_____ КООРДИНАЦИОННЫЕ ____ СОЕДИНЕНИЯ ____

УДК 546.271

Публикация посвящена 50-летию чл.-корр. РАН К.Ю. Жижина

ОСОБЕННОСТИ КОМПЛЕКСООБРАЗОВАНИЯ МЕДИ(I) С ПРОИЗВОДНЫМИ БЕНЗИМИДАЗОЛА В ПРИСУТСТВИИ *КЛОЗО*-ДОДЕКАБОРАТНОГО АНИОНА

© 2023 г. С. Е. Никифорова^{*a*, *}, А. С. Кубасов^{*a*}, О. Н. Белоусова^{*a*}, В. В. Авдеева^{*a*}, Е. А. Малинина^{*a*}, Н. Т. Кузнецов^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: korolencko0110@yandex.ru Поступила в редакцию 14.12.2022 г. После доработки 19.12.2022 г. Принята к публикации 29.12.2022 г.

Изучен процесс комплексообразования меди(I) с органическими лигандами – люминофорами 1-(1-метилбензимидазол-2-ил)-*N*-фенилметанимином (L¹), 1-этил-2-(4-метоксифенил)азобензимидазолом (L²) и 1-(1-бензилбензимидазол-2-ил)-*N*-циклогексилметанимином (L³) в присутствии *клозо*-додекаборатного аниона [B₁₂H₁₂]²⁻. Показано, что при проведении синтеза в ацетонитриле протекает окислительно-восстановительная реакция с образованием *mpuc*-хелатных комплексов меди(II) [Cu^{II}L₃][B₁₂H₁₂]. При использовании дийодметана в качестве растворителя удалось стабилизировать медь в степени окисления +1, в результате получены смешанолигандные биядерные комплексы [Cu^{I1}L₂(µ-I)₂], не содержащие кластерный анион. Методом РСА определены структуры комплексов [Cu^{II}(L¹)₃][B₁₂H₁₂] и [Cu^{I2}₂(L³)₂(µ-I)₂].

Ключевые слова: координационные соединения, кластерные анионы бора, окислительно-восстановительные реакции, медь(II)

DOI: 10.31857/S0044457X2260219X, EDN: UEQTWF

введение

На сегодняшний день основные задачи современной координационной химии связаны с получением соединений, потенциально перспективных для практического применения. Среди них особый интерес представляют комплексы *d*-элементов с бензимидазолами и их производными из-за их широкого использования в различных областях науки и техники: медицине [1–4], магнетиках [5–8], катализе [9–13], люминесценции [14–20] и т.д.

Интерес к исследованию процессов комплексообразования меди обусловлен ее способностью находиться в двух стабильных степенях окисления и переходить из одной в другую в результате окислительно-восстановительных превращений, что может помочь в получении соединений с заданными свойствами.

В работах [21, 22] показано, что при взаимодействии CuCl с азагетероциклическими лигандами (bpa, bipy, phen) в органических растворителях происходит окисление меди Cu(I) \rightarrow Cu(II), приводящее к выделению моно- или биядерных комплексов меди(II) состава [Cu(bpa)₂Cl]Cl, [Cu₂(bpa)₂(CO₃)₂] · H₂O, [Cu₂(bipy)₄(μ -CO₃)]Cl₂ · · bipy · H₂O или [Cu₂(phen)₄(μ -CO₃)]Cl₂ · DMF · H₂O.

Известно, что кластерные анионы бора обладают восстановительной способностью [23], это позволяет предположить, что они способны перенаправить окислительно-восстановительный процесс в сторону стабилизации определенной степени окисления меди. В результате могут быть получены как комплексы Cu(I) или Cu(II), так и гетеровалентные соединения Cu(I, II) [21, 22].

Действительно, проведение реакций комплексообразования меди(I) с органическими лигандами L, используемыми в настоящей работе, в присутствии *клозо*-декаборатного аниона в CH₃CN привело к образованию биядерных комплексов меди(I) [Cu¹₂L₂[μ -B₁₀H₁₀]] (L = L¹– L³) [24].

