_____ ФИЗИЧЕСКИЕ МЕТОДЫ ____ ИССЛЕДОВАНИЯ

УДК 544.45+546.05

Публикация посвящена 50-летию чл.-корр. РАН К.Ю. Жижина

ВЛИЯНИЕ СООТНОШЕНИЯ ИСХОДНЫХ КОМПОНЕНТОВ В СИСТЕМЕ Ті-В НА СТРУКТУРУ И СВОЙСТВА МАТЕРИАЛОВ, ПОЛУЧЕННЫХ МЕТОДОМ СВС-ЭКСТРУЗИИ

© 2023 г. А. С. Константинов^{а,} *, А. П. Чижиков^а, М. С. Антипов^а, П. М. Бажин^а

^аИнститут структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова РАН, ул. Академика Осипьяна, 8, Черноголовка, 142432 Россия *e-mail: mora 1997@mail.ru Поступила в редакцию 30.12.2022 г. После доработки 31.01.2023 г. Принята к публикации 02.02.2023 г.

Изучено влияние соотношения исходных компонентов порошков титана и бора на температуру и скорость горения в режиме самораспространяющегося высокотемпературного синтеза, а также на микроструктуру, фазовый состав и физико-механические свойства стержней, полученных методом CBC-экструзии. Объектами исследования служили материалы с расчетным фазовым составом продуктов синтеза TiB-(20-40) мас. % Ti. Рассмотрен вопрос об образовании твердого раствора бора в титане. На основании результатов СЭМ, РФА и измеренных механических характеристик установлена текстурированность полученных материалов (вискеры TiB выстраиваются вдоль направления приложения внешнего давления). Электрическая проводимость всех изученных составов близка к проводимости чистого титана, а при увеличении массовой доли бора происходит незначительное повышение электрического сопротивления. Установлено, что с ростом массовой доли твердого раствора бора с ло 1.7 раза.

Ключевые слова: борид титана, самораспространяющийся высокотемпературный синтез, композит, вискер, текстура

DOI: 10.31857/S0044457X22602395, EDN: UFZSSY

введение

Композиционные материалы на основе титановой матрицы (ТМС) обеспечивают наиболее высокую удельную прочность и модуль упругости по сравнению со стальными и никелевыми материалами [1, 2]. Высокотемпературные ТМС могут обеспечить до 50% снижение массы конструкции по сравнению с монокристаллическими суперсплавами, сохраняя при этом эквивалентную прочность и жесткость в реактивных двигателях авиационной техники и ракетостроения [3, 4]. Благодаря нетоксичности, биоактивности и биосовместимости титана ТМС на его основе получают все большее признание в области биомедицинских имплантатов [5–9]. Спектр применения ТМС находится в областях, требующих от материала и изделия на его основе высоких значений коррозионной стойкости, высокой твердости, износостойкости и стабильности при повышенных температурах [10–12]. Независимо от вида упрочнения непрерывными волокнами [13–16] или мелкодисперсными частицами [17, 18], уникальные свойства ТМС выдвигают их на передний план обширных программ исследований и разработок по всему миру [19].

Упрочняющие фазы могут быть включены в матрицу двумя типами методов: ex situ и in situ в зависимости от того, происходят ли химические реакции при взаимодействии с матрицей. При ех situ производственных процессах стоимость конечного изделия возрастает в разы в соответствии с расходом трудо- и энергозатрат. Под воздействием высоких температур и давлений в ТМС образуются нежелательные вторичные фазы. возникают дефекты кристаллической решетки, а адгезионная прочность межфазных границ понижается [20, 21]. Наиболее прочная межфазная связь возникает между матрицей и упрочняющими частицами в случае применения методов in situ, что приводит к повышению трибологических показателей конечного материала [22]. Синтези-

Расчетный фазовый состав продуктов СВС-экструзии	TiB–20 мас. % Ti	ТіВ–30 мас. % Ті	TiB–40 мас. % Ti
Номер образца	1	2	3
Исходные компоненты, мас. % Ті	85.3	87.1	89.0
В	14.7	12.9	11.0
Относительная плотность	0.44	0.46	0.49
Температура горения, °С	1780	1700	1660
Скорость распространения фронта горения, мм/с	12.6	12.0	11.3
Давление плунжера пресса, МПа	50	50	50
Скорость перемещения плунжера пресса, мм/с	55	60	65
Время задержки перед приложением давления, с	4.0	4.5	5.0

Таблица 1. Исходные компоненты и параметры СВС-экструзии

рованные *in situ* вискеры TiB считаются одной из наиболее эффективных упрочняющих фаз для TMC из-за их хорошей химической совместимости, близких значений плотности и коэффициента термического расширения с титаном [23, 24].

