы было проведено термоциклирование. Начало первого пика и его плошадь составили 151.8°C и 8.9 Дж/г¹ при нагреве со скоростью 2 град/мин. 152.0°С и 8.0 Дж/г при нагреве со скоростью 5 град/мин, 152.2°С и 9.5 Дж/г при нагреве со скоростью 10 град/мин. Поскольку температура начала эффекта и его площадь хорошо воспроизводятся, можно предположить, что наблюдается обратимый фазовый переход. Начало второго пика и его плошаль составили 229.1°С и 40.8 Дж/г при нагреве со скоростью 2 град/мин, 230.4°С и 42.4 Дж/г при нагреве со скоростью 5 град/мин и 230.0°С и 43.1 Дж/г при нагреве со скоростью 10 град/мин. Поскольку площадь эффекта хорошо воспроизводится и нет потери массы, можно утверждать, что происходит плавление без разложения.

Пивалат натрия. Первоначальная потеря массы этого комплекса за счет дегидратации в диапазоне температур 30-100°С составила 4.3%, что соответствует составу NaPiv · 0.3H₂O. Далее на кривой ТГ вплоть до 375°С не наблюдается заметной потери массы бессольватным пивалатом натрия. Выше 375°С начинается разложение. На кривой ДСК, полученной при нагреве образца до $T_{max} =$ = 375°C со скоростью 10 град/мин, отчетливо фиксируются два эндоэффекта: первый связан с удалением сольватной воды до 100°C, второй – с фазовым переходом, который воспроизводится при термоциклировании. По всей видимости, это плавление, а не твердофазный переход, поскольку выше этого явления начинается плавное снижение массы навески и ее разложение. Теплота фиксированного фазового превращения хорошо воспроизводится и составляет в первом случае 75.4 Дж/г, во втором – 75.2 Дж/г. При скорости нагрева 10 град/мин температура начала пика равна 355.4°C, а при скорости нагрева 2 град/мин – 355.8°C.

Пивалат калия. Потеря массы (11.08%) образцом КРіv · H_2O в диапазоне температур 30–130°С обусловлена удалением сольватной воды. Далее бессольватное соединение устойчиво вплоть до 350°С. Съемку кривых ДСК проводили от 180 до 350°С после удаления сольватных молекул со скоростью 10 и 2 град/мин. На кривых ДСК наблюдается целая серия эндоэффектов, плохо и лучше разрешенных при скорости 10 и 2 град/мин соответственно. Первые два эффекта достаточно низкоэнергетичные и хорошо воспроизводятся (начало первого эффекта при 323.3 и 322.5°С при нагреве со скоростью 2 и 10 град/мин соответственно; начало второго эффекта при 327.2°С при скорости 2 град/мин). Поглощается 2.7 и 1.2 Дж/г при нагреве со скоростью 2 град/мин и 4.6 Дж/г при нагреве со скоростью 10 град/мин. Вторые два эффекта не разрешаются и при нагреве со скоростью 2 град/мин; начало 340.1 и 339.1°С при первом (10 град/мин) и втором нагреве (2 град/мин) соответственно. Общая площадь эффектов 74 и 76 Дж/г при первом (10 град/мин) и втором нагреве (2 град/мин) соответственно. Можно предположить, что эти два эффекта относятся к единовременному плавлению и частичному разложению.

Пивалат рубидия. Потеря массы пивалатом рубидия RbPiv \cdot H₂O в диапазоне температур 30-130°С составила 8.22%, что соответствует отщеплению воды. При первом нагреве со скоростью 10 град/мин на кривой ДСК в интервале 50–170°С присутствуют два эндоэффекта, связанные, повидимому, с плавлением кристаллогидрата и испарением воды. При повторном нагреве до 330°С со скоростью 10 град/мин эти эффекты не наблюдались. На кривой ДСК вплоть до температуры разложения был зафиксирован один эффект, который воспроизводился при третьем нагреве со скоростью 2 град/мин. При скорости сканирования 10 град/мин температура фазового перехода составляла 319°С, теплота – 56.9 Дж/г; эти величины воспроизводились и при нагреве со скоростью 2 град/мин – температура составила 319.3°С, теплота – 56.4 Дж/г. Фазовый переход, скорее всего, следует отнести к плавлению.

Пивалат цезия. При исследовании пивалата цезия потеря массы за счет дегидратации в диапазоне температур 50-200°С составила 7.6 мас. %, при 380°С происходило разложение бессольватного пивалата цезия (потерю массы не регистрировали до конца процесса). На кривой ДСК наблюдается неразрешимый эндотермический эффект, связанный с десольватацией в образце. Регистрация сегмента 300-370°С при 10 град/мин была проведена отдельно. Следующие два эффекта с началом при 327.5 и 346.6°С связаны, предположительно, с обратимыми фазовыми переходами (фазовым переходом и плавлением чистого вещества или эвтектическим плавлением и плавлением основного компонента). Для проверки этой гипотезы было проведено термоциклирование. Начало первого пика и его площадь составили 327.3°С и 30.0 Дж/г при нагреве со скоростью 2 град/мин, 327.3°С и 31.5 Дж/г при нагреве со скоростью 5 град/мин, 327.5°С и 28.7 Дж/г при нагреве со скоростью 10 град/мин. Поскольку температура начала эффекта и его площадь хорошо воспроизводятся, можно утверждать, что действительно наблюдается обратимый фазовый переход (фазовый переход чистого вещества или же эвтектическое плавление). Начало второго пика и его площадь составили 345.2°С и 39.5 Дж/г при

¹ Здесь и далее на грамм вещества – гидрата.