В рамках исследования процесса комплексообразования металлов *d*¹⁰ с производными бензимидазола — люминофорами в присутствии кластерных анионов бора $[B_{10}H_{10}]^{2-}$ и $[B_{12}H_{12}]^{2-}$ [24—26] для дальнейшего анализа изменения люминесцентных свойств при модификации органического лиганда, а также для оценки влияния природы металла и кластерного аниона на интенсивность и положение полосы эмиссии в настоящей работе изучено взаимодействие меди(I) с 1-(1-метилбензимидазол-2-ил)-*N*-фенилметанимином (L¹), 1-этил-2-(4-метоксифенил)азобензимидазолом (L²) и 1-(1-бензилбензимидазол-2-ил)-*N*-циклогексилметанамином (L³) в присутствии *клозо*-додекаборатного аниона [B₁₂H₁₂]²⁻.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Ацетонитрил (CH₃CN, HPLS grade), дийодметан (CH₂I₂, HPLS grade) фирмы Sigma-Aldrich использовали без дополнительной очистки. $\{(Ph_4P)Cu^I[B_{12}H_{12}]\}_n$ был получен по методике, описанной в [27]. Производные бензимидазола L получали по известным методикам: 1-(1-метилбензимидазол-2-ил)-*N*-фенилметанимин (L¹) [28], 1-этил-2-(4-метоксифенил)азобензимидазол (L²) [24], 1-(1-бензилбензимидазол-2-ил)-*N*-циклогексилметанимин (L³) [25].

[Cu^{II}L₃][B₁₂H₁₂] (L = L¹ (1), L² (2), L³ (3)). Раствор органического лиганда L (3 ммоль) в 10 мл ацетонитрила добавляли к раствору {(Ph₄P)Cu^I[B₁₂H₁₂]}_n (3 ммоль) в том же объеме растворителя. При этом наблюдали появление красно-коричневой окраски реакционного раствора. В результате изотермического упаривания на воздухе в течение 48 ч выпадал зеленый кристаллический осадок, который отфильтровывали, промывали и высушивали на воздухе. Выход комплекса 1 составил 65%, комплекса 2 – 72%, комплекса 3 – 60%.

Монокристалл комплекса $[Cu^{II}(L^1)_3][B_{12}H_{12}] \cdot 2CH_3CN$ (1 · 2CH₃CN) получен непосредственно из реакционного раствора. Для проведения спектральных исследований образец сушили в вакууме при комнатной температуре до постоянной массы.

[**Cu**^{II}(**L**¹)₃][**B**₁₂**H**₁₂] (1). ИК-спектр (NaCl, см⁻¹): v(BH) 2470, 2453; v(C=N)_{линкер} 1614; v(C=N)_{имидаз} 1585; out-of-plane(CH) 766, 741, 694.

С Н N В Си Найдено для 1, %: 59.23; 5.72; 13.76; 13.7; 7.08. Вычислено для СиС₄₅H₅₁N₉B₁₂, %: 59.31; 5.64; 13.83; 14.2; 6.97. [**Cu**^{II}(**L**²)₃][**B**₁₂**H**₁₂] (2). ИК-спектр (NaCl, см⁻¹): v(BH) 2490, 2459, 2430; v(C=N)_{имидаз} 1596, 1571; out-of-plane (CH) 784, 748, 706.

С	Η	Ν	В	Cu
55.18;	5.73;	16.16;	12.7;	5.98.
55.10;	5.78;	16.06;	12.4;	6.07.
	C 55.18; 55.10;	C H 55.18; 5.73; 55.10; 5.78;	C H N 55.18; 5.73; 16.16; 55.10; 5.78; 16.06;	C H N B 55.18; 5.73; 16.16; 12.7; 55.10; 5.78; 16.06; 12.4;

[Си^П(L³)₃][B₁₂H₁₂] (3). ИК-спектр (NaCl, см⁻¹): v(BH) 2472, 2441; v(C=N)_{линкер} 1611; v(C=N)_{имидаз} 1586; out-of-plane(CH) 747, 723, 691.

