СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 544.344.01+546.273+661.635

Публикация посвящена 50-летию чл.-корр. РАН К.Ю. Жижина

ПОЛИМОРФИЗМ В СИСТЕМЕ Mg₃BPO₇-Ni₃BPO₇

© 2023 г. М. Н. Смирнова^{*a*, *}, М. А. Копьева^{*a*}, Г. Д. Нипан^{*a*}, Г. Е. Никифорова^{*a*}, А. Д. Япрынцев^{*a*}, А. А. Архипенко^{*a*}, М. С. Доронина^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: smirnova_macha1989@mail.ru Поступила в редакцию 27.12.2022 г. После доработки 11.02.2023 г. Принята к публикации 11.02.2023 г.

Образцы $Mg_{3-n}Ni_nBPO_7$ (n = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0), синтезированные твердофазным способом при 980°С и охлажденные в инерционно-термическом режиме, исследованы методами рентгенофазового анализа, инфракрасной спектроскопии, диффузного отражения и рентгенофлуоресцентной спектрометрии. Впервые экспериментально получена кристаллическая фаза Ni_3BPO_7 с нецентросимметричной гексагональной структурой β - Zn_3BPO_7 . Обнаружена область совместного существования α - Mg_3BPO_7 и Ni_3BPO_7 . Анализ спектров диффузного отражения образца $Mg_{1.5}Ni_{1.5}BPO_7$ показал наличие интенсивной полосы поглощения Ni^{2+} в синей области спектра.

Ключевые слова: борофосфаты, фазовые состояния **DOI:** 10.31857/S0044457X2260236X, **EDN:** UFWYXL

введение

Борофосфаты α -Mg(Zn)₃BPO₇ (*Imm*2) [1, 2], Cd_3BPO_7 (*Pna2*₁) [3], β-Zn₃BPO₇ (*P*-6) [1, 4–6] и Ва₃ВРО₇ (*Р*6₃*mc*) [7] представляют собой материалы нелинейной оптики и, легированные оксидами редкоземельных элементов, могут использоваться в диодах белого света WLED [8-12]. В настоящее время синтезирован $Co_3 BPO_7$ (*Cm*) [13, 14], используемый в качестве катализатора при электролизе воды, и низкотемпературный антиферромагнетик Co_2SrBPO_7 ($P2_1/c$) [15], получен ограниченный твердый раствор β-Zn_{3(1 - x)}Mn_{3x}BPO₇ (x = 0.005, 0.05, 0.1), обладающий характеристиками красного люминофора [16]. Для белых светодиодов WLED оптически активной матрицей для введения люминесцентных катионов может служить структура Mg₃BPO₇, однако из-за возможности полиморфного превращения $\beta \leftrightarrow \alpha$ [1] при охлаждении синтезированные беспримесные кристаллы разрушаются. что приводит к потере оптических характеристик. Возникает необходимость стабилизации Mg₃BPO₇ с помощью допирования. Задача осложняется проблемой получения однофазного борофосфата магния [2]. Получению Mg₃BPO₇ способствует значительный избыток периклаза MgO и препятствует

образование смеси котоит $Mg_3B_2O_6$ -фаррингтонит $Mg_3P_2O_8$ [17, 18].

В настоящей работе исследованы составы $Mg_{3-n}Ni_nBPO_7$ (n = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) квазитройной системы MgO–NiO–BPO₄ (рис. 1). Изучена возможность катионного замещения и получения стабильной фазы борофосфата никеля Ni₃BPO₇. Для отдельных составов исследованы оптические свойства в УФ-видимом и ИК-диапазоне.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы $Mg_{3-n}Ni_nBPO_7$ (n = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) синтезировали твердофазным методом, используя в качестве прекурсоров MgO (х. ч.), H_3BO_3 (х. ч.), $NH_4H_2PO_4$ (х. ч.) и NiO (х. ч.). Рассчитанные количества перемешанных и перетертых реагентов нагревали со скоростью 5 град/мин до 980°С, отжигали в течение 8 ч и охлаждали в инерционно-термическом режиме.

Рентгенофазовый анализ выполняли на дифрактометре Bruker Advance D8 (Си K_{α} -излучение) в интервале углов 2 θ = 10°–70° с шагом сканирования 0.0133° [17]. Обработку результатов осуществляли с помощью программного пакета DIFFRAC EVA. Расчет процентного содержания фаз в образцах и кристаллографических параметров отдельных со-

Рис. 1. Исследованные составы в концентрационном тетраэдре MgO-NiO-B₂O₃-P₂O₅.

единений проводили методом полнопрофильного анализа по методу Ритвельда с использованием программного обеспечения TOPAS 4.2.