На сегодняшний день для получения ТМС используется большое количество технологий: искровое плазменное спекание [25, 26], селективное лазерное спекание [11, 27], плазменная наплавка [28], горячее изостатическое прессование [29], самораспространяющийся высокотемпературный синтез (СВС) [30-34] и др. Метод СВС представляет собой процесс послойного прохождения волны экзотермической химической реакции по образцу. При этом выделяемая энергия передается от слоя к слою, инициируя в нем химическую реакцию. Разработанная на базе СВС технология СВСэкструзии сочетает в себе процесс горения в режиме СВС с совместным воздействием высокотемпературного сдвигового деформирования, что позволяет за десятки секунд получать ТМС с заданной структурой и свойствами [35-40].

В данной работе методом CBC-экструзии получены цилиндрические стержни из порошковых материалов на основе системы Ti–B. Целью настоящего исследования являлось изучение влияния соотношения исходных компонентов – порошков титана и бора – на температуру и скорость горения в режиме CBC, микроструктуру, фазовый состав и физико-механические свойства стержней, полученных методом CBC-экструзии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В данной работе для получения ТМС на основе системы Ti-B в качестве исходных реагентов использовали коммерчески доступные порошки титана (99.1 мас. %, 45 мкм) и бора (аморфный черный, 18.4 мас. %, 10 мкм). В качестве составов для проведения CBC-экструзии подобраны три, обладающих наилучшей способностью к формованию [41] (табл. 1). С учетом фазовой диаграммы Ti-B выбранные смеси порошков расположены близко к точке перитектики ($t = 2200^{\circ}$ C). При этом реакцией, определяющей распространение волны горения, является реакция образования моноборида титана [34].

Порошки титана и бора предварительно сушили в течение 7 ч и перемешивали в шаровых мельницах со скоростью вращения барабана 20 об/мин при атмосферном давлении и комнатной температуре в течение 12 ч. Просушенные порошки прессовали в цилиндрические образцы массой 35 г, диаметром 25 мм. Цилиндрические образцы помещали в пресс-форму и вольфрамовой спиралью инициировали СВС. Фронт горения представлял собой плоскую волну, которая распространялась со скоростью 11.3-12.6 мм/с в зависимости от исходного состава (табл. 1). Через время задержки 4-5 с синтезируемый материал подвергали сдвиговому высокотемпературному деформированию через фильеру диаметром 4 мм. Указанные условия реализуются в методе СВС-экструзии [41-46]. В результате были получены цилиндрические стержни длиной до 300 мм.

Рентгенофазовый анализ (РФА) полученных материалов проводили на дифрактометре ДРОН-3М. Регистрацию рентгенограмм вели с измельченных в порошок стержней в режиме пошагового сканирования на излучении CuK_a в интервале углов $2\theta = 30^{\circ} - 80^{\circ}$ с шагом 0.02 и экспозицией 2 с. Микроструктуру стержней исследовали на продольном и поперечном сечениях с помощью сканирующего электронного микроскопа с полевой эмиссией Ultra plus (Carl Zeiss, Германия) сверхвысокого разрешения (SEM). Пористость измеряли методом гидростатического взвешивания, микротвердость определяли на микротвердомере ПМТ-3. измерение предела прочности при трехточечном изгибе проводили на испытательной машине РЭМ-20А (Метротест, РФ).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На дифракционной картине всех трех исследуемых составов можно наблюдать двухфазный про-

Рис. 1. Результаты РФА составов ТіВ-20 мас. % Ті, ТіВ-30 мас. % Ті, ТіВ-40 мас. % Ті.