	С	Н	Ν	В	Cu
Найдено для 3 , %:	65.32;	7.13;	10.81;	11.7;	5.41.
Вычислено для					
CuC ₆₃ H ₈₁ N ₉ B ₁₂ , %:	65.36;	7.05;	10.89;	11.2;	5.49.

[Cu¹₂L₂(μ -I)₂] (L = L¹ (4), L² (5), L³ (6)). При добавлении раствора лиганда L (3 ммоль) в 10 мл дийодметана к раствору {(Ph₄P)Cu¹[B₁₂H₁₂]}_n (3 ммоль) в том же объеме CH₂I₂ наблюдали появление темно-красной окраски реакционного раствора. В ходе изотермического упаривания на воздухе в течение 48 ч происходило образование красного-коричневого кристаллического осадка, который отфильтровывали, промывали и высушивали на воздухе. Выход комплекса 4 составил 70%, комплекса 5 – 75%, комплекса 6 – 63%.

[Cu^I₂(L¹)₂(µ-I)₂] (4). ИК-спектр (NaCl, см⁻¹): $v(C=N)_{\text{линкер}}$ 1613; $v(C=N)_{\text{имидаз}}$ 1587; out-ofplane(CH) 764, 745, 697.

	С	Η	Ν	Cu
Найдено для 4 , %:	42.26;	3.15;	9.91;	14.87.
Вычислено для				
$Cu_2C_{30}H_{26}N_6I_2, \%$:	42.32;	3.08;	9.87;	14.93.

 $[Cu^{I}_{2}(L^{2})_{2}(\mu-I)_{2}]$ (5). ИК-спектр (NaCl, см⁻¹): v(C=N)_{имилаз} 1596; out-of-plane (CH) 763, 748, 702.

	С	Н	Ν	Cu
Найдено для 5, %:	40.88;	3.32;	11.82;	13.61.
Вычислено для				
$Cu_2C_{32}H_{32}N_8O_2I_2, \%$:	40.82;	3.43;	11.90;	13.50.

[Cu^I₂(L³)₂(µ-I)₂] (6). ИК-спектр (NaCl, см⁻¹): ν (C=N)_{линкер} 1614; ν (C=N)_{имидаз} 1602, 1582; out-ofplane(CH) 750, 722, 698.

С	Н	Ν	Cu
49.59;	4.62;	8.19;	12.57.
49.66;	4.56;	8.27;	12.51.
	C 49.59; 49.66;	C H 49.59; 4.62; 49.66; 4.56;	C H N 49.59; 4.62; 8.19; 49.66; 4.56; 8.27;

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 6 2023

Соединение	$[Cu^{II}(L^1)_3][B_{12}H_{12}] \cdot 2CH_3CN (1 \cdot 2CH_3CN)$	$[Cu^{I}_{2}(L^{3})_{2}(\mu-I)_{2}]$ (6)
Брутто-формула	C ₄₉ H ₅₇ B ₁₂ CuN ₁₁	$C_{42}H_{46}Cu_{2}I_{2}N_{6}$
Μ	993.31	1015.73
Т, К	150	150.00
Сингония	Орторомбическая	Моноклинная
Пр. гр.	Pbca	$P2_{1}/c$
a, Å	19.5684(8)	10.122(3)
b, Å	21.6239(7)	20.495(7)
<i>c</i> , Å	24.7192(10)	9.856(3)
β, град	90	108.952(7)
<i>V</i> , Å ³	10459.8(7)	1933.8(10)
Ζ	8	2
$ ho_{pacy},$ г/см 3	1.262	1.744
μ, мм ⁻¹	0.465	2.735
<i>F</i> (000)	4136.0	1008.0
Излучение (λ)	$MoK_{\alpha} (\lambda = 0.71073)$	$MoK_{\alpha} (\lambda = 0.71073)$
Интервал углов 20, град	4.33–54.978	3.974-63.812
Отражение собрано	40887	19298
Число независимых отражений	11826 [$R_{\text{int}} = 0.0739, R_{\text{sigma}} = 0.0839$]	6014 [$R_{\text{int}} = 0.0539, R_{\text{sigma}} = 0.0768$]
GooF	1.016	1.011
<i>R</i> ₁ , <i>wR</i> ₂ по <i>N</i> ₀	$R_1 = 0.0599, wR_2 = 0.1327$	$R_1 = 0.0403, wR_2 = 0.0590$
<i>R</i> ₁ , <i>wR</i> ₂ по <i>N</i>	$R_1 = 0.1111, wR_2 = 0.1572$	$R_1 = 0.0935, wR_2 = 0.0695$