Методом рентгенофлуоресцентной спектрометрии (**РФС**) с использованием спектрометра Спектроскан Макс-GVM (Россия) контролировали содержание Mg, Ni, P в синтезированных образцах (условия анализа указаны в табл. 1). Содержание элементов устанавливали с помощью метода фундаментальных параметров, заложенного в программном обеспечении "Спектр-Квант". В табл. 2 представлено сравнение экспериментальных результатов и теоретических значений концентраций основных элементов в образце $Mg_{1.5}Ni_{1.5}BPO_7$. На основании полученных данных можно сделать вывод, что в образце $Mg_{1.5}Ni_{1.5}BPO_7$ сохраняется исходное соотношение Mg : Ni : P. Аналогичные результаты получены для остальных образцов.

ИК-спектры регистрировали на спектрометре Perkin Elmer Spectrum 65 FT-IR в области 4000— 400 см^{-1} с разрешением 2 см⁻¹ [17].

Спектры диффузного отражения в диапазоне 200–1000 нм регистрировали с помощью модульной оптической системы Ocean Optics (дейтериево-галогеновый источник DH-2000-BAL, интегрирующая сфера ISP-80-8-R диаметром 80 мм, детектор QE650000). В качестве образца сравнения использовали стандарт WS-1 (Ocean Optics) из политетрафторэтилена.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Дифрактограммы образцов номинальных составов $Mg_{3-n}Ni_nBPO_7$ (n = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) приведены на рис. 2. Недопированный Mg_3BPO_7 (рис. 2, кривая *I*) содержит ~60 мас. % моноклинной фазы α -Mg₃BPO₇ с примесями ортобората $Mg_3(BO_3)_2$ и ортофосфата магния $Mg_3(PO_4)_2$. Вве-

Элемент	Тип линии	Кристалл- анализатор	Длина волны, мÅ	Экспозиция, с	Напряжение трубки, кВ	Ток трубки, мА
Mg	K_{α}	RbAP	9890.25	50	40	3.5
Ni	$K_{\beta 1}$	LiF200	1500.17	6	40	0.5
Р	K_{α}	PET	6157.90	19	40	3.5

Таблица 1. Условия анализа методом РФС

Элемент	Массовое соотношение, %						
элемент	теоретическое	экспериментальное					
Mg	23.45	23.34 ± 1.13					
Ni	56.63	57.22 ± 2.76					
Р	19.92	19.4 ± 1.05					
Атомное соотношение Mg : Ni : Р							
теоретическое экспериментальное							
	1.50 : 1.50 : 1.00	1.50 : 1.52 : 0.98					

Таблица 2. Результаты элементного анализа образца Mg_{1.5}Ni_{1.5}BPO₇ методом РФС и их сравнение с теоретическими значениями

дение никеля способствует увеличению содержания α-Mg₃BPO₇ в образцах до 90 мас. %. При этом наблюдается монотонное уменьшение объема кристаллической решетки α-Мg₃BPO₇, что может свидетельствовать о частичном встраивании Ni в подрешетку магния. однако процент замешения магния на никель в структуре борофосфата не оценен. Наряду с основной фазой в образцах с n = 0.5 и 1.0 образуются NiO и $Mg_3(PO_4)_2$ (рис. 2, кривые 2 и 3). При увеличении содержания никеля появляется примесь небольшого количества бората никеля, а также ограниченного твердого раствора $(Mg_{1-x}Ni_x)_3(PO_4)_2$, изоструктурного фосфату никеля и устойчивого в интервале $0.4 \le x \le 0.6$ [19] (рис. 2, кривые 4 и 5). Моноклинный борофосфат магния α-Mg₃BPO₇ остается основной фазой вплоть до состава Mg_{0.5}Ni_{2.5}BPO₇, однако начиная с MgNi₂BPO₇ наблюдается образование гексагональной фазы Ni₃BPO₇, изоструктурной β-Zn₃BPO₇ [20] (рис. 2, кривые 5–7). При полной замене магния на никель содержание фазы Ni₃BPO₇ в образце достигает 45 мас. % (рис. 2, кривая 7). Следует отметить, что в данных условиях термообработки борофосфат магния образуется в виде моноклинной фазы, изоструктурной низкотемпературной модификации α-Zn₃BPO₇. По данным ДТА [2], обратимый переход в высокотемпературную фазу β-Mg₃BPO₇ происходит при температуре около 1200°С. После замешения магния на никель стабильной оказывается высокотемпературная модификация борофосфата при охлаждении вплоть до комнатной температуры. Полученный борофосфат никеля Ni₃BPO₇ имеет гексагональную кристаллическую структуру, соответствующую высокотемпературной фазе β-Zn₃BPO_{7.} Таким образом, небольшое уменьшение радиуса катиона приводит к снижению температуры фазового перехода $\beta \leftrightarrow \alpha$ для Ni₃BPO₇ более чем на 1000°С, в то время как для Mg₃BPO₇ переход в β-фазу не достигается из-за плавления. Кристаллическая структура β-Ni₃BPO₇ была рассчитана по данным рентгеновской дифракции

методом полнопрофильного анализа с использованием данных о строении β-Zn₃BPO₇ [9]. Результаты расчета представлены в табл. 3.