Рис. 1. Изотерма полного испарения пивалата калия $(T = 585 \text{ K}): 1 - [\text{K}]^+/(\text{KPiv}; 2 - [\text{K}_2\text{Piv}]^+/(\text{KPiv})_2; 3 - [\text{K}_3\text{Piv}_2]^+/(\text{KPiv})_4; 4 - [\text{K}_4\text{Piv}_3]^+/(\text{KPiv})_4.$

нагреве со скоростью 2 град/мин, 344.7°С и 39.9 Дж/г при нагреве со скоростью 5 град/мин, 346.6°С и 39.4 Дж/г при нагреве со скоростью 10 град/мин. Поскольку площадь эффекта хорошо воспроизводится и нет потери массы, можно утверждать, что происходит плавление без разложения.

Масс-спектры газовой фазы над пивалатами шелочных металлов приведены в табл. 2. Как видно из этой таблицы, все масс-спектры содержат олигомерные ионы, что свидетельствует о существенной олигомеризации насыщенного пара, которая заметно уменьшается с увеличением ионного радиуса щелочного металла. Ионизация олигомерных молекул насыщенного пара сопровождается процессами диссоциации с отщеплением частиц в виде кислотного остатка Piv или М₂Ріу. Полученные в этой работе результаты по масс-спектрам насыщенного пара пивалатов щелочных металлов удовлетворительно согласуются с данными работ [10, 14, 16], но существенно отличаются от результатов исследования [11]. Расхождения легко объясняются тем, что использованная в работе [11] аппаратура не предназначена для термодинамических исследований и полученные с ее помощью масс-спектры (масс-спектрометр Finnigan 1015) соответствуют ненасыщенному пару и поэтому содержат чрезвычайно малое количество олигомерных ионов.

Для определения молекулярного состава газовой фазы и характера сублимации были проведены эксперименты по полному изотермическому испарению известных навесок исследованных веществ. Во всех опытах вид изотерм носил принципиально одинаковый характер: постоянство интенсивностей ионных токов (величин, пропорциональных парциальным давлениям) на протяжении всего времени испарения вплоть до полного "выгорания" навесок и отсутствие нелетучего остатка в эффузионных ячейках по окончании экспериментов. Рис. 1 иллюстрирует вид изотермы полного испарения одного из комплексов – пивалата калия KPiv. Анализ экспериментальных ланных позволил сделать вывод о конгруэнтном протекании процессов сублимации пивалатов шелочных металлов в изученном температурном интервале по реакции:

$$n(\text{MPiv})(\text{TB}) = (\text{MPiv})_n(\Gamma), \ n = 1-9,$$
 (1)

где процессы с n = 2, 4 и 1, 2 являются доминирующими для комплексов Li [9], Na, K и Rb, Cs соответственно.

Эти же эксперименты позволили выполнить расшифровку масс-спектров, необходимую для расчета абсолютных величин парциальных давлений компонентов насыщенного пара. Расшифровка масс-спектров была выполнена методом, основанным на независимости констант равновесия газофазных реакций типа (1) от давления при постоянной температуре [21] и предположении, что суммарные измеряемые ионные токи образованы при диссоциативной ионизации мономерных, димерных, тримерных и тетрамерных молекул:

$$I_{M^{+}} = I_{M^{+}(MPiv)} + I_{M^{+}(M_{2}Piv_{2})} + I_{M^{+}(M_{2}Piv_{2})} + I_{M^{+}(M_{2}Piv_{2})}$$
(2)

$$I_{M_{2}Piv^{+}} = I_{M_{2}Piv^{+}(M_{2}Piv_{2})} + I_{M_{2}Piv^{+}(M_{2}Piv_{2})} + I_{M_{2}Piv^{+}(M_{2}Piv_{2})},$$
(3)

$$I_{M_{3}Piv_{2}^{+}} = I_{M_{3}Piv_{2}^{+}(M_{3}Piv_{3})} + I_{M_{3}Piv_{2}^{+}(M_{4}Piv_{4})},$$
(4)

$$I_{M_{4}Piv_{3}^{+}} = I_{M_{4}Piv_{3}^{+}(M_{4}Piv_{4})}.$$
 (5)

В расчетах использовали экспериментальные данные по полной изотермической сублимации пивалатов металлов в период "выгорания" навесок, когда происходит изменение состава газовой фазы [21, 22]. Ниже в качестве примера приведена расшифровка ионного тока $I_{K_3Piv_2^+}$, обязанного своим происхождением диссоциативной ионизации тримерных и тетрамерных молекул. Выражение (4) можно представить в виде уравнения:

$$I_{K_{3}Piv_{2}^{+}}/I_{K_{4}Piv_{3}^{+}} = {}^{4}\sqrt{k_{(7)}}/{}^{4}\sqrt{I_{K_{4}Piv_{3}^{+}}} + a_{34}, \qquad (6)$$

Рис. 2. График функции $\frac{I_{K_3Piv_2}}{I_{K_4Piv_3}} = f\left(\sqrt[4]{\binom{K_{(7)}}{I_{K_4Piv_3}}} + a_{34} \right).$

где $k_{(7)}$ — масс-спектрометрическая константа равновесия реакции:

$$I_{M_2 Piv^+} / I_{M_4 Piv_3^+} = \sqrt[2]{k_{(10)}} / \sqrt[2]{I_{M_4 Piv_3^+}} + a_{24}, \qquad (9)$$

$$3\mathbf{M}_4 \mathbf{Piv}_4 = 4\mathbf{M}_3 \mathbf{Piv}_3 \tag{7}$$

(константа равновесия, записанная через интенсивности ионных токов $I_{M_4Piv_3^+}$, $I_{M_3Piv_2^+(M_3Piv_3)}$); $a_{34} = I_{K_3Piv_2^+(K_4Piv_4)} / I_{K_4Piv_3^+}$ – коэффициент масс-спектра.

Методом наименьших квадратов было решено уравнение (6) и найден коэффициент масс-спектра a_{34} , показывающий, какая часть измеряемого ионного тока $I_{M_3Piv_2^+}$ образована при диссоциативной ионизации молекул K₄Piv₄, т.е. выполнена расшифровка линии (4) – $I_{M_3Piv_2^+}$. На рис. 2 в качестве примера приведена графическая зависимость уравнения (6), позволяющая найти коэффициент a_{34} линии (ионного тока) $I_{K_3Piv_2^+}$. Аналогичным образом была выполнена расшифровка ионного тока I_{N_3,Piv_2^+} .

