ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2023, том 68, № 6, с. 737-745

СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.271

ИССЛЕДОВАНИЕ КРИСТАЛЛИЧЕСКИХ СТРУКТУР АНИОНА [B₁₀Cl₁₀]^{2–} С ИМИДАЗОЛИЕВЫМИ КАТИОНАМИ

© 2023 г. А. В. Голубев^{*a*, *, А. С. Кубасов^{*a*}, А. Ю. Быков^{*a*}, Е. Ю. Матвеев^{*b*}, Н. А. Саркисов^{*b*}, И. В. Новиков^{*b*}, П. С. Стародубец^{*c*}, Н. А. Романов^{*c*}, К. Ю. Жижин^{*a*}, Н. Т. Кузнецов^{*a*}}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ^bМИРЭА – Российский технологический университет (Институт тонких химических технологий

им. М.В. Ломоносова), пр-т Вернадского, 86, Москва, 119571 Россия

^сРоссийский химико-технологический университет им. Д.И. Менделеева,

Миусская пл., 9, Москва, 125047 Россия

*e-mail: golalekseival@mail.ru

Поступила в редакцию 21.12.2022 г. После доработки 28.12.2022 г. Принята к публикации 09.01.2023 г.

Предложен новый способ получения имидазолиевых солей перхлорированного *клозо*-декаборатного аниона (RMIM)₂[B₁₀Cl₁₀] (R = H, *n*-Et, *n*-Bu, *n*-C₈H₁₇). Синтез этих соединений может быть осуществлен простыми реакциями обмена между калиевой солью декахлор-*клозо*-декаборатного аниона K₂[B₁₀Cl₁₀] и хлоридами производных имидазолия. С помощью рентгеноструктурного анализа и анализа поверхности Хиршфельда исследованы кристаллические упаковки и межмолекулярные взаимодействия для соединений (EMIM)₂[B₁₀Cl₁₀] и (BMIM)₂[B₁₀Cl₁₀]. Анионы [B₁₀Cl₁₀]^{2–} в кристаллической решетке этих соединений связаны сеткой слабых взаимодействий Cl...Cl с расстоянием между атомами хлора 2.246–3.623 Å.

Ключевые слова: кластеры бора, перхлорированные производные, *клозо*-декаборатный анион, ионные жидкости, РСА

DOI: 10.31857/S0044457X22602322, EDN: UFNNUM

введение

Слабокоординирующие анионы играют важную роль в современной фундаментальной и прикладной химии [1]. Они находят применение в качестве стабилизирующих ионов для реакционноспособных катионов, таких как Et_3Si^+ , Et_2Al^+ и др. [2–4], или как компоненты ионных жидкостей [5–8]. Одними из таких анионов являются высшие *клозо*-боратные анионы и их производные [9–15]. Данные анионы обладают рядом уникальных свойств, что позволяет найти им различное применение [16–18]. В настоящее время известно достаточно большое количество соединений на их основе, которые можно считать ионными жидкостями [19, 20].

Известно, что главным отличием ионных жидкостей от кристаллических соединений является слабое кулоновское взаимодействие между ионами [21–23], приводящее к слабой координации между ними. Исследование этих возможных взаимодействий с помощью современных методов анализа, как экспериментальных, так и теоретических, позволит лучше узнать и в дальнейшем предсказать наиболее подходящие катион/анионные составы.

Одними из катионов для исследований клозоборатных анионов в качестве компонентов ионных жидкостей являются имидазолиевые катионы. Первыми объектами исследований подобных составов были клозо-декаборатный $[B_{10}H_{10}]^{2-}$ и клозо-додекаборатный $[B_{12}H_{12}]^{2-}$ анионы [24] и их пергалогенированные аналоги $[B_nHal_n]^{2-}$ (n = 10, 12) [25-28]. Однако наличие двойного отрицательного заряда не позволило раскрыть их перспективность. Другими объектами исследований являлись карбораны и их производные [RCB₁₁H₁₁]⁻ [29]. Один из способов модификации кластерных анионов бора - введение экзополиэдрического заместителя, что позволяет не только изменить общий заряд системы до -1, но и добиться необходимых физико-химических свойств [30-34]. В связи с этим данные анионы также были исследованы как перспективные компоненты ионных жидкостей [35].

