____ КООРДИНАЦИОННЫЕ __ СОЕЛИНЕНИЯ

УДК 541.49+537.622

Публикация посвящена 50-летию чл.-корр. РАН К.Ю. Жижина

СПИН-КРОССОВЕР В КОМПЛЕКСАХ ЖЕЛЕЗА(II) С ПОЛИАЗОТИСТЫМИ ГЕТЕРОЦИКЛИЧЕСКИМИ ЛИГАНДАМИ И ВНЕШНЕСФЕРНЫМИ КЛАСТЕРНЫМИ АНИОНАМИ БОРА (ОБЗОР)

© 2023 г. Л. Г. Лавренова^a, *, О. Г. Шакирова^b

^аИнститут неорганической химии им. А.В. Николаева СО РАН, пр-т Академика Лаврентьева, 3, Новосибирск, 630090 Россия ^bКомсомольский-на-Амуре государственный университет, пр-т Ленина. 27. Комсомольск-на-Амуре, 681013 Россия

*e-mail: ludm@niic.nsc.ru
Поступила в редакцию 21.01.2023 г.
После доработки 06.03.2023 г.
Принята к публикации 07.03.2023 г.

Рассмотрены результаты синтеза и исследования магнитно-активных комплексов железа(II) с полиазотистыми гетероциклическими лигандами и внешнесферными кластерными анионами бора. В качестве лигандов представлены производные 1,2,4-триазола, mpuc(пиразол-1-ил)метана, 2,6- δuc (1H-имидазол-2-ил)пиридина, в роли внешнесферных анионов исследованы декагидро- κ лозо-декаборат, додекагидро- κ лозо-додекаборат, декахлор- κ лозо-декаборат, 1,5,6,10-тетра(R)-7,8-дикарба- μ и- θ о-ундекабораты (R = H, Cl, Br). Получен ряд комплексов железа(II), в котором проявляется спин-кроссовер, в большинстве случаев сопровождающийся термохромизмом. Рассмотрено влияние природы лиганда и кластерного аниона на температуру (T_c) и характер спинового перехода. В частности, по-казано, что введение в состав кластерного аниона заместителя, повышающего электронную плотность по системе сопряженных трехцентровых двухэлектронных связей, приводит к увеличению силы поля лиганда, который связан с анионом сетью водородных связей.

Ключевые слова: комплексы, железо(II), 1,2,4-триазолы, *трис*(пиразол-1-ил)метаны, 2,6-*бис*(1H-имидазол-2-ил)пиридины, *клозо*-бораты, карбораны, спин-кроссовер

DOI: 10.31857/S0044457X2360010X, EDN: UGIBJD

ВВЕДЕНИЕ

Координационные соединения железа(II) с полиазотсодержащими лигандами вызывают особый интерес вследствие того, что во многих из них проявляется феномен спин-кроссовера (**CKO**) — явления изменения спиновой мультиплетности под воздействием внешних условий, а именно: температуры, давления, облучения светом определенной длины волны, внешнего магнитного или электрического поля, управляемой светом изомеризации лигандов и сольватации/десольватации [1-10]. Достаточно часто СКО сопровождается термохромизмом - обратимым изменением цвета при температуре спинового перехода. Такие бистабильные молекулярные сенсоры могут быть востребованы для широкого спектра применения, в том числе в области нанотехнологий: устройства отображения и памяти, датчики [9, 11, 12], контрастные вещества МРТ [13], термоэлектрохимические ячейки [14] и т. д.

Спин-кроссовер в комплексах железа(II) 1 A₁ \leftrightarrow 5 T₂ — это не только обратимый переход центрального атома металла из низкоспинового (НС) в высокоспиновое (ВС) состояние, но и фазовый переход, поэтому его характер зависит от многих факторов. Переход может быть резким или постепенным, полным или неполным, с гистерезисом на кривой зависимости $\mu_{ad}(T)$ или без него, одно-, двух- или даже многоступенчатым. Температуры прямого перехода при нагревании $(T_c \uparrow)$ и обратного при охлаждении $(T_c \downarrow)$ при наличии гистерезиса зависят от состава соединений: природы лиганда, заместителя в лиганде, природы аниона, присутствия и числа молекул воды, структуры комплекса и т.д. Вследствие этого проводится поиск и исследование новых комплексов, демонстрирующих как термически индуцированный спин-кроссовер, так и LIESST (light-induced excited spin state trapping) [15, 16], а также изучение факторов, влияющих на характер СКО [17]. Большое внимание привлечено к поиску соединений, проявляющих бифункциональные свойства [18—21]. Кроме того, проводятся исследования комплексов, обладающих СКО, в растворах [22, 23].

Электронодефицитные кластерные анионы $[B_nH_n]^{2-}$ (n=10,12) при взаимодействии с ионами металлов-комплексообразователей могут проявлять функцию как лигандов, так и внешнесферных анионов. Реакции с M^{n+} клозо-боратов $[B_nH_n]^{2-}$ за счет координации кластерных анионов бора через ВН-группы приводят к образованию соединений с разнообразными составом и структурой [24-26]. Сведения о влиянии природы заместителей на координационные свойства моно- и дизамещенных производных кластерных анионов $[B_nH_n]^{2-}$ (n=10,12) и карборанов с экзополиэдрическими B-X-связями (X=N,0,S,Hal) систематизированы в обзоре [27].

Анионные кластеры бора – клозо-бораты и карбораны – очень устойчивы, нетоксичны, гидрофильны, биосовместимы и способны проникать через мембраны, вследствие чего они обладают фармакологическими свойствами широкого спектра действия [28-31]. Эти соединения перспективны для создания цитотоксических препаратов и в качестве препаратов для бор-нейтронозахватной терапии (БНЗТ), в бинарном методе лечения рака, основанном на ядерной реакции между атомами бора и низкоэнергетическими тепловыми нейтронами [32-34]. Соединения, содержащие кластерные анионы бора, могут применяться также в качестве контрастных агентов высокоэффективной МРТ [35]. Кроме того, они перспективны в антимикробной терапии [36].