Рассчитанные таким образом значения коэффициентов a_{34} приведены в табл. 3. Анализ массспектров и значения коэффициентов a_{34} показали, что содержание в насыщенном паре тримерных молекул мало, поэтому можно принять, что линии $I_{M_2Piv^+}$ обязаны своим происхождением главным образом диссоциативной ионизации только двух молекул:

$$I_{M_2 Piv^+} = I_{M_2 Piv^+(M_2 Piv_2)} + I_{M_2 Piv^+(M_4 Piv_4)}.$$
 (8)

Как и в случае расшифровки линии (4), выражение (8) может быть представлено в виде уравнения:

где
$$k_{(10)}$$
 — масс-спектрометрическая константа равновесия реакции:

$$\mathbf{M}_4 \mathbf{Piv}_4 = 2\mathbf{M}_2 \mathbf{Piv}_2,\tag{10}$$

 $a_{24} = I_{M_2 Piv^+(M_4 Piv_4)} / I_{M_4 Piv_3^+}$ – коэффициент масс-спектра.

Методом наименьших квадратов было решено уравнение (9) и найдены коэффициенты массспектра a_{24} , показывающие, какая часть измеряемого ионного тока $I_{M_2Piv^+}$ образована при диссоциативной ионизации молекул M_4Piv_4 (табл. 3).

Наиболее сложной представляется расшифровка ионного тока M⁺, который, строго говоря, образован в основном при диссоциативной ионизации четырех молекул: MPiv, M₂Piv₂, M₃Piv₃ и M₄Piv₄. Строгая расшифровка измеряемого ионного тока М⁺ (выражение (2)) методом [21] возможна при решении уравнения, аналогичного уравнениям (6), (9), но содержащего четыре неизвестных - масс-спектральные константы равновесия и коэффициенты масс-спектра. Однако точность решения подобных экспериментальных уравнений всегда оказывается очень низкой и полученные значения коэффициентов масс-спектра часто не имеют физического смысла. Поэтому расшифровка четверной линии М⁺ может быть выполнена только в рамках определенных допущений и приближений. Так, малые интенсивно-

сти полимерных ионов $Na_3Piv_2^+$ и $Na_4Piv_3^+$ в массспектре насыщенного пара пивалата натрия и симбатное падение ионных токов I_{Na^+} и I_{Na,Piv^+}

ТЕРМОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПИВАЛАТОВ

Соединение	$T_{\Phi}, ^{\circ}\mathrm{C}$	$\Delta_{igoplus} H^{\circ}_T$	T_{Φ} , °C	$\Delta_{igoplus} H_T^{\circ}$	<i>Т</i> _{пл} , °С	$\Delta_{\Pi\Pi}H_T^{\circ}$
LiPiv	152.0 ± 0.2	1.00 ± 0.04	_	_	229.8 ± 0.5 Разложение [10]	4.8 ± 0.1
NaPiv	_	_	_	-	355.6 ± 0.2 315 [10]	9.7 ± 0.1
KPiv	322.9 ± 0.4	0.43 ± 0.05	327.2 ± 0.5	0.19 ± 0.02	339.6 ± 0.5 320 [10]	*11.9 ± 0.2
RbPiv	_	_	_	_	319.2 ± 0.1 327 [10]	11.6 ± 0.1
CsPiv	**327.4 ± 0.1	**7.57 ± 0.21	_	_	345.5 ± 0.9 346 [10]	10.0 ± 0.1

Таблица 1. Результаты ДСК-исследований: температура и энтальпия (кДж/моль) фазового перехода

* Плавление и частичное разложение. ** Фазовый переход чистого вещества или эвтектическое плавление.

позволяют принять, что молекулярным предшественником ионов Na⁺ являются только молекулы Na₂Piv₂, а малое содержание в масс-спектрах паров пивалатов калия, рубидия и цезия ионов $M_3Piv_2^+$ и $M_4Piv_3^+$ позволяет принять, что ионный ток M⁺ образован при диссоциативной ионизации молекул MPiv, M_2Piv_2 :

$$I_{M^{+}} = I_{M^{+}(MPiv)} + I_{M^{+}(M_{2}Piv_{2})}.$$
 (11)

Это выражение может быть представлено, как и в предыдущих случаях, в виде уравнения:

$$I_{M^{+}}/I_{M_{2}Piv^{+}} = {}^{2}\sqrt{k_{(13)}}/{}^{2}\sqrt{I_{M_{2}Piv^{+}}} + a_{12}, \qquad (12)$$

где $k_{(13)}$ — масс-спектрометрическая константа равновесия реакции:

$$\mathbf{M}_{2}\mathbf{Piv}_{2} = 2\mathbf{M}\mathbf{Piv},\tag{13}$$

 $a_{12} = I_{M_2 Piv^+(M_2 Piv_2)} / I_{M_2 Piv^+}$ – коэффициент массспектра, решение которого методом наименьших квадратов позволило рассчитать коэффициент $a_{12} = I_{M^+(M_2 Piv_2)} / I_{M_2 Piv^+}$. В табл. 3 и 4 приведены результаты расшифровки масс-спектров насыщенного пара пивалатов щелочных металлов.