В настоящей работе представлен новый способ получения солей перхлорированного *клозо*-декаборатного аниона [B₁₀Cl₁₀]²⁻ с рядом имидазолие-

вых катионов: МІМ (метилимидазолий), ЕМІМ (1-этил-3-метилимидазолий), ВМІМ (1-бутил-З-метилимидазолий), МОІМ (1-метил-3-октилимидазолий). Кроме того, методами рентгеноструктурного анализа и анализа поверхности Хиршфельда исследованы кристаллические упаковки и межмолекулярные взаимодействия соединений (ЕМІМ)₂[$B_{10}Cl_{10}$] и (ВМІМ)₂[$B_{10}Cl_{10}$], что позволит расширить понимание слабых межмолекулярных взаимодействий в соединениях подобного типа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы. $K_2[B_{10}Cl_{10}]$ был получен по известной методике [36]. (MIM)Cl (95%, Aldrich), (EMIM)Cl (98%, Aldrich), (BMIM)Cl (98%, Aldrich), (MOIM)Cl (97%, Aldrich) и ацетонитрил являлись коммерческими препаратами и не требовали дополнительной очистки.

Элементный анализ на углерод, водород и азот проводили на автоматическом анализаторе CHNS-3 FA 1108 Elemental Analyser (Carlo Erba).

ИК-спектры соединений записывали на ИК-Фурье-спектрофотометре Инфралюм ФТ-08 (НПФФП "Люмекс") в области 4000–400 см⁻¹ с разрешением 1 см⁻¹. Образцы готовили в виде суспензии исследуемого вещества в тетрахлорметане CCl₄.

Спектры ¹¹В, ¹H, ¹³С ЯМР растворов исследуемых веществ в CD₃CN записывали на импульсном Фурье-спектрометре Bruker MSL-300 (ФРГ) на частотах 96.32, 300.3, 75.49 МГц соответственно с внутренней стабилизацией по дейтерию. В качестве внешних стандартов использовали тетраметилсилан и эфират трехфтористого бора.

Рентгеноструктурные исследования. Кристаллы солей (EMIM)₂[B₁₀Cl₁₀] и (BMIM)₂[B₁₀Cl₁₀], пригодные для рентгеноструктурных исследований, получали медленным парофазным насыщением ацетонитрильного раствора диэтиловым эфиром при температуре +4°С. Набор дифракционных отражений получен в Центре коллективного пользования ИОНХ РАН на автоматическом дифрактометре Bruker D8 Venture (λ Mo K_{α} , графитовый монохроматор, ω – ϕ -сканирование). Данные проиндексированы и интегрированы с помощью программы SAINT [37]. Применялась поправка на поглощение, основанная на измерениях эквивалентных отражений (SADABS) [38]. Структуры расшифрованы прямым методом с последующим расчетом разностных синтезов Фурье. Все неводородные атомы уточнены в анизотропном приближении. Все атомы водорода СН- и ВН-групп уточнены по модели "наездника" с тепловыми параметрами $U_{_{\rm H3O}} = 1.2U_{_{\rm ЭКВ}} (U_{_{\rm H3O}})$ соответствующего неводородного атома ($1.5U_{\mu_{30}}$ для CH₃-групп).

Все расчеты выполнены с использованием программы SHELXTL [39]. Структура расшифрована и уточнена с помощью программного комплекса OLEX2 [40].

Основные кристаллографические данные, параметры эксперимента и характеристики уточнения структур приведены в табл. 1.

Кристаллографические данные депонированы в Кембриджском банке структурных данных (CCDC № 2226235, 2226236).