Развивающиеся методы магнитного контроля и диагностики [37] направляют внимание химиков на получение магнитно-активных комплексов 3d-металлов, которые позволят транспортировать бор направленным действием магнитного поля более эффективно.

Металлы первого переходного ряда (Zn(II), Fe(II), Co(II), Ni(II), Cu(II), Mn(II)) образуют катионные комплексы с кластерными анионами бора в качестве противоионов [38–42]. В частности, с железом(II) в качестве центрального иона выделены аквакомплексы [38] и комплексы с азотсодержащими лигандами — 2,2'-дипиридилом, 2,2'-бипиридиламином и 1,10-фенантролином [39–42].

Вторичные взаимодействия, в которых участвуют декахлор-*клозо*-декаборат-анионы, изучены в сольватах [Fe(phen)₃][B₁₀Cl₁₀] \cdot 0.875CH₃CN \cdot 0.125H₂O (a), {[Fe(bipy)₃][B₁₀Cl₁₀]} \cdot 2Bipy \cdot 0.5CH₃CN (b), {[Fe(bipy)₃]₂[B₁₀Cl₁₀]₂} \cdot 2.25CH₃CN (c) и [Fe(bi-

ру) $_3$] $_3$ [В $_{10}$ СІ $_{10}$] $_3$ · 2СН $_3$ СN · Н $_2$ О (**d**) [40]. Структуры **а**—**d** определены методом РСА, комплексы **а**—**c** изучены методом ³⁵СІ ЯКР-спектроскопии. Идентифицирован ряд взаимодействий С—Н····СІ и p··· π между атомами хлора и делокализованной электронной плотностью фенильных колец или групп С \equiv N молекул ацетонитрила. Проведено сравнение результатов, полученных двумя методами, и оценена относительная сила вторичных взаимодействий. Магнитные свойства комплексов Fe(II) с 2,2'-дипиридилом и 1,10-фенантролином не были исследованы.

Новосибирской группой в течение ряда лет проводятся работы по синтезу и исследованию комплексов железа(II) с полиазотистыми гетероциклическими лигандами различных классов: 1,2,4-триазолами [43], трис(пиразол-1-ил)метанами [8, 44] и 2,6-*бис*(1*H*-имидазол-2-ил)пиридинами (в настоящее время). Мы синтезировали комплексы Fe(II) с 2,6-бис(бензимидазол-2-ил)пиридином, 2,6-бис(4,5-диметил-1H-имидазол-2ил) пиридином, $2,6-\delta uc(1H$ -имидазол-2-ил) пиридином в качестве лигандов и с клозо-борат(2—)ионами $[B_{10}H_{10}]^{2-}$ и $[B_{12}H_{12}]^{2-}$ в качестве внешнесферных анионов [45–47]. Исследование полученных комплексов методами статической магнитной восприимчивости и мессбауэровской спектроскопии показало, что все они обладают спин-кроссовером ${}^{1}A_{1} \leftrightarrow {}^{5}T_{2}$. В данном обзоре приведены результаты этих исследований.

КОМПЛЕКСЫ ЖЕЛЕЗА(II) С 1,2,4-ТРИАЗОЛАМИ И *КЛОЗО*-БОРАТНЫМИ АНИОНАМИ

Одними из наиболее перспективных классов соединений, обладающих спин-кроссовером и термохромизмом, являются моно- и гетеролигандные комплексы железа(II) с 1,2,4-триазолом (**Htrz**) и его 4R-замещенными производными (Rtrz), которые можно отнести к лигандам сильного поля. Для 1,2,4-триазола в растворе возможны две (1H и 4Н) таутомерные формы. По рентгеноструктурным данным [48], в твердом состоянии 1,2,4-триазол существует в виде 1H-формы, в растворах присутствуют обе формы, а при образовании координационного соединения происходит стабилизация 4Н-формы. В комплексах металлов первого переходного ряда с данными лигандами реализуется бидентатно-мостиковая координация атомами N(1) и N(2), что приводит к образованию би-, три и полиядерных соединений (рис. 1).

В олиго- и полиядерных комплексах железа(II) наблюдаются сильные кооперативные взаимодействия между атомами металла, что обусловливает появление резких СКО с гистерезисом на кривых зависимости эффективного магнитного момента от температуры [49]. СКО сопровождается термо-

хромизмом (отчетливо регистрируемым изменением цвета: розовый \leftrightarrow белый). Для дегидратированных комплексов с 1,2,4-триазолом значения T_c в зависимости от аниона изменяются в пределах 246-397 К, а для комплексов с 4-амино-1,2,4триазолом – в пределах 190-355 К. Анализ характеристик СКО для комплексов железа(II) с Htrz и NH2trz показывает, что они существенно зависят от состава соединения, который оказывает заметное влияние не только на значение $T_{\rm c}$, но и на ширину петли гистерезиса. В комплексах с NH₂trz перехол менее резкий, чем с незамещенным Htrz. а при низких температурах, как правило, наблюдается более высокий остаточный магнитный момент. Анализ зависимости $T_c \uparrow$ (K) в соединениях состава FeL₃A₂ от заместителя в четвертом положении 1,2,4-триазола показывает, что не существует прямой зависимости величины $T_c \uparrow$ от длины заместителя в четвертом положении 1,2,4-триазола, но есть тенденция к ее увеличению с уменьшением длины заместителя. Анализ величин $T_{\rm c}$ для представительных рядов комплексов FeL_3A_n , содержащих один лиганд и различные анионы, показывает, что определенной зависимости T_c от радиуса аниона для всех комплексов не существует. Повидимому, это связано не только с существенным различием размеров комплексного катиона и аниона, но и со способностью аниона к образованию водородных связей с молекулами лиганда и кристаллизационного растворителя или π – π -стекингом, а также с энергией кристаллической решетки [50].