дукт, в котором упрочняющей фазой является моноборид титана TiB (рис. 1). Дифракционные линии Ті существенно смещены в область меньших углов, что свидетельствует об увеличении параметров кристаллической ячейки и связано с образованием твердого раствора на основе титана. В качестве химических элементов, которые могли бы внедриться в решетку титана при СВС-экструзии, могли выступить бор, кислород или азот. При проведении СВС-экструзии шихтовая смесь находится в относительно изолированной от атмосферы воздуха камере пресс-формы (это не вакуум, но доступ воздуха затруднен). Можно предположить, что наличие кислорода и азота связано с их присутствием на поверхности исходных порошков в адсорбированном состоянии или в замкнутом поровом пространстве. Оценка количества кислорода для образования твердого раствора Ti[O]_{0.325} показывает, что при массе исходного образца ~10 г требуется ~1 л O₂. В работе масса образцов составляла 35 г, что должно соответствовать ~3.5 л кислорода. Такое содержание кислорода на поверхности частиц исходной смеси в адсорбированном состоянии или в виде оксидов маловероятно. Энерголисперсионный анализ свидетельствует об отсутствии азота и кислорода в составе синтезированного материала (рис. 2). Следовательно, образование твердых растворов кислорода или азота в титане за счет наличия остатков воздуха в порах исключено. Растворимость бора в титане, согласно равновесной диаграмме состояний при нормальных условиях, не превышает 0.05%. В работе [34] в инертной атмосфере методом СВС без высокотемпературного сдвигового воздействия также был получен материал с наличием бора в α-Ті. Параметры элементарной ячейки фазы твердого раствора Ti[B]_x (a = 2.9703, c = 4.7785 Å) [34], имеющего, как и α -Ti, гексагональную структуру, соответствуют параметрам ячейки фазы, полученной в настоящей работе (табл. 2). Таким образом, сделан вывод, что фаза, образовавшаяся в условиях СВС-экструзии, является твердым раствором бора в α -Ti с узким пределом концентрации и не зависит от массовой доли бора в исходной смеси.

Микроструктура всех полученных материалов представлена матрицей, как установлено выше, на основе твердого раствора Ti[B]_x и равномерно распределенной в ней упрочняющей фазой моно-

Таблица 2. Параметры ячейки твердых растворов B, O, N в α -Ti

Фаза	Параметры ячейки TiB			
Ψasa	<i>a</i> , Å	<i>c</i> , Å		
α-Ti PDF № 000-004-1294	2.951	4.683		
Ti[N] _{0.3} PDF № 000-041-1352	2.974	4.792		
Ti[O] _{0.325} PDF № 001-073-1581	2.970	4.775		
Ti[B] _x [34]	2.970	4.778		
Ti[B] _x 1 (TiB–20 мас. % Ti)	2.972	4.723		
Ti[B] _x 2 (TiB–30 мас. % Ti)	2.970	4.770		
Ті[В] _x 3 (ТіВ–40 мас. % Ті)	2.966	4.771		

Рис. 2. СЭМ стержней ТіВ-30 мас. % Ті в продольном (а) и в поперечном (б) сечениях.

борида титана (TiB) (рис. 3). Зерна TiB имеют вытянутую форму вискеров с длиной, значительно превосходящей их ширину. Увеличение доли свободного титана в смеси от 20 до 40 мас. % приводит к росту доли жидкой фазы в процессе синтеза, что влечет за собой увеличение времени задержки (от 4 до 5 с) для нахождения материала в оптимальном температурно-временном интервале при приложении внешнего давления. В таком интервале материал обладает необходимым уровнем пластичности для получения компактного материала (композита). За счет сдвигового деформирования при СВС-экструзии происходит залечивание образовавшихся пор, трещин и дефектов, что положительно сказывается на свойствах компактного материала. Установлено, что с увеличением содержания доли твердого раствора бора в титане Ti[B]_x с 20 до 40 мас. % наблюдается некоторое снижение размеров, образующихся вискеров. В данном случае имеет место конкуренция двух факторов. Во-первых, при уменьшении количества боридной составляющей снижается число центров кристаллизации и увеличивается их отдаленность друг от друга, появляется возможность для роста более крупных вискеров. В результате в синтезированных материалах локально наблюдаются вискеры шириной до 10 мкм и длиной до 30 мкм (табл. 3). Во-вторых, увеличение доли свободного титана в материале приводит к снижению температуры горения с 1780 до 1660°С за счет того, что часть теплоты расходуется на нагрев и плавление свободного титана. Чем меньше температура горения изучаемого состава, тем быстрее остывает синтезированный материал, что предотвращает рост вискеров TiB.