Анализ поверхности Хиршфельда был выполнен с использованием программного обеспечения Crystal Explorer 17.5 [41]. Донорно-акцепторные пары визуализировали с использованием стандартного (высокого) разрешения поверхности и d_{norm} : поверхности отображаются в фиксированной цветовой шкале от -0.640 (красный) до 0.986 (голубой) а. е.

Синтез (MIM)₂[B₁₀Cl₁₀] (1). К раствору соли MIMCl (87.7 мг, 0.74 ммоль) в ацетонитриле медленно приливали раствор соли K₂B₁₀Cl₁₀ (200 мг, 0.37 ммоль) в ацетонитриле, после чего образовавшийся мелкодисперсный осадок отфильтровывали, а раствор упаривали на роторном испарителе. К полученному остатку приливали 10 мл этилацетата и обрабатывали на ультразвуковой ванне в течение 10 мин. Образовавшийся осадок отфильтровывали и промывали (2 × 10 мл) диэтиловым эфиром. Получено 204.2 мг (0.32 ммоль) (MIM)₂[B₁₀Cl₁₀]. Выход 88%. Ниже приведены результаты элементного анализа для C₈H₁₄B₁₀Cl₁₀N₄. Найдено, %: С 15.13; Н 2.18; N 8.79. Вычислено, %: С 15.28; H 2.24; N 8.91. ¹¹В ЯМР-спектр (CD₃CN, δ, м. д.): -4.2 (s, 2B, B1, B10), -11.3 (s, 8B, B2-B9). ¹H ЯМР-спектр (CD₃CN, δ, м. д.): 10.1 (s, 2H, NH), 8.96 (s, 2H, NCHN), 7.26 (s, 2H, CH), 7.24 (s, 2H, CH), 3.82 (s, 6H, NCH₃). ¹³С ЯМР-спектр (CD₃CN, δ, м. д.): 136.5 (NCHN), 123.4 (CH), 121.5 (CH), 36.2 (N<u>C</u>H₃). ИК-спектр (CCl₄, v, см⁻¹): 3349, 3154, 3118, 1562, 1471, 1161, 1002, 832, 743, 620, 522.

Синтез (EMIM)₂[B₁₀Cl₁₀] (2). Реакцию проводили аналогично вышеописанной методике для соединения 1. Из EMIMCI (108.4 мг, 0.74 ммоль) и K₂B₁₀Cl₁₀ (200 мг, 0.37 ммоль) было получено 230.4 мг (0.34 ммоль) (EMIM)₂[B₁₀Cl₁₀]. Выход составил 91%. Ниже приведены данные элементного анализа для C₁₂H₂₂B₁₀Cl₁₀N₄. Найдено, %: C 20.91; Н 3.15; N 8.11. Вычислено, %: С 21.04; Н 3.24; N 8.18. ¹¹В ЯМР-спектр (CD₃CN, δ, м. д.): –4.2 (s, 2B, B1, B10), -11.3 (s, 8B, B2-B9). ¹Н ЯМР-спектр (CD₃CN, δ, м. д.): 8.96 (s, 2H, NC<u>H</u>N), 7.26 (s, 2H, CH), 7.24 (s, 2H, CH), 4.30 (m, 4H, NCH₂), 3.98 (s, 6H, NCH₃), 1.56 (t, 6H, NCH₂CH₃). ¹³С ЯМР-спектр (CD₃CN, δ, м. д.): 136.5 (N<u>C</u>HN), 123.4 (<u>C</u>H), 121.5 (<u>C</u>H), 45.5 (N<u>C</u>H₂), 36.7 (N<u>C</u>H₃), 13.8 (NCH₂<u>C</u>H₃). ИК-спектр (CCl₄, v, см⁻¹): 3149, 3115, 2961, 2932, 2876, 2861, 1564, 1468, 1160, 1003, 835, 742, 619, 520.