Таблица 1. Основные кристаллографические данные, параметры эксперимента и уточнения структур для $[Cu^{II}(L^1)_3][B_{12}H_{12}] \cdot 2CH_3CN$ (1 · 2CH₃CN) и $[Cu^I_2(L^3)_2(\mu-I)_2]$ (6)

Определение содержания бора и меди выполнено методом ICP MS на атомно-эмиссионном спектрометре с индуктивно связанной плазмой iCAP 6300 Duo.

ИК-спектры соединений записывали на ИК-Фурье-спектрометре ИНФРАЛЮМ ФТ-02 (НПФ АП "Люмекс") в области 4000–600 см⁻¹ с разрешением 1 см⁻¹. Исследовали суспензии твердых образцов в вазелиновом (Aldrich) масле. Для записи спектров использовали пластинки NaCl.

Рентгеноструктурный анализ. Набор дифракционных отражений для кристаллов получен в Центре коллективного пользования ИОНХ РАН на автоматических дифрактометрах Bruker SMART APEX2 (комплекс [Cu^{II}(L¹)₃][B₁₂H₁₂]) и Bruker D8 Venture (комплекс [Cu^I(L³)₂(μ -I)₂]) (λ MoK_α, графитовый монохроматор, ω – ϕ -сканирование). Данные были проиндексированы и интегрированы с помощью программы SAINT [28]. Применялась поправка на поглощение, основанная на измерениях эквивалентных отражений (SADABS) [29]. Структуры расшифрованы прямым методом с последующим расчетом разностных синтезов Фурье. Все неводородные атомы уточнены в анизотропном приближении. Все атомы водорода CH- и BH-групп уточнены по модели "наездника" с тепловыми параметрами $U_{_{H30}} = 1.2U_{_{3KB}}$ ($U_{_{H30}}$) соответствующего неводородного атома (1.5 $U_{_{H30}}$ для CH₃-групп). Все расчеты проводили с использованием программы SHELXTL [30]. Структуры расшифрованы и уточнены с помощью программного комплекса OLEX2 [31].

Основные кристаллографические данные, параметры эксперимента и характеристики уточнения структуры приведены в табл. 1.

Кристаллографические данные депонированы в Кембриджском банке структурных данных (ССDС № 2225442 и 2225443).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В настоящей работе изучено взаимодействие меди(I) с 1-(1-метилбензимидазол-2-ил)-*N*-фенилметанимином (L¹), 1-этил-2-(4-метоксифенил)азобензимидазолом (L²) и 1-(1-бензилбензимидазол-2-ил)-N-циклогексилметанимином (L³) в присутствии *клозо*-додекаборатного аниона [B₁₂H₁₂]²⁻.

Реакцию комплексообразования меди(I) с производными бензимидазола в присутствии клозо-додекаборатного аниона проводили в ацетонитриле, используя анионный комплекс { $Ph_4P[Cu^I[B_{12}H_{12}]]$ }, в качестве исходного реагента. Установлено, что данный процесс сопровождается окислением Cu^I \rightarrow Cu^{II}, в результате чего из реакционных растворов селективно образуются моноядерные *трис*-хелатные комплексы меди(II) [Cu^{II}L₃][B₁₂H₁₂] (L = L¹ (1), L² (2), L³ (3)) (схема 1).

Схема 1. Синтез комплексов 1-3.