В работе [51] получены соединения декагидро-*клозо*-декаборатов железа(II) состава [Fe(Htrz)₃][B₁₀H₁₀] · H₂O и [Fe(NH₂trz)₃][B₁₀H₁₀] · H₂O путем взаимодействия существенного избытка лиганда и соли $K_2[B_{10}H_{10}]$ с сульфатом железа(II) в водном растворе. Магнетохимическое исследование показало, что только первое из них обладает СКО с T_c = 246 K, T_c = 233 K (рис. 2), второе остается высокоспиновым (с проявлением антиферромагнитного упорядочения при низких температурах) (рис. 3).

На присутствие воды в составе соединений указывают данные ИК-спектроскопии (область $3400-3600~{\rm cm^{-1}}$) и элементного анализа. Количество молекул кристаллизационной воды найдено по данным термогравиметрии. В электронных спектрах высокоспиновых комплексов при комнатной температуре проявляется по одной полосе в области $870-900~{\rm hm}$, которую можно отнести к d-d-переходу ${}^5{\rm T}_2 \rightarrow {}^5{\rm E}$ в слабом искаженно-октаэдрическом поле лигандов, узел ${\rm FeN}_6$.

В работе [52] методом вакуумной адиабатической калориметрии проведено исследование изобарной теплоемкости комплекса [Fe(Htrz) $_3$][B $_{10}$ H $_{10}$] · H $_2$ O при нагревании в интервале температур 80—350 К. Аномалия теплоемкости фиксируется при $T_{\rm tr}$ =

Рис. 1. Структура полиядерного комплексного катиона $[Fe(Rtrz)_3]^{2+}$.

Рис. 2. Зависимость $\mu_{\ni \varphi}(T)$ для комплекса [Fe(Htrz)₃][B₁₀H₁₀] · H₂O.

Рис. 3. Зависимость $\mu_{9\varphi}(T)$ для комплекса [Fe(NH₂trz)₃][B₁₀H₁₀] · H₂O.

= 234.5 K, форма кривой $C_{\rm P}(T)$ характерна для фазового перехода первого рода (рис. 4), $\Delta_{\rm tr}H$ = 10.1 \pm \pm 0.2 кДж/моль, $\Delta_{\rm tr}S$ = 43.0 \pm 0.8 Дж/(моль · K).

Соединения додекагидро-*клозо*-додекаборатов и декахлор-*клозо*-декаборатов железа(II) соста-

Рис. 4. Зависимость молярной теплоемкости комплекса [Fe(Htrz)₃][B $_{10}$ H $_{10}$] · H $_2$ O от температуры в изобарных условиях.

Рис. 5. Зависимость $\mu_{9\varphi}(T)$ для комплекса [Fe(Htrz)₃][B₁₂H₁₂].

Рис. 6. Зависимость $\mu_{9\dot{\Phi}}(T)$ для комплекса [Fe(NH $_2$ trz) $_3$][B $_{12}$ H $_{12}$].

ва [Fe(Htrz)₃][B₁₂H₁₂], [Fe(NH₂trz)₃][B₁₂H₁₂] · 5H₂O, [Fe(Htrz)₃][B₁₀Cl₁₀] и [Fe(NH₂trz)₃][B₁₀Cl₁₀] · 2H₂O также получены при применении существенного избытка лиганда (L : Fe = 6–12) [53, 54]. Первый из них обладает СКО с T_c = 263 K, T_c \downarrow = 239 K с достаточно заметным остаточным парамагнетизмом при 78 K (рис. 5). Остальные полученные комплексы не обладают СКО, поэтому имеют белый цвет во всем исследованном интервале температур (рис. 6). Для [Fe(Htrz)₃][B₁₀Cl₁₀] и [Fe(NH₂trz)₃][B₁₀Cl₁₀] при охлаждении до 5 K наблюдаются антиферромагнитные обменные взаимодействия между парамагнитными ионами железа(II), $\mu_{3\phi}$ понижается до 2.6 М.Б.

Поскольку монокристаллы комплексов не были получены, для вывода о способах координации лигандов наиболее информативным оказался анализ положения полос поглощения в области $1550-1510 \text{ см}^{-1}$. Так, полосы валентно-деформационных колебаний триазольных циклов Htrz наблюдаются при 1540-1530 см $^{-1}$, а в ИК-спектрах комплексов они смещены на 10-15 см⁻¹ по сравнению с положением в спектре лиганда в низкочастотную область. Полосы валентно-деформационных колебаний триазольных циклов NH2trz наблюдаются при 1530-1520 см $^{-1}$, в спектрах комплексов они смещены на 10-15 см $^{-1}$ в область высоких частот. Такое смешение и изменение интенсивности полос поглошения свидетельствуют о координации атомов азота гетероциклов к металлу [55].

В области 600-700 см⁻¹ спектр Htrz содержит две полосы торсионных колебаний кольца — τ_1 при 680 см^{-1} и τ_2 при 654 см^{-1} , в спектре NH_2 trz присутствует одна полоса при 654 см $^{-1}$ (τ_2). В спектрах полученных комплексов железа(II) с Htrz наблюдается одна полоса ~630 см⁻¹ (τ_2), с NH₂trz полоса ~ 620 см $^{-1}$ (τ_2), что указывает на бидентатно-мостиковую координацию Htrz или NH2trz атомами N(1), N(2) цикла (симметрия C_{2v}). Вывод о способе координации NH₂trz подтверждает анализ положения полосы экзоциклической связи $v(N-NH_2)$ данного лиганда. Одна полоса в спектрах комплексов железа(II) с NH_2 trz претерпевает высокочастотный сдвиг на 15-30 см-1 по сравнению со спектром некоординированного NH2trz. Такое смещение также указывает на N(1)-, N(2)координацию NH₂trz [56].