Экспериментальные данные по полной изотермической сублимации навесок и результаты расшифровок масс-спектров позволили по уравнению Герца—Кнудсена, записанному для сложного молекулярного состава газовой фазы (14), и основному уравнению масс-спектрометрии (15):

$$q_{\rm MPiv}(g) = S_{\rm 9\phi}k \times \left\{ \left(\frac{M_1T}{2\pi R}\right)^{0.5} \frac{1}{\sigma_1} \int_0^t \left(I_1 + \left(\frac{M_2}{M_1}\right)^{0.5} \frac{\sigma_1}{\sigma_2} I_2 + \left(\frac{M_3}{M_1}\right)^{0.5} \frac{\sigma_1}{\sigma_3} I_3 + \left(\frac{M_4}{M_1}\right)^{0.5} \frac{\sigma_1}{\sigma_4} I_4 \right) dt \right\},$$
(14)

$$p = (k/\sigma)IT,\tag{15}$$

где $S_{3\phi}$ — эффективная площадь эффузии, k константа прибора, M_i — молярная масса *i*-го компонента газовой фазы, t — время сублимации, σ_i — полное сечение ионизации *i*-го компонента газовой фазы, I_i — полный ионный ток, образованный при ионизации *i*-го компонента газовой фазы, T — температура сублимации, K, q — навеска пивалата щелочного металла, г, рассчитать абсолютные величины парциальных давлений основных компонентов насыщенного пара над пивалатами щелочных металлов. При расчете было принято, что $\sigma_2/\sigma_1 = 1.5$, $\sigma_3/\sigma_1 = 2.26$, $\sigma_4/\sigma_1 = 3.0$ [23–25]. Результаты расчетов представлены в табл. 5. В этой же таблице приведены оцененные нами по индивидуальным масс-спектрам молекул пивалатов величины парциальных давлений компонентов, слабо представленных в насыщенном паре.

Из табл. 5 видно, что парообразование пивалата лития сильно отличается от остальных пивалатов щелочных металлов: в газовой фазе преобладают тетрамерные и практически отсутствуют мономерные молекулы. Кроме того, обращает на себя внимание низкое общее давление над пивалатом натрия.

В результате исследования температурных зависимостей интенсивностей расшифрованных

	Интенсивность, отн. ед.						
Ион	LiPiv [9] (<i>T</i> = 543 K)	NaPiv (T = 584 K)	$\begin{array}{c} \text{KPiv} \\ (T = 565 \text{ K}) \end{array}$	$\begin{array}{c} \text{RbPiv} \\ (T = 565 \text{ K}) \end{array}$	CsPiv (T = 565 K)		
[M] ⁺	5.6	85	200	290	1000		
$[M_2]^+$	—	—	—	6	8		
$[M_2Piv]^+$	100	100	100	100	100		
$[M_3 Piv_2]^+$	17.3	6.6	10	8	7		
$[M_4 Piv_3]^+$	56.1	6.6	7.5	4	2		
$[M_5 Piv_4]^+$	7.2	0.8	0.3	_	_		
$[M_6 Piv_5]^+$	8.2	0.3	_	_	-		
$[M_7 Piv_6]^+$	4.4	—	—	_	_		
$[\mathbf{M}_{8}\mathbf{Piv}_{7}]^{+}$	0.5	_	_	_	_		
$[M_9Piv_8]^+$	0.5	—	—	—			

Таблица 2. Относительные интенсивности металлсодержащих ионов в масс-спектрах газовой фазы над пивалатами щелочных металлов с учетом изотопного состава ($U_{иониз} = 70$ В)

ионных токов I_{M^+} , $I_{M_2Piv^+}$, $I_{M_3Piv_2^+}$ и $I_{M_4Piv_3^+}$ в интервале температур 503–584 К по уравнению Клаузиуса–Клапейрона методом наименьших квадратов были рассчитаны энтальпии сублимации молекул пивалатов щелочных металлов (табл. 6–9). В табл. 6, 7 приведены значения энтальпий сублимации молекул NaPiv и KPiv, полученные по нерасшифрованным и расшифрованным ионным токам M⁺ (для примера см. рис. 3), которые однозначно показывают, что измеряемые суммарные ионные токи Na⁺ и K⁺ в значительной степени образованы за счет диссоциативной ионизации олигомерных молекул. Расшифровка позволила избежать определенной неточности в энтальпиях сублимации мономерных молекул.

Определить энтальпии сублимации тримерных молекул по 2-му закону термодинамики не удалось из-за их малого количества в насыщенном паре и точности расчета коэффициентов масс-спектров a_{34} . Однако наш вывод о малом содержании в насыщенном паре молекул M_3 Piv₃ полностью подтверждается совпадением (в пределах погрешности) значений энтальпий сублимации молекул M_4 Piv₄, полученных по ионным токам I_{M_4 Piv⁺₂</sub> и I_{M_4 Piv⁺₃.

В качестве рекомендованных величин энтальпий сублимации тетрамерных молекул приняты среднеарифметические значения, полученные при исследовании температурных зависимостей интенсивностей ионных токов $M_3Piv_2^+$ и $M_4Piv_3^+$ (табл. 6–9).

Данные по энтальпиям сублимации позволили рассчитать некоторые энтальпии диссоциации полимерных молекул пивалатов щелочных металлов по 2-му закону термодинамики (табл. 10):

$$(MPiv)_2(\Gamma) = 2MPiv(\Gamma), \qquad (16)$$

$$(MPiv)(r) = 4(MPiv)(r), \qquad (17)$$

$$(MPiv)_4(r) = 2(MPiv)_2(r).$$
(18)

Эти же характеристики, а также энтальпии диссоциации тримерных и тетрамерных молекул:

$$(MPiv)_3(r) = 3(MPiv)(r), \qquad (19)$$

$$B(MPiv)_4(r) = 4(MPiv)_3(r)$$
(20)

были рассчитаны и по 3-му закону термодинамики (табл. 10), в расчетах использовали абсолютные величины парциальных давлений, представленные в табл. 4, и величины изменения энтропии газовых реакций, протекающих с

изменением числа молей на единицу – $\Delta_r S_T^{\circ}(16, 18, 20) = 146.4 \pm 13.0$ Дж/(моль K), на два –

$$\Delta_r S_T^{\circ}(19) = 292.8 \pm 18.4 \ Дж/(моль K), на три - \Delta_r S_T^{\circ}(17) = 439.2 \pm 22.5 \ Дж/(моль K).$$