Анализируя полученный результат, можно сделать вывод, что в данном случае восстановительной способности *клозо*-додекаборатного аниона недостаточно для стабилизации степени окисления меди +1. Однако именно этот факт определяет возможность образования *трис*-хелатных комплексов меди(II) [Cu^{II}L₃][B₁₂H₁₂] с производными бензимидазола и анионом $[B_{12}H_{12}]^{2-}$ — первых примеров подобных соединений.

Ранее нами установлено, что процесс комплексообразования меди(I) с производными бензимидазола, используемыми в настоящей работе, в отсутствие кластерных анионов бора также сопровождается окислением меди(I) до меди(II), однако при этом происходит разрыв линкерной связи C=N в 1-(1-бензилбензимидазол-2-ил)-N-циклогексилметанимине (L^3) [33]. Следует отметить, что наличие кластерных анионов бора приводит к сохранению структуры данного лиганда, что было показано ранее для *клозо*-декаборатного аниона [25], а также обнаружено для *клозо*-додекаборатного аниона в настоящей работе.

В дальнейшем для стабилизации степени окисления меди +1 в системах с *клозо*-додекаборатным анионом реакции комплексообразования в присутствии производных бензимидазола проводили с использованием в качестве растворителя CH_2I_2 , обладающего ярко выраженными восстановительными свойствами.

Действительно, при наличии аналогичных исходных компонентов ($\{Ph_4PCu^I[B_{12}H_{12}]\}_n$ и L^1-L^3) в CH₂I₂ наблюдали появление темно-красной окрас-

Рис. 1. Строение комплекса $[Cu^{II}(L^1)_3][B_{12}H_{12}] \cdot 2CH_3CN$ (1 · 2CH₃CN). Молекулы растворителя не показаны.

ки реакционного раствора, свидетельствующей о сохранении в растворе ионов меди(I). Затем в ходе изотермического упаривания на воздухе в течение 48 ч наблюдали образование красно-коричневых кристаллических осадков биядерных комплексов меди(I) с органическими лигандами L и мостиковыми атомами йода (схема 2).

Следует отметить, что присутствие в составе соединений йодид-ионов обусловлено природой используемого растворителя. Ранее образование

хлорид-ионов наблюдали в системе Cu(I)—bipy— $[B_{10}H_{10}]^{2-}$ при проведении реакции комплексообразования в CH₂Cl₂ [34]. Присутствующие в реакционных растворах заряженные галогенид-ионы, способные выступать в качестве конкурирующих лигандов, как правило, и обусловливают неучастие кластерных анионов в формировании координационных полиэдров меди, вплоть до их отсутствия в составе комплексов.

Схема 2. Взаимодействие $\{Ph_4PCu^{I}[B_{12}H_{12}]\}_n$ с органическими лигандами $L^1 - L^3$ в CH_2I_2 .

На основании полученных результатов можно сделать вывод, что в данных условиях получение комплексов меди(I) с лигандами – производными бензимидазола L и *клозо*-додекаборатным анионом [B₁₂H₁₂]²⁻ не представляется возможным. В данных условиях кластерный

Рис. 2. Фрагмент кристаллической упаковки (а) и d_{norm} поверхность Хиршфельда аниона $[B_{12}H_{12}]^{2-}$ в комплексе 1 · 2CH₃CN (б); 2D-развертка поверхности Хиршфельда аниона (в) и границы контактов Н...Н (г), Н...С/С...Н (д).

анион бора не может конкурировать с более "мягким" основанием – атомом йода.

Полученные соединения идентифицированы и охарактеризованы физико-химическими методами анализа, в том числе для комплексов $[Cu^{II}(L^1)_3][B_{12}H_{12}] \cdot 2CH_3CN$ (1 · 2CH₃CN) и $[Cu^{I}(L^3)_2(\mu-I)_2]$ (6) выполнено рентгеноструктурное исследование.