В ИК-спектрах комплексов проявляются также полосы поглощения анионов, свидетельствующие о внешнесферном их положении. Полосы колебаний ВН-связей внешнесферного аниона $[B_{12}H_{12}]^{2-}$ при 2470 (v(BH)) и 1075 см⁻¹ (δ (BBH)) в спектре комплекса $[Fe(NH_2trz)_3][B_{12}H_{12}] \cdot 5H_2O$ смещаются в низкочастотную область по сравнению с таковыми в спектре исходной соли, что

указывает на взаимодействия $B-H^{\delta+}...^{-\delta}HO-H$ -связей. Кроме этого, низкочастотные спектры высокоспиновых комплексов содержат полосу $v(Fe_{BC}-N)$ в области 240-260 см $^{-1}$. А в спектрах диффузного отражения этих комплексов при комнатной температуре проявляется по одной полосе в области 850-900 нм, которую можно отнести к d-d-переходу $^5T_2 \rightarrow ^5E$ в слабом искаженно-окта-эдрическом поле лигандов.

КОМПЛЕКСЫ ЖЕЛЕЗА(II) С *ТРИС*(ПИРАЗОЛ-1-ИЛ)МЕТАНАМИ И БОРСОЛЕРЖАШИМИ АНИОНАМИ

Трис (пиразол-1-ил)метан ($\mathbf{HC}(\mathbf{pz})_3$) и его производные являются классом лигандов, перспективным для синтеза комплексов, обладающих СКО. Наличие способных координироваться к металлу атомов $\mathbf{N}(2)$ в трех пиразольных циклах обусловливает при координации двух молекул лиганда получение комплекса октаэдрического строения с координационным узлом \mathbf{FeN}_6 . В работах [57, 58] было показано, что данные лиганды координируются к железу(\mathbf{II}) преимущественно по тридентатно-циклическому типу (симметрия \mathbf{C}_3) (рис. 7). Вместе с тем могут реализоваться бидентатно-циклическая и бидентатно-мостиковая координации $\mathbf{HC}(\mathbf{pz})_3$ [59].

Комплексы железа(II) с трис(пиразол-1ил)метанами и клозо-боратными анионами

Получение и исследование магнитно-активных комплексов Fe(II) с $HC(pz)_3$, содержащих двухзарядные *клозо*-бораты $[B_{10}Cl_{10}]^{2-}$, $[B_{10}H_{10}]^{2-}$, $[B_{12}H_{12}]^{2-}$, является важной задачей [60, 61].

Нами разработаны методики синтеза соединений железа(II) состава [Fe{HC(pz)₃}₂][B₁₀Cl₁₀], [Fe{HC(pz)₃}₂][B₁₀H₁₀] и [Fe{HC(pz)₃}₂][B₁₂H₁₂] · 2H₂O [54]. Комплексные катионы получали путем взаимодействия водного раствора нитрата железа(II) с этанольным раствором лиганда и избытком соли соответствующего кластерного аниона при соотношении Fe: L: A = 1:2:3. Соединения изучены методами статической магнитной воспримчивости (78–500 K), электронной, ИК- и EXAFS-спектроскопии.

В ИК-спектрах комплексов кроме полос поглощения, свидетельствующих о координации атомов азота азольных циклов к металлу, наблюдаются полосы колебаний внешнесферного $[B_{10}Cl_{10}]^{2-}$, которые в спектре комплекса не смещаются, $v(B-Cl)=1073~cm^{-1}$. Полосы колебаний связей B-H внешнесферных анионов $[B_{10}H_{10}]^{2-}$ и $[B_{12}H_{12}]^{2-}$ при 2470 (v(BH)) и 1075 см⁻¹ ($\delta(BBH)$) смещаются в низкочастотную область по сравнению с таковыми в спектрах исходных солей. Также наблюда-

Рис. 7. Строение комплексного катиона $[\text{Fe}\{\text{HC}(\text{pz})_3\}_2]^{2^+}.$

ется значительное смещение полосы $\delta(BBH)$ при $1075~cm^{-1}$ в комплексе [Fe{HC(pz)₃}₂][B₁₂H₁₂] · 2H₂O в низкочастотную область. Это, по-видимому, обусловлено взаимодействием B—H...H—C(pz)₃. В области валентных колебаний металл—лиганд (348—392 см⁻¹) спектры комплексов *клозо*-боратов содержат сложные полосы, которые можно отнести к валентным колебаниям $\nu(Fe_{HC}-N)$.

В СДО спектрах комплексов *клозо*-боратов наблюдается типичная широкая полоса поглощения в области 450—550 нм с максимумом при 520 нм ($\nu=19230~{\rm cm^{-1}}$), которую можно отнести к d-d-переходу $^{1}{\rm A_{l}} \rightarrow {}^{1}{\rm T_{l}}$ в сильном искаженно-октаэдрическом поле лигандов, хромофор FeN₆ [62, 63].