Таблица 3. Коэффициенты масс-спектров пивалатов щелочных металлов

Элемент	<i>a</i> ₁₂	<i>a</i> ₂₄	<i>a</i> ₃₄
Na	—	1.6 ± 1.5	0.8 ± 0.3
K	0.6 ± 0.4	2.3 ± 1.2	1.3 ± 0.1
Rb	0.3 ± 0.3	—	—
Cs	7.8 ± 3.5	_	—

Компонент	Форма	Li [9]	Na	K	Rb	Cs
MPiv	M ⁺	-	_	100	100	100
(MPiv) ₂	M^+ M_2L^+	5 100	63 100	63 100	28 (Rb ₂ ⁺ 37) 100	100 10
(MPiv) ₄	M^+ M_2L^+ $M_3L_2^+$ $M_4L_3^+$	5 93 30 100	100 53 - 83	100 80 45 35	_	_

Таблица 4. Относительные интенсивности металлсодержащих ионов в индивидуальных масс-спектрах молекул пивалатов щелочных металлов ($U_{\text{мониз}} = 70 \text{ B}$)

Таблица 5. Абсолютные величины парциальных давлений компонентов молекулярных форм в насыщенном паре [Па]

Компонент	Li [9] (<i>T</i> = 543 K)	Na (T = 584 K)	$\begin{array}{c} \text{K} \\ (T = 565 \text{ K}) \end{array}$	Rb (T = 565 K)	Cs (T = 565 K)
Mpiv	$<2 \times 10^{-5} *$	$5.0 \times 10^{-5*}$	1.6×10^{-2}	2.8×10^{-2}	1.1×10^{-1}
M ₂ Piv ₂	4.1×10^{-2}	1.6×10^{-2}	1.4×10^{-2}	1.0×10^{-2}	3.1×10^{-2}
M ₃ Piv ₃	_	$5.0 \times 10^{-4*}$	$1.0 \times 10^{-4*}$	$5.0 \times 10^{-5*}$	$1.0 \times 10^{-5*}$
$M_4 Piv_4$	9.3×10^{-2}	3.3×10^{-3}	3.9×10^{-3}	$4.9 \times 10^{-4} *$	$3.0 \times 10^{-4} *$
M ₅ Piv ₅	—	$5.0 \times 10^{-5*}$	$1.0 \times 10^{-5*}$	—	—
M ₆ Piv ₆	—	$1.5 \times 10^{-5*}$	—	—	—
Общее	13.4×10^{-2}	1.9×10^{-2}	3.4×10^{-2}	3.8×10^{-2}	14.1×10^{-2}

* Оценка.

Таблица 6. Значения энтальпий сублимации молекулярных форм пивалата натрия в интервале температур 513—584 К (кДж/моль)

	$\Delta_{s}H^{\circ}(\mathrm{MPiv})$	$\Delta_s H^{\circ}(\mathrm{MPiv})_2$	$\Delta_s H^{\circ}(\mathrm{MPiv})_4$		
N⁰	по иону Na ⁺ нерасшифрованному	по иону Na ₂ Piv ⁺	по иону $Na_3Piv_2^+$	по иону $Na_4Piv_3^+$	
1	207.6 ± 5.5	201.4 ± 2.8	238.7 ± 5.9	246.6 ± 5.1	
2	200.2 ± 2.3	194.9 ± 3.1	230.8 ± 4.3	232.7 ± 3.2	
3	206.4 ± 2.5	196.4 ± 1.3	235.3 ± 4.4	235.4 ± 2.7	
4	203.1 ± 2.9	198.5 ± 2.8	244.7 ± 8.9	244.2 ± 1.9	
Среднее	204.3 ± 3.4	197.8 ± 2.8	238.6 ± 7.5		

Полученные разными способами величины

 $\Delta_{\rm D} H_T^{\circ}$ хорошо согласуются между собой для полимерных молекул пивалатов натрия, рубидия и цезия, за исключением реакции диссоциации тетрамерных молекул Cs₄Piv₄. Хорошее согласие в значениях энтальпий диссоциации связано с относительно простой и, как следствие, более точной расшифровкой масс-спектров паров этих веществ. В случае пивалата калия из-за определенных допущений точность расшифровки массспектров оказалась недостаточной для определения энтальпий сублимации молекул КРіv и диссоциации полимерных молекул К_nPiv_n по 2-му за-

<u>№</u>	$\Delta_{s}H^{\circ}(\mathrm{MPiv})$	$\Delta_{s}H^{\circ}(\mathrm{MPiv})$	$\Delta_{s}H^{\circ}(\mathrm{MPiv})_{2}$	$\Delta_s H^{\circ}(\mathrm{MPiv})_4$	
	по иону К ⁺ нерасшифрованному	по иону К ⁺ расшифрованному	$K_2 Piv^+$	$K_3 Piv_2^+$	$K_4 Piv_3^+$
1	214.0 ± 4.2	169 ± 9	181.5 ± 3.9	227.7 ± 3.8	229.0 ± 4.5
2	212.2 ± 6.3	195 ± 7	187.0 ± 3.0	212.9 ± 3.2	219.7 ± 2.2
3	225.6 ± 3.2	210 ± 6	193.6 ± 4.1	217.4 ± 7.8	226.5 ± 6.0
Среднее	217.2 ± 7.3	192 ± 21	187.4 ± 6.1	222.3 ± 8.0	

Таблица 7. Значения энтальпий сублимации молекулярных форм пивалата калия в интервале температур 500–585 К (кДж/моль)

Таблица 8. Значения энтальпий сублимации молекулярных форм пивалата рубидия в интервале температур 500–585 К (кДж/моль)