Кристаллографически независимая часть орторомбической элементарной ячейки (*Pbca*) комплекса [Cu^{II}(L¹)₃][B₁₂H₁₂] · 2CH₃CN (**1** · 2CH₃CN) (рис. 1) содержит комплексный катион [Cu(L¹)₃]²⁺, анион [B₁₂H₁₂]²⁻ и две сольватные молекулы ацетонитрила. Окружение атома меди(II) в комплексе искаженно-октаэдрическое, длины связи Cu–N_{имид} лежат в диапазоне 1.986(3)–2.027(2) Å, а длины связи Cu–N_{имин} – в интервале 2.124(3)–2.479(2) Å. Такой разброс значений может быть связан со стерическими затруднениями при координации лиганда. Валентные углы N1Cu1N3, N1Cu1N6 и N1Cu1N4 составляют 74.47(9)°, 104.27(9)° и 91.55(10)° соответственно. Разворот фенильной группы относительно основной плоскости лиганда L¹ в комплексе составляет 34°, 42° и 48°.

При упаковке катионы $[Cu(L^1)_3]^{2+}$ образуют слои, параллельные плоскости *ac*, в то время как

Рис. 3. Структура комплекса $[Cu_2^I(L^3)_2(\mu-I)_2]$ (6).

анионы $[B_{12}H_{12}]^{2-}$ расположены в каналах, параллельных оси *с*, образованных катионами (рис. 2а). Катионы и молекулы ацетонитрила связаны с *клозо*-додекаборатным анионом слабыми взаимодействиями СН...НВ, которые представлены на поверхности Хиршфельда аниона в виде красных пятен и показаны пунктирными зелеными линиями на рис. 26. На данный тип взаимодействий приходится 92.8% поверхности Хиршфельда аниона, на контакты H...С – 6.8% поверхности аниона, на взаимодействия H...N – остальные 0.4% поверхности.

Кристаллографически независимая часть моноклинной элементарной ячейки (P21/c) комплекса $[Cu^{I}_{2}(L^{3})_{2}(\mu-I)_{2}]$ (6) (рис. 3) содержит половину биядерного комплекса 6. Каждый атом меди(I), находящийся в искаженно-тетраэдрическом окружении, связан с двумя мостиковыми ионами I-(Cu-I 2.5773(6) и 2.6188(9) Å) и двумя атомами азота хелатирующего лиганда L¹ (Cu-N_{имид} 2.081(3) Å, Cu-N_{имин} 2.130(3) Å). Расстояние Cu-Cu в комплексе составляет 2.5760(9) Å, что сопоставимо со значениями в других подобных системах [34]. Бензимидазольный фрагмент, сопряженный с иминогруппой лиганда L³, практически плоский (RSMD = 0.052 Å). Торсионный угол C4N2C9C10 составляет 72.5°, торсионный угол C2N3C16C17 – 93.7°.

Комплексные молекулы [Cu¹₂(L³)₂(μ -I)₂] (**6**) связаны с соседними комплексами за счет π - π -взаимодействий и образуют 2D-каркас, параллельный плоскости *bc*. На поверхности Хиршфельда комплекса **6** π - π -контакты показаны в виде красного пятна на поверхности и пунктирной зеленой линией (рис. 4). Дополнительно молекулы связаны за счет взаимодействий СН... π , на которые приходится 23.1% поверхности Хиршфельда молекулы и контактов Н...I (10.2% поверхности). На взаимодействия Н...Н приходится 59.5% поверхности комплекса.

Наличие в ИК-спектрах комплексов 1–3 только узкой интенсивной полосы валентных колебаний "свободных" ВН-связей v(ВН) в интервале $2500-2400 \text{ см}^{-1}$ и отсутствие полосы поглощения валентных колебаний координированных ВНсвязей v(ВН)_{МНВ} свидетельствуют об отсутствии взаимодействия между атомом металла и ВН-группами *клозо*-додекаборатного аниона (рис. 5). Перераспределение интенсивностей, а также изменение количества и смещение максимумов полос поглощения в области 1600–700 см⁻¹ в ИК-спектрах синтезированных соединений по сравнению с ИК-спектрами некоординированных лигандов отражают координацию органических лигандов L¹–L³ атомом металла.