Магнетохимическое исследование показало, что комплексы κ лозо-боратов при комнатной температуре являются низкоспиновыми и обладают высокотемпературным СКО $^{1}A_{1} \leftrightarrow ^{5}T_{2}$. Соединение $[\text{Fe}\{\text{HC}(\text{pz})_{3}\}_{2}][B_{10}\text{Cl}_{10}]$ разлагается при нагревании выше 440 K, вследствие чего значение T_{c} определить не удалось (рис. 8). Комплексы $[\text{Fe}\{\text{HC}(\text{pz})_{3}\}_{2}][B_{10}\text{H}_{10}]$, $[\text{Fe}\{\text{HC}(\text{pz})_{3}\}_{2}][B_{12}\text{H}_{12}]$ · $^{2}\text{H}_{2}\text{O}$ обладают достаточно полным обратимым спин-кроссовером $^{1}A_{1} \leftrightarrow ^{5}\text{T}_{2}$ и термохромизмом (изменение цвета — розовый \leftrightarrow белый). Для $[\text{Fe}\{\text{HC}(\text{pz})_{3}\}_{2}][B_{10}\text{H}_{10}]$ T_{c} составляет 375 K. Для комплекса $[\text{Fe}\{\text{HC}(\text{pz})_{3}\}_{2}][B_{12}\text{H}_{12}]$ измерения были проведены после дегидратации. На кривой зависимости $\mu_{3\phi}(T)$ наблюдали резкий и полный вывисимости $\mu_{3\phi}(T)$ наблюдали резкий и полный вы

Рис. 8. Зависимость $\mu_{3\varphi}(T)$ для [Fe{HC(pz)₃}₂][B₁₀Cl₁₀] и [Fe{HC(pz)₃}₂][B₁₀H₁₀].

сокотемпературный СКО без гистерезиса (рис. 9), значение $T_c = 405 \text{ K}$.

Для комплексов *клозо*-боратов методом EXAFS-спектроскопии было проведено исследование пространственной структуры в высоко- и низкоспиновом состояниях комплексов с различными внешнесферными анионами. Так, для комплексов [Fe{HC(pz)₃}₂][B₁₀Cl₁₀], [Fe{HC(pz)₃}₂][B₁₀H₁₂] · 2H₂O межатомные расстояния Fe—N(1) в низкоспиновом состоянии составляют 1.96 Å, в высокоспиновом — 2.09, 2.13, 2.15 Å соответственно.

С целью расширения класса комплексов Fe(II), содержащих двухзарядные кластерные анионы бора, и для приближения T_c к комнатным температурам были разработаны методики синтеза координационных соединений железа(II) с mpuc(3,5-диметилпиразол-1-ил)метаном $\{HC(3,5\text{-dmpz})_3\}$ и κ лозо-борат(2—)-ионами состава $[Fe\{HC(3,5\text{-dmpz})_3\}_2][B_{10}H_{10}]$ · H_2O и $[Fe\{HC(3,5\text{-dmpz})_3\}_2][B_{12}H_{12}]$ · H_2O [64]. Комплексные катионы соединений получали при соотношении $Fe:HC(3,5\text{-dmpz})_3=1:4$. Соединения изучены методами статической магнитной воспримичивости (2—325 K), электронной (спектры диффузного отражения, СДО) и ИК-спектроскопии.

Полосы колебаний ВН-связей анионов при $2470~{\rm cm}^{-1}$ в спектрах комплексов практически не смещаются по сравнению с таковыми в спектрах исходных солей, что указывает на внешнесферное положение данных анионов. Смещение полосы $\delta({\rm BBH})$ при $1075~{\rm cm}^{-1}$ в комплексах в низкочастотную область на $5~{\rm cm}^{-1}$ обусловлено очень слабым В $-{\rm H...H-OH-взаимодействием}$.

В СДО комплексов наблюдается по одной широкой полосе с максимумами при 802 (первый) и 825 нм (второй). Эти полосы можно отнести к пе-

Рис. 9. Зависимость $\mu_{9\dot{\Phi}}(T)$ для $[\text{Fe}\{\text{HC}(\text{pz})_3\}_2][\text{B}_{12}\text{H}_{12}].$

реходу ${}^5\mathrm{T}_2 \to {}^5\mathrm{E}$ в слабом искаженно-октаэдрическом поле лигандов. Положение этих полос типично для спектров высокоспиновых октаэдрических комплексов железа(II) [65]. Значения параметров расщепления указывают на то, что в комплексах теоретически возможен СКО при охлаждении, так как $\Delta_{\mathrm{BC}} \leq 12500~\mathrm{cm}^{-1}$ [66].

Изучение зависимости $\mu_{ad}(T)$ показало, что в $[Fe\{HC(3,5-dmpz)_3\}_2][B_{10}H_{10}] \cdot H_2O$ проявляется неполный низкотемпературный спин-кроссовер (рис. 10). При 300 K значение $\mu_{adv} = 5.06$ M.Б. и при понижении температуры понижается, выходя на небольшое плато ~3.5 М.Б. в интервале температуры 80-30 К, после чего уменьшается до 2.89 М.Б. при 5 К. Высокотемпературное значение μ_{ab} хорошо согласуется с теоретическим чисто спиновым значением 4.90 М.Б. для Fe(II) в высокоспиновом состоянии (S=2) при g-факторе = 2. Резкое уменьшение $\mu_{\rm sh}$ в температурном интервале 300-80 К обусловлено СКО. Значение $\mu_{\text{эф}}$ на плато соответствует переходу лишь половины ионов Fe(II) из высокоспинового в низкоспиновое состояние. В [Fe{HC(3,5-dmpz)₃}₂][$B_{12}H_{12}$] · H_2O при температурах <90 К между неспаренными электронами железа(II) проявляются обменные взаимодействия антиферромагнитного характера (рис. 11).

Комплексы железа(II) с трис(пиразол-1ил)метаном и карборанами

Следующим этапом был синтез новых соединений железа(II), содержащих в своем составе другие кластерные анионы, в частности, карбораны. 7,8-Дикарба-нидо-ундекаборат-ионы (как и клозо-бораты) также являются перспективными соединениями для БНЗТ рака, поэтому синтез новых соединений, содержащих функционализи-

Рис. 10. Зависимость $\mu_{9\varphi}(T)$ для [Fe{HC(3,5-dmpz)}_3}_[B_{10}H_{10}] \cdot H_2O.