ИССЛЕДОВАНИЕ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

Соединение	2 (EMIM) ₂ [B ₁₀ Cl ₁₀]	$3 (BMIM)_2 [B_{10}Cl_{10}]$
Брутто-формула	$C_{26}H_{47}B_{20}Cl_{20}N_9$	$C_{16}H_{30}B_{10}Cl_{10}N_4$
Μ	1410.92	741.04
Т, К	150	100.00
Сингония	Моноклинная	Триклинная
Пр. гр.	$P2_{1}/c$	Р
a, Å	18.116(4)	10.360(3)
b, Å	10.013(2)	19.804(7)
<i>c</i> , Å	35.185(7)	33.572(19)
α, град	90	74.67(2)
β, град	100.838(9)	88.83(2)
ү, град	90	85.973(12)
<i>V</i> , Å ³	6269(2)	6627(5)
Ζ	4	8
$ρ_{pac4}$, r/cm^3	1.495	1.486
μ, мм ⁻¹	0.906	0.860
<i>F</i> (000)	2824.0	2992.0
Излучение, нм	$MoK_{\alpha} (\lambda = 0.71073)$	$MoK_{\alpha} (\lambda = 0.71073)$
Интервал углов 20, град	4.234-60.06	3.774-53.842
Отражений собрано	40478	54156
Число независимых отражений	16893 [$R_{\text{int}} = 0.0313, R_{\text{sigma}} = 0.0430$]	28216 [$R_{\text{int}} = 0.0374, R_{\text{sigma}} = 0.0602$]
GOOF	1.099	1.048
R_1, wR_2 по N_0	$R_1 = 0.0520, wR_2 = 0.1097$	$R_1 = 0.0683, wR_2 = 0.1497$
<i>R</i> ₁ , <i>wR</i> ₂ по <i>N</i>	$R_1 = 0.0653, wR_2 = 0.1165$	$R_1 = 0.0867, wR_2 = 0.1598$

Таблица 1. Основные кристаллографические данные для структур 2 и 3

Синтез (BMIM)₂[$B_{10}Cl_{10}$] (3). Реакцию проводили аналогично вышеописанной методике для соединения 1. Из BMIMCl (129.1 мг, 0.74 ммоль) и $K_2B_{10}Cl_{10}$ (200 мг, 0.37 ммоль) было получено 246.6 мг (0.33 ммоль) (BMIM)₂[$B_{10}Cl_{10}$]. Выход составил 90%. Ниже приведены данные элементного анализа для $C_{16}H_{30}B_{10}Cl_{10}N_4$. Найдено, %: С 25.81; Н 3.99; N 7.43. Вычислено, %: C 25.93; H 4.08; N 7.56. ¹¹В ЯМР-спектр (CD₃CN, δ , м. д.): –4.2 (s, 2B, B1, B10), –11.3 (s, 8B, B2–B9). ¹Н ЯМР-спектр (CD₃CN, δ , м. д.): 8.98 (s, 2H, NC<u>H</u>N), 7.23 (s, 2H, C<u>H</u>), 7.22 (s, 2H, C<u>H</u>), 4.25 (m, 4H, NC<u>H₂</u>), 3.98 (s, 6H, NC<u>H₃</u>), 1.88 (m, 4H, NCH₂<u>C</u>H₂), 1.26 (m, 4H, N–C<u>H₂CH₃</u>), 0.98 (t, 6H, N–C<u>H₃</u>). ¹³С ЯМР-спектр (CD₃CN, δ ,

Рис. 1. ИК-спектр соединения (BMIM)₂[B₁₀Cl₁₀].

Рис. 2. Кристаллографически независимая часть моноклинной элементарной ячейки соединения 2.