Для изучения структурных и фазовых составляющих полученные стержни разрезали в продольных и поперечных сечениях, после этого шлифы подвергали химическому травлению в растворе 30% HNO₃ + 3% HF (рис. 3). Предпочтительным ростом кристаллов моноборида титана является направление [010], что становится причиной образования TiB в форме вискеров. Их длина может многократно превышать поперечные размеры. Вискеры TiB образуют шестигранники в поперечном сечении, ограниченные плоскостями (100), (101) и (101). Реализованное в процессе CBC-экструзии высокотемпературное сдвиговое дефор-

Номер образца	Состав	Ширина вискеров, мкм	Длина вискеров, мкм
1	TiB–20 мас. % Ti	1-10	2-20
2	TiB–30 мас. % Ti	1-8	2-30
3	TiB–40 мас. % Ti	0.05-5	1-30

Таблица 3. Характерные размеры вискеров ТіВ

Рис. 3. СЭМ стержней составов: TiB–40 мас. % Ti (a); TiB–30 мас. % Ti (б); TiB–20 мас. % Ti (в).

мирование приводит к ориентации макрообъемов и вискеров ТіВ вдоль направления приложенного внешнего давления. Это отличает их от материалов на основе системы Ті–В, полученных методом свободного CBC-сжатия, где вискеры ТіВ выстраиваются в плоскости, перпендикулярной вектору приложенного внешнего давления [42].

Физико-механические свойства полученных стержней представлены в табл. 4. Микротвердость стержней измеряли в продольном и поперечном сечениях. Во всех случаях микротвердость в поперечных сечениях выше, что также подтверждает образование текстурированности в полученных материалах. Установлено, что с увеличением доли свободного титана снижается пористость за счет увеличенного объема титановой матрицы, которая при сдвиговом деформировании в большей степени заполняет поры в материале. Для всех полученных составов измерена электропроводность при комнатной температуре. Установлено, что проводимость всех изученных электродов близка к проводимости чистого титана, а при увеличении массовой доли бора в составе происходит незначительное повышение сопротивления. Также установлено, что с увеличением доли титановой матрицы в материале снижается микротвердость. Прочность при трехточечном изгибе увеличивается от 310 до 520 МПа с ростом массовой доли Ti[B], от 20 до 40 мас. %, что соответствует уровню свойств материалов, полученных методом СВС-прессования [33].

ЗАКЛЮЧЕНИЕ

Методом CBC-экструзии из порошковых смесей Ті и В получены цилиндрические стержни диаметром 4 мм и длиной до 300 мм. Исследование фазового состава показало, что материал содержит фазу TiB с орторомбической структурой и фазу твердого раствора бора в титане α -Ti[B]. Установлено, что содержание бора в α -Ti[B] существенно превышает его равновесное содержание по диаграмме состояний. С увеличением доли твердого раствора бора в титане Ti[B]_x от 20 до 40 мас. % снижается размер вискеров TiB. Результаты СЭМ и измерений физико-механических свойств указывают на образование текстуриро-

Номер образца	Состав, мас. %	ρ × 10 ^{−7} , Ом м	σ×10 ⁶ , S/м	Пористость, %	Микротвердость (продольное/поперечное сечение), HV	Прочность на изгиб, МПа
1	ТіВ-20 мас. % Ті	2.416	4.139	3-7	1217/1305	310 ± 10
2	ТіВ–30 мас. % Ті	2.222	4.500	3-4	1112/1240	411 ± 10
3	ТіВ–40 мас. % Ті	2.115	4.728	2-3	935/1014	520 ± 10

Таблица 4. Физико-механические свойства полученных материалов

ванности в материале стержней. Показано, что в процессе CBC-экструзии вискеры TiB выстраиваются вдоль направления приложенного внешнего давления. Электрическая проводимость всех изученных составов близка к проводимости чистого титана, а при увеличении массовой доли бора в составе происходит незначительное повышение сопротивления. Установлено, что с ростом массовой доли Ti[B]_x от 20 до 40 мас. % в материале прочность при трехточечном изгибе увеличивается до 1.7 раза.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Hayat M.D., Singh H., He Z., Cao P. // Composites Part A. 2019. V. 121. P. 418. https://doi.org/10.1016/j.compositesa.2019.04.005
- Zhang Y., He S., Yang W. et al. // Mater. 2019. V. 12. № 23. P. 4006.
- https://doi.org/10.3390/ma12234006
 3. *Joseph A.O., Jina Z., Yang H., Matthew S.D.* // ACS Appl. Nano Mater. 2020. V. 3. № 8. P. 8208.
- https://doi.org/10.1021/acsanm.0c01640
 Anil V.K., Gupta R.K., Prasad M.J.N.V.,
- *Narayana M.S.V.S.* // J. Mater. Res. 2021. V. 36. № 3. P. 689. https://doi.org/10.1557/s43578-021-00104-w
- Comín R., Cid M.P., Grinschpun L. et al. // J. Appl. Biomater. Funct. Mater. 2017. V. 15. № 3. P. 176. https://doi.org/10.5301/jabfm.5000340
- Chen Y., Zhang J., Dai N. et al. // Electrochim. Acta. 2017. V. 232. P. 89. https://doi.org/10.1016/j.electacta.2017.02.112
- Sousa L., Alves A.C., Costa N.A. et al. // J. Alloys Compd. 2022. V. 896. № 162965. https://doi.org/10.1016/j.jallcom.2021.162965
- Chen T., Li W., Liu D. et al. // Ceram. Int. 2021. V. 47. № 1. P. 755. https://doi.org/10.1016/j.ceramint.2020.08.186
- Otte J.A., Zou J., Patel R. et al. // Nanomater. 2020. V. 10. № 12. P. 1. https://doi.org/10.3390/nano10122480
- An Q., Huang L., Jiang S. et al. // Ceram. Int. 2020.
 V. 46. № 6. P. 8068. https://doi.org/10.1016/j.ceramint.2019.12.032