рованные карборановые кластеры, представляется важной задачей. Нами были разработаны методики синтеза координационных соединений 1,5,6,10-тетра(R)-7,8-дикарба-nudo-ундекаборатов(-1) железа(II) с mpuc(пиразол-1-un)метаном (HC(pz)₃) состава [Fe{HC(pz)₃}₂]A₂ · nH₂O (где A = [7,8-C₂B₉H₁₂]-, [1,5,6,10-Br₄-7,8-C₂B₉H₈]-, [1,5,6,10-I₄-7,8-C₂B₉H₈]-, n = 0–2) [67]. Соединения изучены методами статической магнитной восприимчивости в диапазоне температур 160—500 K, электронной (спектры диффузного отражения, СДО) и ИК-спектроскопии.

Координационные соединения карборанов получали путем обменной реакции между водно-спиртовым раствором [Fe{HC(pz) $_3$ } $_2$]SO $_4$ ($c \sim 0.005$ моль/л) и водным раствором калиевой соли соответствующего карборана при соотношении комплекс: соль = 1:2 с применением аскорбиновой кислоты. Синтезированные соединения обладают термохромизмом: при нагревании до 150°C на воздухе цвет розовых комплексов становится белым, при охлаждении розовый цвет возвращается.

Сравнивая ИК-спектры комплексов карборанов и ранее синтезированных комплексов состава [Fe{HC(pz)₃}₂]A₂, можно сделать вывод, что и в данных соединениях $HC(pz)_3$ является тридентатно-циклическим лигандом, который координируется к ионам железа(II) тремя атомами азота N(2) пиразольных циклов.

В ИК-спектре исходной соли $[N(CH_3)_4][7,8-C_2B_9H_{12}]$ можно выделить полосу валентных колебаний карборана $\nu(CH)$ при $3030~\text{см}^{-1}$ [68, 69]. В спектрах $[NH(CH_3)_3][1,5,6,10-\text{Br}_4-7,8-C_2B_9H_8]$ и $[NH(CH_3)_3][1,5,6,10-\text{I}_4-7,8-C_2B_9H_8]$ эти полосы находятся при 3047 и $3041~\text{см}^{-1}$ соответственно. Указанные полосы $\nu(CH)$ в спектрах комплексов смещаются в низкочастотную область (2983 см $^{-1}$

Рис. 11. Зависимость $\mu_{9\varphi}(T)$ для [Fe{HC(3,5-dmpz)₃}₂][B₁₂H₁₂] · H₂O.

для Br_4 -карборана) и расщепляются (2854 и 2977 см $^{-1}$ для L_4 -карборана, 2860 и 2971 см $^{-1}$ для L_4 -карборана) по сравнению со спектрами исходных солей, что указывает на значительную деформацию аниона в составе комплекса. Полосы колебаний B—H-связей внешнесферных анионов при 2514—2543 см $^{-1}$ (ν (BH)), 2138 см $^{-1}$ (ν (B—HB)) и 1019—1194 см $^{-1}$ (δ (BBH)) в спектрах комплексов смещаются и расщепляются по сравнению с таковыми в спектрах исходных солей. Это указывает на образование B— $H^{\delta +}$... $^{-\delta}$ HO—H-связей, а также на вторичные взаимодействия B—Hal...H(HC(pz) $_3$). Такой вывод был сделан нами и для *клозо*-боратных комплексов железа(H) с HC(pz) $_3$ [54].

Анализ ИК-спектров комплексов карборанов в области валентных колебаний металл—лиганд $(200-400\,\mathrm{cm^{-1}})$ и сравнение с литературными данными показали, что при комнатной температуре в комплексе содержится железо(II) как в низкоспиновом ($\mathrm{Fe_{HC}}$), так и в высокоспиновом ($\mathrm{Fe_{BC}}$) состоянии. Сложные полосы в области $348-382~\mathrm{cm^{-1}}$ можно отнести к валентным колебаниям $\mathrm{V}(\mathrm{Fe_{HC}}-\mathrm{N})$, а полосы при $265-298~\mathrm{cm^{-1}}-\mathrm{K}~\mathrm{V}(\mathrm{Fe_{BC}}-\mathrm{N})$.

Используя данные СДО при комнатной температуре, оценивали изменение силы поля лиганда mpuc (пиразол-1-ил) метана в комплексах карборанов — величины Δ_{HC} составили 20250, 21320, 20880 см $^{-1}$ соответственно аниону. Видно, что природа и размер аниона существенно влияют на силу поля лиганда. Так, введение в состав аниона заместителя (Вг, І), повышающего электронную плотность по системе сопряженных трехцентровых двухэлектронных связей, привело к увеличению силы поля mpuc (пиразол-1-ил) метана. Условие: $19000 \text{ см}^{-1} \le \Delta_{HC} \le 22000 \text{ см}^{-1}$, обусловливающее появление СКО, выполняется.

Рис. 12. Кривые зависимости $\mu_{3\varphi}(T)$: **A** — [Fe{HC(pz)₃}₂][1,5,6,10-Вг₄-7,8-С₂В₉Н₈]₂; **—** — [Fe{HC(pz)₃}₂][1,5,6,10-І₄-7,8-С₂В₉Н₈]₂; **—** — [Fe{HC(pz)₃}₂][7,8-С₂В₉Н₈]₂.

Магнетохимическое исследование показало, что эти соединения обладают высокотемпературным СКО 1 А $_1 \leftrightarrow ^5$ Т $_2$ (рис. 12). Для корректного сравнения магнетохимических данных комплексы изучали после дегидратации. Значения T_c определяли как точку перегиба кривой $\mu_{3\varphi}(T)$ по максимуму первой производной $d\mu_{3\varphi}/dT$. Нам не удалось выйти на плато, соответствующее ВС-форме комплексов, вследствие высоких температур СКО.