м. д.): 136.8 (N<u>C</u>HN), 123.4 (<u>C</u>H), 121.8 (<u>C</u>H), 50.1 (N<u>C</u>H₂), 36.8 (N<u>C</u>H₃), 32.1 (NCH₂<u>C</u>H₂), 19.5 (N– <u>C</u>H₂CH₃), 13.3 (N–CH₂<u>C</u>H₃). ИК-спектр (CCl₄, v, см⁻¹): 3166, 3150, 3118, 2965, 2879, 1596, 1566, 1465, 1429, 1164, 1108, 1003, 949, 831, 742, 659, 646, 621, 522.

Синтез (MOIM)₂[$B_{10}Cl_{10}$] (4). Реакцию проводили аналогично вышеописанной методике для соединения 1. Из MOIMCl (170.6 мг, 0.74 ммоль)

и $K_2B_{10}Cl_{10}$ (200 мг, 0.37 ммоль) было получено 307.7 мг (0.32 ммоль) (MOIM)₂[$B_{10}Cl_{10}$]. Выход 88%. Ниже приведены данные элементного анализа для $C_{24}H_{46}B_{12}Cl_{12}N_4$. Найдено, %: С 30.32; Н 4.79; N 5.77. Вычислено, %: С 30.48; Н 4.90; N 5.92. ¹¹В ЯМР-спектр (CD₃CN, δ , м. д.): –4.2 (s, 2B, B1, B10), –11.3 (s, 8B, B2–B9). ¹Н ЯМР-спектр

Рис. 3. Фрагмент кристаллической упаковки (а), d_{norm} поверхность Хиршфельда комплекса аниона $[B_{10}Cl_{10}]^{2-}$ в соли **2** (б), 2D-развертка поверхности Хиршфельда аниона (в) и границы контактов Cl...H (г), Cl...Cl (д) и Cl...C (е).

(CD₃CN, δ , M. д.): 8.97 (s, 2H, NC<u>H</u>N), 7.24 (s, 2H, C<u>H</u>), 7.22 (s, 2H, C<u>H</u>), 4.25 (m, 4H, NC<u>H</u>₂), 3.97 (s, 6H, NC<u>H</u>₃), 1.88 (m, 4H, NCH₂<u>C</u>H₂), 1.26 (m, 16H, N–(C<u>H</u>₂)₄CH₃), 0.97 (t, 6H, N–C<u>H</u>₃). ¹³C ЯМР-спектр (CD₃CN, δ , M. д.): 136.8 (N<u>C</u>HN), 123.4 (<u>C</u>H), 121.8 (<u>C</u>H), 50.1 (N<u>C</u>H₂), 36.8 (N<u>C</u>H₃), 32.1 (NCH₂<u>C</u>H₂), 31.0–24.0 (N–(<u>C</u>H₂)₄–<u>C</u>H₂CH₃, 19.5 (N–<u>C</u>H₂CH₃), 13.3 (N–CH₂<u>C</u>H₃). ИК-спектр (CCl₄,

v, cm⁻¹): 3148, 3116, 2967, 2933, 2878, 2861, 1566, 1467, 1166, 1003, 832, 743, 618, 519.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Синтез. Для проведения стандартных реакций обмена катионов использовали растворимые в ацетонитриле калиевые соли перхлорированного

Рис. 4. Кристаллографически независимая часть триклинной элементарной ячейки соединения 3.

клозо-декаборатного аниона K₂[B₁₀Cl₁₀] с соответствующими хлоридами производных имидазолия (RMIM)Cl (R = H, *n*-Et, *n*-Bu, *n*-C₈H₁₇). Общая схема синтеза приведена ниже:

 $R = H (1), Et (2), Bu (3), n-C_8H_{17} (4)$

Схема 1. Схема синтеза имидазолиевых солей перхлорированного клозо-декаборатного аниона.

Образовавшийся твердый хлорид калия KCl отфильтровывали, а фильтрат упаривали на роторном испарителе и обрабатывали этилацетатом на ультразвуковой ванне. Полученный осадок отфильтровывали и полностью высушивали в вакууме масляного насоса. Чистоту конечных соединений подтверждали данными CHN-элементного анализа.