рис. 3 представлены ИК-спектры Ha $Mg_{3-n}Ni_{n}BPO_{7}$ (n = 0.0, 1.0, 2.0, 3.0). B VKспектре Мд₃ВРО₇ присутствуют валентные асимметричные/симметричные колебания В-О при 1230/1050 см⁻¹ и Р-О при 1050/990 см⁻¹, а также деформационные колебания треугольников ВО₃ при 790, 750 и 660 см⁻¹ и тетраэдров РО₄ при 560 и 420 см⁻¹, что соответствует результатам, полученным в работе [2]. С увеличением содержания никеля наблюдается расщепление отдельных полос, относящихся к колебаниям В-О, а также небольшое их смещение в низкочастотную область. Полосы поглощения при 1360, 1320, 1270 и 1200 см⁻¹ соответствуют асимметричным, а полосы при 900 см⁻¹ – симметричным валентным колебаниям В-О в треугольниках ВО₃ [21]. Деформационным колебаниям ВО3 отвечают пики при 730, 650, 610, 500, 460 и 420 см⁻¹ [21]. Асимметричные и симметричные валентные колебания Р-О наблюдаются при 1060/1020 и 980 см $^{-1}$, а деформационные колебания в тетраэдре PO_4 — при 630, 570 и 530 см⁻¹ [22].

Результаты исследования оптических свойств образцов Ni₃BPO₇ и Mg_{1.5}Ni_{1.5}BPO₇ в УФ-видимом диапазоне спектра представлены на рис. 4 с помощью функции Кубелки–Мунка [23], которую можно считать прямо пропорциональной поглощению, пренебрегая наличием сильного рассеяния или пропускания света образцами. В полученных спектрах наблюдается ряд интенсивных полос, связанных с электронными переходами с

Таблица 3. Параметры кристаллической ячейки β-Ni₃BPO₇ (пр. гр. *Р*б)

Параметр	a, Å	c, Å	<i>V</i> , Å ³	<i>R</i> _p , %	$R_{wp}, \%$
β -Ni ₃ BPO ₇	8.4108(9)	12.413(1)	760.5(2)	5.5	7.2

Рис. 2. Дифрактограммы Mg_{3 – n}Ni_nBPO₇: *n* = 0 (*1*), 0.5 (*2*), 1.0 (*3*), 1.5 (*4*), 2.0 (*5*), 2.5 (*6*), 3.0 (*7*).

Рис. 3. ИК-спектры Mg_{3 – n}Ni_nBPO₇: n = 0.0 (1), 1.0 (2), 2.0 (3), 3.0 (4).

участием Ni²⁺. Полосу с максимумом при 300 нм можно отнести к полосе переноса заряда Ni(II)–O [24]. Широкие полосы при 360–500 и 600–980 нм

относятся к полосам собственного поглощения Ni^{2+} и имеют множество компонентов, что говорит о низкой симметрии окружения Ni^{2+} и наличии

Рис. 4. Спектры образцов Mg_{3 – n}Ni_nBPO₇: *n* = 3 (*1*) и 1.5 (*2*) в УФ-видимом и ближнем ИК-диапазоне.

у него разных кристаллографических позиций [24]. Полученные полосы нельзя с уверенностью отнести ни к симметричному октаэдрическому, ни к тетраэдрическому окружению [25].

Результаты хорошо согласуются с наличием в структурах α -Mg₃BPO₇ и Ni₃BPO₇ кислородных полиэдров с KЧ = 4 и 5, отличающихся от симметричных октаэдрических и тетраэдрических полиэдров.

ЗАКЛЮЧЕНИЕ

Образцы $Mg_{3-n}Ni_nBPO_7$ (n = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) исследованы методом рентгенофазового анализа, инфракрасной спектроскопии и рентгенофлуоресцентной спектрометрии. Впервые экспериментально получена кристаллическая фаза Ni_3BPO_7 со структурой β - Zn_3BPO_7 . При изменении состава от Mg_3BPO_7 к Ni_3BPO_7 наблюдается область ограниченных твердых растворов, изоструктурных моноклинному α - Zn_3BPO_7 и гексагональному β - Zn_3BPO_7 . Анализ спектров диффузного отражения образца $Mg_{1.5}Ni_{1.5}BPO_7$ показал наличие интенсивных полос поглощения Ni^{2+} в УФ-видимом и ближнем ИК-диапазоне.

БЛАГОДАРНОСТЬ

Исследования проводили с использованием оборудования ЦКП ФМИ ИОНХ РАН.