Сравнение данных для полученных комплексов показывает, что с увеличением размера кластерного аниона наблюдается увеличение T_c и термической стабильности соединения. При этом существенных изменений в характере СКО не наблюдается. Для соединений галоген-замещенных анионов на кривых зависимости $\mu_{ad}(T)$ при 200 К наблюдается значительный остаточный парамагнетизм. Мы оценили вклад температурнонезависимого парамагнетизма, используя формулы: $\mu_{\rm эф}({\rm TH\Pi})=(8\chi_{\rm 7H\Pi}T)^{1/2}, \chi_{\rm TH\Pi}=4/\Delta_{\rm HC}$ [70]. При $T=200~{\rm K}$ значение $\mu_{\rm эф}({\rm TH\Pi})$ не должно превышать 0.6 М.Б. Примем для расчета, что для изученного класса соединений $\mu_{ad}(BC) \sim 5.1$ М.Б. Тогда величины доли ВС-формы комплексов, рассчитанные по формуле $\alpha_{BC}=(\mu_{э\varphi}^2-\mu_{э\varphi}^2(TH\Pi))/\mu_{э\varphi}^2(BC)\cdot 100\%,$ составляют ~10% при 200 К. Следовательно, каждый десятый из атомов железа(II) не переходит в НС-состояние. Возможной причиной большой величины α_{вС} может быть существование структурно-неэквивалентных форм комплексов, одна из которых не принимает участие в процессе СКО. У комплекса с незамещенным анионом доля остаточной ВС-формы, рассчитанная аналогичным образом, составляет <0.5%.

Мессбауэровские спектры полученных карборановых комплексов железа(II) с *трис* (пиразол-

1-ил)метаном представляют собой слабо разрешенные линии с параметрами (химическим сдвигом $\delta = 0.39, 0.37, 0.37$ мм/с и квадрупольным расшеплением $\varepsilon = 0.28, 0.25, 0.38$ мм/с соответственно). Значения δ находятся в области сдвигов, характерных для низкоспиновых комплексов Fe(II), при этом они являются более низкими, чем для изученных нами ранее комплексов Fe(II) с 1,2,4-триазолами (0.416-0.427 мм/с) [71], что свидетельствует о том, что химические связи Fe-N в новых комплексах являются более ковалентными. Малые квадрупольные расщепления свидетельствуют о слабом искажении октаэдрического окружения атомов железа в них (как и в комплексах Fe(II) с 1,2,4-триазолами). При этом более высокое значение є в иодированном аналоге указывает на то, что полиэдр FeN₆ в данном комплексе искажен несколько сильнее двух других. Причина может быть связана с тем, что анион, имеющий большие размеры, становится еще более объемным при вхождении в него атомов иода, что создает стерические напряжения в его кристаллической решетке.

Измерения спектров Мессбауэра при 78 К по-казали, что вероятность эффекта Мессбауэра (f) в них при повышении температуры до 295 К понижается примерно в три раза, что заметно сильнее, чем для комплексов Fe(II) с 1,2,4-триазолами, для которых f понижается не более, чем в 1.7 раза. Этот факт можно связать с островной структурой комплексов железа(II) с mpuc(пиразол-1-ил)метаном и более слабым катион-анионным взаимодействием по сравнению с комплексами Fe(II) с 1,2,4-триазолами, имеющими полимерную цепочечную структуру. Следствием этого является ослабление кооперативных взаимодействий в кристаллических решетках, что уменьшает резкость СКО 1 А $_{1}$ \leftrightarrow 5 Т $_{2}$.

Учитывая ранее полученные данные для комплексов с *клозо*-боратами состава [FeL₂]A, можно построить ряд зависимости T_c (K) от внешнесферного кластерного борсодержащего аниона:

$$\begin{split} &[7,8\text{-}C_2B_9H_{12}]^-\ (370) < [B_{10}H_{10}]^{2-}\ (375) < [1,5,6,10\text{-}\\ &Br_4\text{-}7,8\text{-}C_2B_9H_8]^-\ (380) < [1,5,6,10\text{-}I_4\text{-}7,8\text{-}C_2B_9H_8]^-\\ &(400) < [B_{12}H_{12}]^{2-}\ (405). \end{split}$$

Приведенный ряд показывает, что с увеличением размеров как *клозо*-бората, так и карборана (за счет введения заместителя) наблюдается увеличение T_c и термической стабильности соединения, при этом существенных изменений в характере СКО не происходит. Этот вывод не является тривиальным, так как ранее на примере комплексов Fe(II) с 1,2,4-триазолами состава FeL₃A₂, где A = = Cl⁻, Br⁻, I⁻, нами было показано, что в ряду анионов одной природы с увеличением размера внешнесферного аниона T_c уменьшается [72].

КОМПЛЕКСЫ ЖЕЛЕЗА(II) С 2,6-БИС(ИМИДАЗОЛ-2-ИЛ)ПИРИДИНАМИ И КЛОЗО-БОРАТНЫМИ АНИОНАМИ

2,6-*Бис*(1H-имидазол-2-ил)пиридины являются перспективным классом органических соединений для синтеза комплексов с СКО. Данные лиганды, так же как описанные выше *трис*(пиразол-1-ил)метаны, координируются к иону железа(Π) по тридентатно-циклическому типу с образованием координационного узла MN_6 . Для синтеза и исследования нами были выбраны 2,6-

 $\mathit{биc}(1H$ -имидазол-2-ил)пиридин (L¹), 2,6- $\mathit{бuc}(4,5-$ диметил-1H-имидазол-2-ил)пиридин (L²) и 2,6- $\mathit{бuc}(6$ ензимидазол-2-ил)пиридин (L³) (схема 1). Получены комплексы железа(II) с лигандами этого класса и различными внешнесферными анионами состава [FeL₂]A $_i$ ·nH₂O (L=L¹, L², L³; i=1, 2; n=0, 2). В данном обзоре приводим результаты по синтезу и исследованию комплексов Fe(II) с 2,6- $\mathit{бuc}(1H$ -имидазол-2-ил)пиридинами и $\mathit{клозо}$ -борат(2—)-анионами [45—47].

$$R \xrightarrow{H} N \xrightarrow{H} N \xrightarrow{R} R$$

$$R = H, CH_3$$

Схема 1.