В ИК-спектре конечного соединения, например $(BMIM)_2[B_{10}Cl_{10}]$ (рис. 1), наблюдаются две группы полос, которые можно отнести к катионной и анионной частям. Полосы в области 3170–2870 см⁻¹ являются характеристичными для ва-

лентных колебаний С–Н, полоса при 831 см⁻¹ отвечает валентным колебаниям С–N, а полосы в области 1600–600 см⁻¹ относятся к структурным колебаниям в катионе (BMIM)⁺ [42]. Для аниона $[B_{10}Cl_{10}]^{2-}$ наблюдаются три интенсивные полосы при 1164, 1003 и 522 см⁻¹, характеристичные для колебаний B–Cl [15].

Таким образом, данный метод синтеза позволяет получать интересуемые нас соединения с перхлорированным клозо-декаборатным анионом [B₁₀Cl₁₀]^{2–}

Рис. 5. Фрагмент кристаллической упаковки (а), d_{norm} поверхность Хиршфельда комплекса аниона $[B_{10}Cl_{10}]^{2-}$ в соли **3** (б), 2D-развертка поверхности Хиршфельда аниона (в) и границы контактов Cl...H (г), Cl...Cl (д) и Cl...C (е).

с высоким выходом и использовать катионы имидазолия с заместителями различного строения.

Рентгеноструктурный анализ и анализ поверхности Хиршфельда. Моноклинная элементарная ячейка ($P2_1/c$) соли 2 содержит четыре катиона (EMIM)⁺, два аниона [$B_{10}Cl_{10}$]^{2–} и молекулу ацетонитрила (рис. 2). Один из катионов разупорядочен по двум позициям с заселенностями 0.5 : 0.5. Этильная группа второго катиона разупорядочена с заселенностями 0.512 : 0.488. Додекахлор-*клозо*додекаборатный анион образует слабые контакты Cl...Cl с соседними анионами (расстояния Cl–Cl лежат в диапазоне 3.246–3.420 Å) и контакты H...Cl с катионами имидазолия.

В кристалле соли **2** образуются катионно-анионные слои, параллельные плоскости *ab*. Анионы в слое связаны слабыми взаимодействиями Cl...Cl, которые показаны на поверхности Хиршфельда аниона в виде красных пятен и пунктирных зеленых линий на рис. 2a. На 2D-развертке поверхности Хиршфельда аниона контакты Cl...Cl представлены в виде острого зубца с наименьшими значениями *d*_{*e*} и d_i , равными 1.6 Å. На данный тип взаимодействий приходится 6% поверхности Хиршфельда аниона, в то время как наибольший процент взаимодействий (85.2%) приходится на контакты Cl...H, на контакты Cl...C приходится 5.4% взаимодействий, а на контакты Cl...N – 3.3% (рис. 3).

Кристаллографически независимая часть триклинной элементарной ячейки (*P*-1) соли **3** содержит четыре независимых аниона $[B_{10}Cl_{10}]^{2-}$ и восемь катионов (BMIM)⁺, один из которых разупорядочен по двум позициям с заселенностями 0.5 : 0.5, а бутильная группа второго разупорядочена по двум позициям (рис. 4). Как и в описанном выше соединении, в соли **3** анионы связаны слабыми взаимодействиями Cl...Cl, расстояния Cl...Cl лежат в диапазоне 3.306–3.623 Å.

Аналогично соли **2** при упаковке в соли **3** образуются катионно-анионные слои, параллельные плоскости *ab* (рис. 4а). Анионы образуют цепочки, связанные контактами Cl...Cl, вдоль оси *a*, которые представлены на поверхности Хиршфельда аниона в виде красных пятен и показаны пунктирными зелеными линиями. Среднее значение d_e и d_i немного больше, чем в соли **2**, и составляет 1.65 Å, на контакты Cl...Cl также приходится меньший процент поверхности аниона (4.2%), в то время как на контакты Cl...H – 90.8%, что на 5.6% больше, чем в соли **2**. На контакты Cl...C приходится 3.2% поверхности Хиршфельда аниона (рис. 5).