Рис. 4. Фрагмент кристаллической упаковки (а) и d_{norm} поверхность Хиршфельда комплекса [Cu^I₂(L³)₂(µ-I)₂] (6) (б); 2D-развертка поверхности Хиршфельда молекулы (в) и границы контактов Н...Н (г), H...С/С...Н (д) и Н...I/I...Н (е).

ЗАКЛЮЧЕНИЕ

Исследованы особенности процесса комплексообразования меди(I) с лигандами - производными бензимидазола L¹–L³ в присутствии клозододекаборатного аниона $[B_{12}H_{12}]^{2-}$ в органических растворителях, в том числе обладающих восстановительными свойствами (ацетонитрил, дийодметан). Установлено, что в реакциях комплексообразования, сопровождаемых окислительно-восстановительными процессами, в ацетонитриле образуются *трис*-хелатные комплексы состава $[Cu^{II}L_3][B_{12}H_{12}]$, последние являются первыми примерами комплексов меди(II) с производными бензимидазола и кластерными анионами бора. Проведение реакций в дийодметане приводит к стабилизации степени окисления меди +1 и образованию димеров [Cu^I₂L₂(µ-I)₂] с мостиковыми атомами йода. Следует отметить, что в ходе исследуемых

превращений структура лиганда люминофора L^3 сохраняется. Методом РСА определены структуры комплексов [Cu^{II}(L¹)₃][B₁₂H₁₂] и [Cu^I₂(L³)₂(μ -I)₂].

БЛАГОДАРНОСТЬ

Рентгеноструктурные исследования выполнены в ЦКП ФМИ ИОНХ РАН в рамках государственного задания ИОНХ РАН.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Российского научного фонда (грант № 22-23-00265).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы сообщают, что у них нет конфликта интересов.

Рис. 5. Фрагменты ИК-спектров лиганда L^3 (синий), комплексов $[Cu^{II}(L^3)_3][B_{12}H_{12}]$ (1) (фиолетовый) и $[Cu^{I}_2(L^3)_2(\mu-I)_2]$ (6) (красный).

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Онлайн-версия содержит дополнительные материалы, доступные по адресу https://doi.org/10.31857/S0044457X2260219X

СПИСОК ЛИТЕРАТУРЫ

- Kumaravel G., Raman N. // Mater. Sci. Eng. C. 2017. V. 70. P. 184. https://doi.org/10.1016/j.msec.2016.08.069
- Mahmood K., Hashmi W., Ismail H. et al. // Polyhedron. 2018. V. 157. P. 326. https://doi.org/10.1016/j.poly.2018.10.020
- 3. Rajarajeswari C., Loganathan R., Palaniandavar M. et al. // Dalton Trans. 2013. V. 42. P. 8347. https://doi.org/10.1039/C3DT32992E
- Galal S., Hegab K., Hashem A., Youssef N. // Eur. J. Med. Chem. 2010. V. 45. P. 5685. https://doi.org/10.1016/j.ejmech.2010.09.023

- Gupta M., Mathur P., Butcher R. // Inorg. Chem. 2001. V. 40. P. 878. https://doi.org/10.1021/ic000313v
- Puchoňová M., Švorec J., Švorc Ľ. et al. // Inorg. Chim. Acta. 2017. V. 455. P. 298. https://doi.org/10.1016/j.ica.2016.10.034
- Lavrenova L.G., Kuz'menko T.A., Ivanova A.D. et al. // New J. Chem. 2017. V. 41. P. 4341. https://doi.org/10.1039/C7NJ00533D
- Иванова А.Д., Кузьменко Т.А., Смоленцев А.И. и др. // Журн. коорд. химии. 2021. Т. 47. С. 689.
- Xiao B., Hou H., Fan Y.J. // J. Organomet. Chem. 2007. V. 692. P. 2014. https://doi.org/10.1016/j.jorganchem.2007.01.010
- Chen W., Xi C., Wu Y. // J. Organomet. Chem. 2007. V. 692. P. 4381. https://doi.org/10.1016/j.jorganchem.2007.07.006
- Hao P., Zhang S., Sun W.-H. et al. // Organometallics. 2007. V. 26. P. 2439. https://doi.org/10.1021/om070049e