	$\Delta_s H^{\circ}(\text{MPiv})$	$\Delta_s H^{\circ}(\mathrm{MPiv})_2$			$\Delta_s H^{\circ}(\mathrm{MPiv})_4$	
N⁰	по иону	по иону	по иону	по иону	по иону	по иону
	Rb^+	Rb_2^+	$Rb_2CO_2^+$	Rb_2Piv^+	$Rb_3Piv_2^+$	$Rb_4Piv_3^+$
1	149.3 ± 1.6	170.0 ± 5.4	157.5 ± 8.1	168.5 ± 3.1	169.3 ± 7.8	166.1 ± 3.9
2	170.8 ± 1.3	164.3 ± 3.3	178.6 ± 8.2	163.0 ± 6.3	164.5 ± 4.2	166.6 ± 15.9
3	155.3 ± 1.7	174.2 ± 3.4	173.3 ± 3.1	163.9 ± 4.1	175.7 ± 8.4	165.3 ± 8.0
4	175.6 ± 1.2	160.8 ± 8.3	172.5 ± 3.4	177.9 ± 3.0	164.7 ± 4.8	157.9 ± 11.5
5	170.8 ± 1.1	173.9 ± 5.1	166.7 ± 5.6	172.7 ± 2.3	—	—
Среднее	164.4 ± 11.4	169.2 ± 8.2			166.3	\pm 8.4

кону термодинамики. Малое содержание в насыщенном паре молекул Cs_4Piv_4 также не дает возможность использовать 2-й закон термодинамики для точного определения энтальпий сублимации и диссоциации этих молекул. Поэтому результаты, полученные по 3-му закону, даже с учетом ошибки расшифровки представляются более точными и выбраны нами как рекомендованные. В табл. 11 приведены рекомендованные значения энтальпий сублимации молекул пивалатов, найденные по 2-му закону и рассчитанные по величинам энтальпий диссоциации полимерных молекул (отмечены звездочками), оцененные только по 3-му закону. Пересчет энтальпий сублимации к T = = 298 К (табл. 11) осуществляли в предположении равенства изменения теплоемкостей при сублимации молекул пивалатов щелочных металлов и оксидов вольфрама [26].

Найденная в данном исследовании и в работах [27, 28] картина изменения термодинамических характеристик пивалатов щелочных металлов (энтальпии сублимации, состав газовой фазы, абсолютные величины парциальных давлений) в ряду Li—Cs напоминает изменение этих свойств у галогенидов, метаборатов щелочных металлов. Если принять, что энтальпии реакций диссоциации:

Таблица 9. Значения энтальпий сублимации молекулярных форм пивалата цезия в интервале температур 500—575 К (кДж/моль)

N⁰	$\Delta_{s}H^{\circ}(\mathrm{MPiv})$	$\Delta_s H^{\circ}(1)$	MPiv) ₂	$\Delta_s H^{\circ}(\text{MPiv})_4$		
	по иону Cs ⁺	по иону Cs_2^+	по иону Cs_2Piv^+	по иону $Cs_3Piv_2^+$	по иону $Cs_4Piv_3^+$	
1	163.6 ± 0.9	187.5 ± 5.4	183.8 ± 2.3	180.5 ± 4.0	185.4 ± 4.7	
2	158.3 ± 1.1	185.0 ± 2.7	184.6 ± 1.6	184.5 ± 2.5	185.0 ± 3.4	
3	160.7 ± 0.6	183.7 ± 2.4	180.4 ± 1.1	187.3 ± 2.9	177.7 ± 3.2	
4	163.0 ± 0.7	183.3 ± 2.7	186.6 ± 1.3	185.3 ± 5.5	179.4 ± 2.5	
Среднее	161.4 ± 2.4	184.4 ± 3.3		183.2 ± 5.4		

Рис. 3. Температурные зависимости интенсивностей ионных токов K⁺: *1* – полученные в эксперименте, *2* – после расшифровки.

Реакция	Реакция $\Delta_{\rm D} H_T^{\circ}$ найденное значение		$\Delta_{ m D} H^{\circ}_{298}$
$Na_2Piv_2 = 2NaPiv$	186.6 (3 закон)	186.6 ± 22.5	189.3 ± 23.0
$Na_4Piv_4 = 4NaPiv$	513.4 (3 закон)	513.4 ± 45.0	523.3 ± 46.0
$Na_4Piv_4 = 2Na_2Piv_2$	147.9 (3 закон) 155.9 (2 закон)	152.0 ± 6.0	157.2 ± 6.5
$3Na_4Piv_4 = 4Na_3Piv_3$	211.6 (3 закон)	212.0 ± 25.0	219.9 ± 26.0
$K_2 Piv_2 = 2KPiv$	155.5 (3 закон) 199.3 (2 закон)	178.0 ± 25.0	180.7 ± 25.5
$K_4 Piv_4 = 4 K Piv$	463.0 (3 закон) 551.1 (2 закон)	507.0 ± 45.0	516.8 ± 46.0
$K_4 Piv_4 = 2K_2 Piv_2$	151.1 (3 закон) 152.5 (2 закон)	152.0 ± 5.0	157.2 ± 6.0
$3K_4Piv_4 = 4K_3Piv_3$	231.7 (3 закон)	232.0 ± 20.0	239.9 ± 21.0
$Rb_2Piv_2 = 2RbPiv$	149.1 (3 закон) 161.9 (2 закон)	155.5 ± 6.5	158.2 ± 7.0
$Rb_4Piv_4 = 4RbPiv$	466.9 (3 закон) 492.9 (2 закон)	480.0 ± 20.0	489.8 ± 21.0
$Rb_4Piv_4 = 2Rb_2Piv_2$	144.3 (3 закон) 169.1 (2 закон)	157.0 ± 15.0	162.2 ± 15.5
$3Rb_4Piv_4 = 4Rb_3Piv_3$	215.0 (3 закон)	215.0 ± 22.0	222.9 ± 23.0
$Cs_2Piv_2 = 2CsPiv$	138.4 (2 закон) 141.8 (3 закон)	142.0 ± 10.0	144.7 ± 11.0
$Cs_4Piv_4 = 4CsPiv$	437.2 (3 закон) 466.0 (2 закон)	451.5 ± 20.0	459.4 ± 21.0
$Cs_4Piv_4 = 2Cs_2Piv_2$	130.8 (3 закон) 185.6 (2 закон)	157.0 ± 25.0	162.2 ± 25.5
$3Cs_4Piv_4 = 4Cs_3Piv_3$	239.0 (3 закон)	239.0 ± 25.0	246.8 ± 26.0