ФИНАНСИРОВНИЕ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Liebertz J., Stähr S. // Z. Kristallogr. 1982. V. 160. P. 135.
- Gözel G., Baykal A., Kizilyalli M. et al. // Ceram Soc. 1998. V. 18. № 14. P. 2241. https://doi.org/10.1016/S0955-2219(98)00152-6
- 3. *Li H.-R., Cao S.-K., Zhuang N.-F. et al.* // Chin. J. Struct. Chem. 2014. V. 33. № 2. P. 209. http://ma-nu30.magtech.com.cn/jghx/EN/Y2014/V33/12/209
- 4. *Wang G., Wu Y., Fu P. et al.* // Chem. Mater. 2002. V. 14. № 5. P. 2044. https://doi.org/10.1021/cm010617v
- Wu Y., Wang G., Fu P. et al. // J. Sinthetic Cryst. 2000. V. 29. № 2. P. 130. http://rgjtxb.jtxb.cn/EN/Y2000/V29/I2/130
- Wu Y., Wang G., Fu P. et al. // J. Cryst. Growth. 2001. V. 229. № 1–4. P. 205. https://doi.org/10.1016/S0022-0248(01)01121-6
- 7. *Ma H.W., Liang J.K., Wu L. et al.* // J. Solid. State Chem. 2004. V. 177. № 10. P. 3454. https://doi.org/10.1016/j.jssc.2003.12.027
- 8. *Aziz S.M., Umar R., Yusoff N.B.M. et al.* // Malaysian J. Fundam. Appl. Sci. 2020. V. 16. № 4. P. 524. https://doi.org/10.11113/MJFAS.V16N5.1941
- 9. *Zhang J., Han B., Li P. et al.* // J. Mater. Sci. Mater. Electron. 2014. V. 25. № 8. P. 3498. https://doi.org/10.1007/s10854-014-2045-5
- Zhang F., Zhang T., Li G., Zhang W. // J. Alloys Compd. 2015. V. 618. P. 484. https://doi.org/10.1016/j.jallcom.2014.08.178
- Cao X., Liu W., Liu S. et al. // J. Alloys Compd. 2016. V. 665. P. 204. https://doi.org/10.1016/j.jallcom.2016.01.052

751

- Zhang J., Zhang X., Chen C. et al. // J. Mater. Sci. Mater. Electron. 2018. V. 29. № 8. P. 6543. https://doi.org/10.1007/s10854-018-8636-9
- Yilmaz A., Bu X., Kizilyalli M. et al. // J. Solid State Chem. 2001. V. 156. № 2. P. 281. https://doi.org/10.1006/jssc.2000.8963
- Ülker E., Akbari S.S., Karadas F. // Mater. Chem. Phys. 2022. V. 288. P. 126390. https://doi.org/10.1016/j.matchemphys.2022.126390
- Gou W., He Z., Yang M. et al. // Inorg. Chem. 2013. V. 52. № 5. P. 2492. https://doi.org/10.1021/ic3023979
- 16. Han B., Li P., Zhang J. et al. // Opt. Mater. 2015. V. 42. P. 476. https://doi.org/10.1016/j.optmat.2015.01.044
- 17. Smirnova M.N., Kop'eva M.A., Nipan G.D. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1823. https://doi.org/10.1134/S0036023622600824
- Смирнова М.Н., Копьева М.А., Нипан Г.Д. и др. // Докл. РАН. Химия, науки о материалах. 2022. Т. 506. С. 43. https://doi.org/10.31857/S2686953522600167

- Nord A.G., Stefanidis T. // Phys. Chem. Minerals. 1983.
 V. 10. P. 10. https://doi.org/10.1007/BF01204320
- 20. *Zhang E., Zhao S., Zhang J. et al.* // Acta Crystallogr., Sect. E: Structure Reports Online. 2011. V. 67. № 1. P. i3. https://doi.org/10.1107/S1600536810051871
- Morkan A., Gul E., Morkan I. et al. // Int. J. Appl. Ceram. Technol. 2018. V. 15. № 6. P. 1584. https://doi.org/10.1111/ijac.13024
- Manajan R., Prakash R. // Mater. Chem. Phys. 2020.
 V. 246. P. 122826. https://doi.org/10.1016/j.matchemphys.2020.122826
- 23. *Kubelka P., Munk F. A.* // Z. Technol. Phys. 1931. V. 12. P. 593.
- 24. *Tena M.A., Mendoza R., Garcia J.R. et al.* // Results Phys. 2017. V. 7. P. 1095. https://doi.org/10.1016/j.rinp.2017.02.021
- 25. Sakurai T., Ishigame M., Arashi H. // J. Chem. Phys. 1969. V. 70. P. 3241. https://doi.org/10.1063/1.1671546