ЗАКЛЮЧЕНИЕ

Предложен новый простой способ получения имидазолиевых солей декахлор-клозо-декаборатного аниона (RMIM)₂[B_{10} Cl₁₀] (R = H, *n*-Et, *n*-Bu, $n-C_8H_{17}$). Исследование некоторых полученных целевых соединений с помощью рентгеноструктурного анализа для соединений 2 и 3 показало, что в элементарной ячейке наблюдается наличие нескольких анионов и катионов, обусловленное стерической затрудненностью ионов в структуре, что в результате приводит к снижению способности этих соединений к кристаллизации. Это, в свою очередь, говорит об уменьшении межмолекулярных взаимодействий и приводит к снижению температуры плавления данных соединений. Изучение полученных кристаллических упаковок с помощью анализа поверхности Хиршфельда для аниона $[B_{10}Cl_{10}]^{2-}$ показало, что наблюдается наличие слабых межмолекулярных взаимодействий между анионами и катионами, которые образованы контактами Cl...Cl, Cl...H, Cl...C, Cl...N.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке гранта МК-207.2022.1.3.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Krossing I., Raabe I. // Angew. Chem. Int. Ed. 2004. V. 43. № 16. P. 2066. https://doi.org/10.1002/anie.200300620
- 2. *Kessler M., Knapp C., Sagawe V. et al.* // Inorg. Chem. 2010. V. 49. № 11. P. 5223. https://doi.org/10.1021/ic100337k
- 3. *Kim K.C., Reed C.A., Long G.S. et al.* // J. Am. Chem. Soc. 2002. V. 124. № 26. P. 7662. https://doi.org/10.1021/ja0259990
- Knapp C. // Compr. Inorg. Chem. II. 2013. V. 1. P. 651. https://doi.org/10.1016/B978-0-08-097774-4.00125-X
- *Zhu Y., Hosmane N.S.* // Eur. J. Inorg. Chem. 2017. V. 2017. № 38. P. 4369. https://doi.org/10.1002/ejic.201700553
- 6. *Martínez-Palou R.* // Mol. Divers. 2010. V. 14. № 1. P. 3. https://doi.org/10.1007/s11030-009-9159-3
- El Abedin S.Z., Pölleth M., Meiss S.A. et al. // Green Chem. 2007. V. 9. № 6. P. 549. https://doi.org/10.1039/b614520e
- Zhao D., Liao Y., Zhang Z.D. // Clean Soil, Air, Water. 2007. V. 35. № 1. P. 42. https://doi.org/10.1002/clen.200600015
- 9. Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V. 75. № 11. P. 1149. https://doi.org/10.1135/cccc2010054
- 10. Avdeeva V.V., Malinina E.A., Sivaev I.B. et al. // Crystal. 2016. V. 6. № 5. P. 60. https://doi.org/10.3390/cryst6050060
- Golubev A.V., Kubasov A.S., Turyshev E.S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 9. P. 1333. https://doi.org/10.1134/S0036023620090041
- Zhizhin K.Y., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. № 14. P. 2089. https://doi.org/10.1134/S0036023610140019
- 13. *Ivanov S.V., Davis J.A., Miller S.M. et al.* // Inorg. Chem. 2003. V. 42. № 15. P. 4489. https://doi.org/10.1021/ic0344160
- Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1673. https://doi.org/10.1134/S0036023617130022
- Avdeeva V.V., Malinina E.A., Zhizhin K.Y. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 8. P. 519. https://doi.org/10.1134/S1070328421080017
- 16. *Stogniy M.Y., Bogdanova E.V., Anufriev S.A. et al.* // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1537. https://doi.org/10.1134/S0036023622600848
- Avdeeva V.V., Garaev T.M., Malinina E.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 1. P. 28. https://doi.org/10.1134/S0036023622010028
- Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 628. https://doi.org/10.1134/S0036023622050023
- Sivaev I.B. // Chem. Heterocycl. Compd. 2017. V. 53. № 6-7. P. 638. https://doi.org/10.1007/s10593-017-2106-9