Таблица 10. Энтальпии (кДж/моль) реакции диссоциации олигомерных молекул пивалатов щелочных металлов

Компонент газовой фазы	Конденсированная фаза						
	LiPiv [9]	NaPiv	KPiv	RbPiv	CsPiv		
MPiv	176.7 ± 13.5*	194*	184.4 ± 25.0	168.5 ± 12.0	164.3 ± 3.0		
M ₂ Piv ₂	177.5 ± 7.0	197.8 ± 2.8	190.7 ± 13.5	172.5 ± 5.0	187.2 ± 3.0		
M ₃ Piv ₃	_	233*	230*	186*	205*		
M ₄ Piv ₄	198.2 ± 5.0	239.7 ± 6.7	228.9 ± 5.0	175.9 ± 5.3	190.8 ± 6.0		

Таблица 11. Рекомендованные значения энтальпий сублимации молекулярных форм пивалатов щелочных металлов $\Delta_{s} H^{\circ}((MPiv)_{n}, 298.15 \text{ K})$

* Оценка.

Таблица 12. Стандартные энтальпии образования (кДж/моль) пивалатов щелочных металлов в газовой и конденсированной фазах

Соединение	Фаза	$-\Delta_f H_{298}^{\circ}$
NaPiv	Кристалл	760
	Газ	566
KPiv	Кристалл	771
	Газ	587
RbPiv	Кристалл	771
	Газ	603
CsPiv	Кристалл	775
	Газ	611

$$ML_{(TB)} = M_{(TB)} + L_{(\Gamma)}$$
 (20)

ацетатных и пивалатных солей щелочных металлов и их изменения в ряду Li–Cs одинаковые, можно, используя стандартные энтальпии образования радикалов пивалевой $\Delta_f H^{\circ}$ (Piv·, 298.15) = -265 кДж/моль [29] и уксусной кислот $\Delta_f H^{\circ}$ (·OAc, 298.15) = -216.3 кДж/моль [30] и образования ацетатов щелочных металлов [31], оценить стандартные энтальпии образования пивалатов щелочных металлов в конденсированной и газовой фазах (табл. 12). Можно отметить, что предположение о равенстве энтальпий реакции (20) ацетатных и пивалатных комплексов щелочных металлов небезосновательно, так как, например, значения энергии связи RCOO–H для пивалиновой и уксусной кислот близки.

До настоящей работы исследования пивалатов щелочных металлов методами термогравиметрии и ДСК не проводились, за исключением определения температур их плавления [10], которые устанавливали методом плавления вещества в капилляре. Подобная методика вряд ли может претендовать на удовлетворительную точность. Этим, с нашей точки зрения, можно объяснить существенные расхождения в величинах температур плавления, найденных в настоящей работе и в исследовании [10] (табл. 1). Результаты дифференциальной сканирующей калориметрии и их точность, к сожалению, сравнить не с чем. Можно только отметить, что в литературе имеется большое количество работ по исследованию других карбоксилатов щелочных металлов, которые характеризуются наличием большого количества твердофазных переходов. Достаточно подробный обзор работ по твердофазным переходам ацетатов лития, калия и цезия можно найти в работе Гбасси и Робелина [32], в которой, например, показано существование трех твердых фаз ацетата калия. Существование трех полиморфных форм ацетата натрия отмечено в работе [33]. В исследовании [34] описано термическое поведение алканоатов С1-С12 калия и показано, что практически все соли с длиной углеродной цепочки больше четырех характеризуются фазовыми переходами твердая фаза-твердая фаза и твердая фаза-жидкий кристалл. Можно отметить, что найденные в нашем исследовании термические свойства пивалатов щелочных металлов находятся в согласии с общей картиной термических свойств алканоатов этих металлов.

Масс-спектральные исследования, выполненные в данной работе, удовлетворительно согласуются с результатами, представленными в [10, 14, 15, 17], главным образом это касается состава газовой фазы и значений энтальпий сублимации и диссоциации молекул мономерных MPiv и димерных M₂Piv₂. К сожалению, в этих работах не приведены термодинамические характеристики других полимерных молекул. Следует отметить, что наблюдаются существенные расхождения в абсолютных величинах паршиальных и общих давлений пивалатов щелочных металлов, найденных в настоящей работе и работах [10, 17]. Рассчитанные нами величины оказались в 5-10 раз ниже литературных значений. Объяснить столь значительные расхождения трудно, так как в работах [10, 14] не указано, какие из многочисленных методик были использованы при определении и расчете величин парциальных давлений; скорее всего, в используемой методике была допущена систематическая ошибка. Однако можно отметить, что изменение летучести в ряду пивалатов Na—Cs в рассматриваемых работах одинаковое, оно монотонно увеличивается от соли натрия к соли цезия.