Журн. неорган. химии. 2013. Т. 58. С. 746. 22. Avdeeva V.V., Dziova A.E., Polyakova I.N. et al. // Inorg. Chim. Acta. 2015. V. 430. P. 74. https://doi.org/10.1016/j.ica.2015.02.029

https://doi.org/10.1002/zaac.202100238 19. Huang T.-H., Luo C., Zheng D. // Org. Electron. 2021. V. 97. P. 106273. https://doi.org/10.1016/j.orgel.2021.106273

20. Song Y.-L., Jiao B.-J., Liu C.-M. et al. // Inorg. Chem.

12. Haneda S., Gan Z., Eda K., Hayashi M. // Organome-

13. Sun W.-H., Hao P., Znang S. et al. // Organometallics.

14. Korolenko S.E., Zhuravlev K.P., Tsaryk V.I. et al. // J. Lumin. 2021. V. 237. P. 118156.

15. Yang B.B., Zhao F., Xu S.X., He H.F. // Chin. J. Inorg.

16. Wu T.-C., Zhao F.-Z., Hu Q.-L. et al. // Appl. Or-

17. Huang T.-H., Hu Q.-L., Zhao F.-Z. et al. // J. Lumin. 2020. V. 227. P. 117530.

18. Zi X., Liu C., Lu W. et al. // Z. Anorg. Allg. Chem. 2021.

https://doi.org/10.1016/j.jlumin.2020.117530

https://doi.org/10.1016/j.jlumin.2021.118156

https://doi.org/10.11862/CJIC.2019.129

ganomet. Chem. 2020. V. 34. P. e5691.

https://doi.org/10.1002/aoc.5691

tallics. 2007. V. 26. P. 6551.

Chem. 2019. V. 35. P. 1020.

2007. V. 26. P. 2720.

V. 647. P. 1.

https://doi.org/10.1021/om7008843

https://doi.org/10.1021/om0700819

- Commun. 2019. P. 107689. https://doi.org/10.1016/j.inoche.2019.107689 21. Авдеева В.В., Дзиова А.Э., Полякова И.Н. и др. //

- 23. Кочнев В.К., Авдеева В.В., Малинина Е.А., Кузнеиов Н.Т. // Журн. неорган. химии. 2014. Т. 59. С. 1512.
- 24. Korolenko S.E., Malinina E.A., Avdeeva V.V. et al. // Polyhedron. 2021. V. 194. P. 114902. https://doi.org/10.1016/j.poly.2020.114902
- 25. Nikiforova S.E., Kubasov A.S., Goeva L.V. et al. // Polyhedron. 2022. V. 226. P. 116108. https://doi.org/10.1016/j.poly.2022.116108
- 26. Korolenko S.E., Kubasov A.S., Khan N.A. et al. // J. Cluster Sci. 2022. https://doi.org/10.1007/s10876-022-02263-0
- 27. Greenwood N.N., Morris J.H. // Proc. Chem. Soc. 1963. V. 11. P. 338.
- 28. Авдеева В.В., Полякова И.В., Гоева Л.В. и др. // Журн. неорган. химии. 2015. Т. 60. С. 901.
- 29. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2018.
- 30. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
- 31. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 32. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- 33. Korolenko S.E., Malinina E.A., Avdeeva V.V. et al. // Inorg. Chim. Acta. 2022. V. 539. P.121038. https://doi.org/10.1016/j.ica.2022.121038
- 34. Малинина Е.А., Авдеева В.В., Короленко С.Е. и др. // Журн. неорган. химии. 2020. Т. 69. С. 1208.
- 35. Xu Ch., Lv Le, Zhang Zh., Liu W. // J. Cluster Sci. 2020. https://doi.org/10.1007/s10876-020-01886-5