- 20. *Green M.D., Long T.E.* // Polym. Rev. 2009. V. 49. № 4. P. 291. https://doi.org/10.1080/15583720903288914
- 21. *Markiewicz R., Klimaszyk A., Jarek M. et al.* // Int. J. Mol. Sci. 2021. V. 22. № 11. P. 5935. https://doi.org/10.3390/ijms22115935
- 22. Pádua A.A.H., Costa Gomes M.F., Canongia Lopes J.N.A. // Acc. Chem. Res. 2007. V. 40. № 11. P. 1087. https://doi.org/10.1021/ar700050q
- Kravchenko E.A., Gippius A.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 546. https://doi.org/10.1134/S0036023620040105
- 24. Jiao N., Zhang Y., Liu L. et al. // J. Mater. Chem. A. 2017. V. 5. № 26. P. 13341. https://doi.org/10.1039/c7ta04038e
- 25. *Nieuwenhuyzen M., Seddon K.R., Teixidor F. et al.* // Inorg. Chem. 2009. V. 48. № 3. P. 889. https://doi.org/10.1021/ic801448w
- Belletire J.L., Schneider S., Shackelford S.A. et al. // J. Fluor. Chem. 2011. V. 132. № 11. P. 925. https://doi.org/10.1016/j.jfluchem.2011.07.009
- Zhou N., Zhao G., Dong K. et al. // RSC Adv. 2012. V. 2. № 26. P. 9830. https://doi.org/10.1039/c2ra21700g
- Golub I.E., Filippov O.A., Belkova N.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1639. https://doi.org/10.1134/S0036023621110073
- 29. Larsen A.S., Holbrey J.D., Tham F.S. et al. // J. Am. Chem. Soc. 2000. V. 122. № 30. P. 7264. https://doi.org/10.1021/ja0007511
- Kravchenko E.A., Gippius A.A., Zhurenko S.V. et al. // Polyhedron. 2021. V. 210. P. 115514. https://doi.org/10.1016/j.poly.2021.115514

- Golubev A.V., Kubasov A.S., Bykov A.Y. et al. // Inorg. Chem. 2021. V. 60. № 12. P. 8592. https://doi.org/10.1021/acs.inorgchem.1c00516
- 32. *Matveev E.Y., Kubasov A.S., Razgonyaeva G.A. et al.* // Russ. J. Inorg. Chem. 2015. V. 60. № 7. P. 776. https://doi.org/10.1134/S0036023615070104
- 33. *Matveev E.Y., Levitskaya V.Y., Novikov S.S. et al.* // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 1928. https://doi.org/10.1134/S0036023622601532
- Burdenkova A.V., Zhdanov A.P., Klyukin I.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1616. https://doi.org/10.1134/S0036023621110036
- 35. Justus E., Rischka K., Wishart J.F. et al. // Chem. A Eur. J. 2008. V. 14. № 6. P. 1918. https://doi.org/10.1002/chem.200701427
- Kravchenko E.A., Gippius A.A., Vologzhanina A.V. et al. // Polyhedron. 2016. V. 117. P. 561. https://doi.org/10.1016/j.poly.2016.06.016
- 37. SAINT, Bruker AXS Inc.: Madison (WI), USA 2018
- 38. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
- 39. *Sheldrick G.M.* // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № Md. P. 3. https://doi.org/10.1107/S2053229614024218
- 40. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Crystallogr. 2021. V. 54. P. 1006. https://doi.org/10.1107/S1600576721002910
- 42. Dharaskar S.A., Varma M.N., Shende D.Z. et al. // Sci. World J. 2013. V. 2013. № 395274. P. 1. https://doi.org/10.1155/2013/395274