- Feng Y., Feng K., Yao C. et al. // Mater. Des. 2018.
 V. 157. P. 258. https://doi.org/10.1016/j.matdes.2018.07.045
- Tao X., Yao Z., Zhang S. et al. // Surf. Coat. Technol. 2018. V. 337.
- https://doi.org/10.1016/j.surfcoat.2018.01.054
- Zhang G., Li S., Qu H. et al. // Adv. Mater. Sci. Eng. 2022. V. 20. 8906135 https://doi.org/10.1155/2022/8906135
- Pathi H., Mishri T.K., Panigrahi S.R. et al. // East Eur. J. Phys. 2021. № 3. P. 5. https://doi.org/10.26565/2312-4334-2021-3-01
- Sanguigno L., Lepore M.A., Maligno A.R. // Adv. Transdisciplinary Eng. 2021. V. 15. P. 159. https://doi.org/10.3233/ATDE210030
- *Zhang G., Yuan M., Hou H.* // J. Plast. Eng. 2020. V. 27. № 9. P. 117. https://doi.org/10.3969/j.issn.1007-2012.2020.09.017
- Weng F., Yu H., Du X. et al. // Ceram. Int. 2022. V. 48. № 5. P. 7056. https://doi.org/10.1016/j.ceramint.2021.11.263
- Song Y., Qiu F., Savvakin D. et al. // Mater. 2022. V. 15. № 3. P. 1049. https://doi.org/10.3390/ma15031049
- 19. Muhammad D.H., Harshpreet S., Zhen H., Peng C. // Composites Part A. 2019. V. 121. P. 418. https://doi.org/10.1016/j.compositesa.2019.04.005
- 20. *Van P.P.* // Eng. Struct. 2021. V. 229. 111567. https://doi.org/10.1016/j.engstruct.2020.111567
- Yang Y., Chen J., Huang Z. // Int. J. Damage Mech. 2020. V. 29. № 1. P. 67. https://doi.org/10.1177/1056789519854488
- 22. Dadbakhsh S., Mertens R., Hao L. et al. // Adv. Eng. Mater. 2019. V. 1. 1801144. https://doi.org/10.1002/adem.201801244
- 23. Bazhin P.M., Konstantinov A.S., Chizhikov A.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. Р. 2040. [Бажин П.М., Константинов А.С., Чижиков А.П. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1829. https://doi.org/10.31857/S0044457X22601225]. https://doi.org/10.1134/S0036023622601696
- 24. Xie L., Ren S., Yin F. // Mater. Charact. 2023. V. 195. 112511. https://doi.org/10.1016/j.matchar.2022.112511
- Tian N., Dong L.L., Wang H.L. et al. // J. Alloys Compd. 2021. V. 867. https://doi.org/10.1016/j.jallcom.2021.159093
- 26. *Wu H., Lei C., Du Y. et al.* // Ceram. Int. 2021. V. 47. № 8. P. 11423. https://doi.org/10.1016/j.ceramint.2020.12.269