ЗАКЛЮЧЕНИЕ

Полученные термодинамические характеристики парообразования пивалатов щелочных металлов позволяют рекомендовать эти соединения в качестве прекурсоров в CVD-методе для получения тонких пленок на основе их оксидов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

Элементный анализ выполнен с использованием оборудования ЦКП ФМИ ИОНХ РАН. Термоаналитические измерения выполнены в рамках тематики "Химическая термодинамика и материаловедение" 121031300039-1 на оборудовании химического факультета МГУ.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Онлайн-версия содержит дополнительные материалы, доступные на https://doi.org/10.31857/S0044457X22602255

СПИСОК ЛИТЕРАТУРЫ

- 1. Сыркин В.Г. СVD-метод. Химическая парофазная металлизация. М.: Наука, 2000. 496 с.
- 2. *Fromm K.M., Gueneau E.D.* // Polyhedron. 2004. V. 23. P. 1479.
 - https://doi.org/10.1016/j.poly.2004.04.014
- Fromm K.M. // Coord. Chem. Rev. 2008. V. 252. P. 856. https://doi.org/10.1016/j.ccr.2007.10.032
 - https://doi.org/10.1016/j.ccf.2007.10.052
- Romanov M., Korsakov I., Kaul A. et al. // Chem. Vap. Deposition. 2004. V. 10. № 6. P. 318. https://doi.org/10.1002/cvde.200306302
- Murzina T., Savinov S., Ezhov A. et al. // Appl. Phys. Lett. 2006. V. 89. № 6. P. 2907. https://doi.org/10.1063/1.2336743
- 6. *Tsymbarenko D.M., Korsakov I.E., Mankevich A.S. et al.* // ECS Trans. 2009. V. 25. № 8. P. 633. https://doi.org/10.1149/1.3207650

- Matsubara M., Kikuta K., Hirano S. // J. Appl. Phys. 2005. V. 97. P. 114105. https://doi.org/10.1063/1.1926396
- Saito Y., Takao H., Tani T. et al. // Nature. 2004. V. 432. P. 84. https://doi.org/10.1038/nature03028
- 9. *Каюмова Д.Б., Малкерова И.П., Кискин М.А. и др. //* Журн. неорган. химии. 2021. Т. 66. № 6. С. 767. https://doi.org/10.31857/S0044457X2106012X
- Хоретоненко Н.М. Структурные и термодинамические исследования пивалатов некоторых непереходных металлов. Автореф. ... канд. хим. наук. М., 1998. 22 с.
- 11. White E. // Org. Mass Spectrom. 1978. V. 13. № 9. P. 495.

https://doi.org/10.1002./oms.121010903

- Matsumoto K., Kosugi Y., Yanagisawa M. et al. // Org. Mass Spectrom. 1980. V. 15. № 12. P. 606. https://doi.org/10.1002./oms.1210151203
- Cao Y., Busch K.L. // J. Inorg. Chem. 1994. V. 33. P. 3970. https://doi.org/10.1002/ic0006a022
- 14. *Троянов С.И., Киселева Е.А., Рыков А.Н. и др. //* Журн. неорган. химии. 2002. Т. 47. № 10. Р. 1661.
- 15. *Киселева Е.А., Беседин Д.В., Коренев Ю.М. //* Журн. физ. химии. 2005. Т. 79. № 9. С. 1658.
- 16. *Хоретоненко Н.М., Рыков А.Н., Коренев Ю.М. //* Журн. неорган. химии. 1998. Т. 43. № 4. С. 584.
- 17. Цымбаренко Д.М., Бухтоярова Е.А., Корсаков Е.А. и др. // Коорд. химия. 2011. Т. 37. № 11. С. 828. https://doi.org/10.1134/S1070328411100125
- 18. Zorina-Tikhonova E.N., Yambulatov D.S., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 2. P. 75. http://doi.org./10.1134/S1070328420020104
- Kayumova D.B., Malkerova I.P., Shmelev M.A. et al. // Russ. J. Inorg. Chem. 2019. V. 64. P. 125. http://doi.org./10.1134/S003602361901012
- Gribchenkova N.A., Alikhanyan A.S. // J. Alloys. Compd. 2019. V. 778. P. 77. https://doi.org/10.1016/j.jallcom.2018.11.136
- 21. Горохов Л.Н. // Вестн. Моск. ун-та. Сер. матем., мех., физ. химия. 1958. С. 231.
- 22. Сидоров Л.Н., Коробов М.В. Современные проблемы физической химии. М.: Изд-во Моск. ун-та, 1972. Т. 9. С. 48.
- Otvose J.W., Stevenson D.P. // J. Am. Chem. Soc. 1956.
 V. 78. P. 546. https://doi.org/10.1021/ja01584a009
- 24. *Guido M., Gigli M.* // High Temp. Sci. 1975. V. 7. № 2. P. 122.
- 25. *Meyer R.T., Lynch A.W.* // High. Temp. Sci. 1973. V. 5. № 3. P. 192.
- Термодинамические свойства индивидуальных веществ / Под ред. Глушко В.П. М.: Наука, 1982. Т. 4. Кн. 2. 559 с.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 5 2023

- 27. *Макаров А.В.* Масс-спектральное изучение испарения метаборотов щелочных металлов. Автореф. дис. ... канд. хим. наук. М., 1987. 16 с.
- 28. *Верхотуров Е.А.* Масс-спектрометрическое исследование испарения и процессов ионизации нитритов щелочных металлов. Автореф. дис. ...канд. хим. наук. М., 1977. 16 с.
- 29. Lukyanova V.A., Papina T.S., Didenko K.V. et al. // J. Therm. Anal. Calorim. 2008. V. 92. P. 743. https://doi.org/10.1016/j.jssc.2020.121842
- Gray P., Thynne J.C.J. // Nature (Engl). 1961. № 191.
 P. 1357. http://doi.org.//10.1038/1911357a0

- Термические константы веществ. Справочник в 10 выпусках / Под ред. Глушко В.П. М.: ВИНИТИ, 1974. Т. 10. Ч. 1, 2.
- Gbassi G.K., Robelin C. // Fluid Phase Equilib. 2015. V. 406. P. 134. https://doi.org/10.1016/j.fluid.2015.06.044
- Xu M., Harris K.D.M. // Cryst. Growth Des. 2008. V. 8. № 1. P. 6. https://doi.org/10.1021/cg701077p
- 34. Bui L.H., De Klerk A. // J. Chem. Eng. Data. 2014. V. 59. № 1. P. 400. https://doi.org/10.1021/je400874d

650