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 6 2023

- 27. Huo P., Zhao Z., Du W., Bai P. // Ceram. Int. 2021. V. 47. № 14. P. 19546. https://doi.org/10.1016/j.ceramint.2021.03.292
- 28. *Wang M., Cui H., Wei N. et al.* // ACS Appl. Mater. Interfaces. 2018. V. 10. № 4. P. 4250. https://doi.org/10.1021/acsami.7b17286
- Peng Y.B., Zhang W., Mei X.L. et al. // Mater. Today Commun. 2020. V. 24. https://doi.org/10.1016/j.mtcomm.2020.101009
- Lapshin O.V., Boldyreva E.V., Boldyrev V.V. // Russ. J. Inorg. Chem. 2021. V. 66. № 3. Р. 433. [Лапшин О.В., Болдырева Е.В., Болдырев В.В. // Журн. неорган. химии. 2021. Т. 66. № 3. С. 402. https://doi.org/10.31857/S0044457X21030119] https://doi.org/10.1134/S0036023621030116
- Chizhikov A.P., Konstantinov A.S., Bazhin P.M. // Russ. J. Inorg. Chem. 2021. V. 66. № 8. Р. 1115. [Чижиков А.П., Константинов А.С., Бажин П.М. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1002. https://doi.org/10.31857/S0044457X21080031] https://doi.org/10.1134/S0036023621080039
- 32. Radishevskaya N.I., Nazarova A.Y., L'vov O.V. et al. // Inorg. Mater. 2020. V. 56. № 2. Р. 142. [Радишевская Н.И., Назарова А.Ю., Львов О.В. и др. // Неорган. материалы 2020. Т. 56. № 2. С. 151.] https://doi.org/10.1134/S0020168520010112
- 33. Zhang X., Xu Q., Han J. et al. // Mater. Sci. Eng. 2003. P. 41. https://doi.org/10.1016/S0921-5093(02)00635-4
- Kovalev D. Yu., Konstantinov A.S., Konovalikhin S.V. et al. // Combust. Explosion Shock Waves. 2020. V. 56. № 6. Р. 648. [Ковалев Д.Ю., Константинов А.С., Коновалихин С.В. и др. // Физика горения и взрыва. 2020. Т. 56. № 6. С. 33. https://doi.org/10.15372/FGV20200604] https://doi.org/10.1134/S0010508220060040

- 35. Podlesov V.V., Radugin A.V., Stolin A.M., Merzhanov A.G. // Inzhenerno-Fizicheskii Zhurnal. 1992. V. 63. № 5. P. 525.
- Bazhin P.M., Konstantinov A.S., Chizhikov A.P. et al. // Mater. Today Commun. 2020. V. 25. P. 101484. https://doi.org/10.1016/j.mtcomm.2020.101484
- 37. Stel'makh L.S., Stolin. A.M., Bazhin. P.M. // Inorg. Mater. 2020. V. 56. № 7. P. 695. https://doi.org/10.1134/S0020168520070158
- Konstantinov A.S., Bazhin P.M., Stolin A.M. et al. // Composites Part A. 2018. V. 108. P. 79. https://doi.org/10.1016/j.compositesa.2018.02.027
- 39. *Bazhin P.M., Kostitsyna E.V., Stolin A.M. et al.* // Ceram. Int. 2019. V. 45. № 7. P. 9297. https://doi.org/10.1016/j.ceramint.2019.01.188
- 40. *Bolotskaya A.V., Mikheev M.V.* // Refract. Ind. Ceram. 2020. V. 61. № 3. P. 336. https://doi.org/10.1007/s11148-020-00483-3
- 41. Antipov M.S., Bazhin P.M., Chizhikov A.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. Р. 1658. [Антипов М.С., Бажин П.М., Чижиков А.П. и др. // Журн. неорган. химии. 2022. Т. 67. № 10. С. 1498. https://doi.org/10.31857/S0044457X22100361] https://doi.org/10.1134/S0036023622100564
- 42. Bazhin P, Chizhikov A., Stolin A. et al. // Ceram. Int. 2021. V. 47 P. 28444. https://doi.org/10.1016/j.ceramint.2021.06.262
- 43. *Stolin A.M., Bazhin P.M.* // J. SHS. 2014. V. 23. № 2. P. 65. https://doi.org/10.3103/S1061386214020113
- 44. *Bazhin P.M., Stolin A.M., Alymov M.I.* // Nanotechnol. Russ. 2014. V. 9. № 11–12. P. 583. https://doi.org/10.1134/S1995078014060020
- 45. Bazhin P.M., Kostitsyna E.V., Stolin A.M. et al. // Ceram. Int. 2019. V. 45. № 7. P. 9297. https://doi.org/10.1016/j.ceramint.2019.01.188
- 46. *Bazhin P.M., Stolin A.M., Shcherbakov V.A. et al.* // Dokl. Chem. 2010. V. 430. № 2. P. 58. https://doi.org/10.1134/S0012500810020072