Комплексы с 2,6-бис(имидазол-2-ил)пиридином

Синтезированы комплексы железа(II) с 2.6- $\delta uc(1H$ -имидазол-2-ил)пиридином (L^1) и *клозо*-борат(2—)-анионами состава $[Fe(L^1)_2][B_{10}H_{10}] \cdot H_2O$ $(1 \cdot H_2O)$, $[Fe(L^1)_2][B_{12}H_{12}] \cdot 1.5H_2O$ $(2 \cdot 1.5H_2O)$ [47]. Соединения выделены из водно-этанольных растворов при стехиометрическом соотношении Fe: L¹. Во избежание окисления железа(II) к растворам добавляли аскорбиновую кислоту в качестве восстановителя и слабо подкисляющего реагента. Синтезы проводили в две стадии. На первой стадии получали соответствующие соли железа(II) путем добавления к раствору FeSO₄ полуторакратного избытка соли $K_2[B_{10}H_{10}]$ или $K_2[B_{12}H_{12}]$. На второй стадии к полученному раствору соли прибавляли раствор L^1 в этаноле. Соединения изучены методами элементного анализа (спектроскопия диффузного отражения, СДО) электронной-, ИК-, EXAFS- и мессбауэровской спектрометрии, РФА, статической магнитной восприимчивости. Изучение зависимости $\mu_{adv}(T)$ в диапазоне температур 78-500 К показало, что полученные комплексы обладают высокотемпературным спин-кроссовером ${}^{1}A_{1} \leftrightarrow {}^{5}T_{2}$.

Экспериментальные данные EXAFS-спектроскопии, полученные для комплексов $\mathbf{1} \cdot \mathbf{H}_2\mathbf{O}$ и $\mathbf{2} \cdot 1.5\mathbf{H}_2\mathbf{O}$ в HC-состоянии при комнатной температуре, моделировали для всей молекулы в приближении многократного рассеяния без учета атомов водорода и анионов, оказывающих лишь слабое влияние на форму спектра EXAFS из-за их пространственного удаления от центрального иона железа. Структуры комплексов $\mathbf{1} \cdot \mathbf{H}_2\mathbf{O}$ и $\mathbf{2} \cdot 1.5\mathbf{H}_2\mathbf{O}$ в HC-состоянии, полученные с помощью моделирования спектров EXAFS, представлены на рис. 13.

Исследование ИК-спектров комплексов $1 \cdot H_2O$ и $2 \cdot 1.5H_2O$ показало, что в высокочастотной области проявляются колебания v(OH); в области 3200-3050 см $^{-1}$ находятся валентные колебания NH-групп, а в диапазоне 3100-2850 см $^{-1}$ — колебания v(CH) и $v(CH_3)$. В интервале 1650-1450 см $^{-1}$ присутствуют полосы валентных и деформационных колебаний колец гетероциклов. В спектрах комплексов в диапазоне колебаний кольца наблюдается изменение числа и положения полос имидазола и пиридина по сравнению со спектром L^1 , что свидетельствует о координации атомов азота циклов к ионам металла. Полосы колебаний связей B-H внешнесферных анионов

Рис. 13. Строение координационного узла комплексов $1 \cdot H_2O$ и $2 \cdot 1.5H_2O$.

V оминаус	Комплекс $\lambda(^{1}A_{1} \rightarrow {}^{1}T_{2})$		Pac	считанные параме	тры
ROMIDIERC $\lambda(A_1 \rightarrow A_2)$	$ (A_1 \rightarrow 1_2) $	$\lambda(^{1}A_{1} \to^{1} T_{1})$	$A_1 \rightarrow A_1$ B	С	$\Delta_{ m HC}$
1 · H ₂ O	475	518	109.3	482.0	1.97×10^4
$2 \cdot 1.5 H_2 O$	465	518	137.5	606.5	1.98×10^{4}

Таблица 1. Параметры спектров диффузного отражения комплексов и значения B, C, Δ_{HC}

 $[B_{10}H_{10}]^{2-}$ и $[B_{12}H_{12}]^{2-}$ имеют центры при волновых числах 2470 см $^{-1}$ (V(BH)) и 1075 см $^{-1}$ (δ (BBH)). Эти полосы сдвинуты по отношению к наблюдаемым в спектрах исходных солей, что может быть вызвано образованием связей $H_2O^{\delta-}...^{\delta+}H-B$. В дальней области спектров всех комплексов наблюдаются полосы переноса заряда $Fe(3d^6)$ — лиганд (π) и полосы колебаний M-N. Положение этих полос типично для спектров низкоспиновых октаэдрических комплексов железа(II), имеющих координационный узел FeN_6 [73].

В спектрах диффузного отражения комплексов ${f 1}\cdot {f H_2O}$ и ${f 2}\cdot 1.5{f H_2O}$ наблюдаются интенсивные полосы переноса заряда металл—лиганд ${\bf V_1}(e_g\to\pi_L^*)$ в диапазоне длин волн 300-350 нм ($\lambda_{\rm max}\sim 324-326$ нм). В интервале 400-600 нм присутствуют полосы, которые можно отнести к d-d-переходам ${}^1{\bf A_1}\to {}^1{\bf T_2}$ и ${}^1{\bf A_1}\to {}^1{\bf T_1}$ в сильном октаэдрическом поле лигандов (табл. 1). В спектрах комплексов отсутствует полоса ${}^5{\bf T_2}\to {}^5{\bf E}$, относящаяся к ВС-состоянию Fe(II). Вследствие этого проводили расчет параметра расщепления, основываясь на разности частот ${}^1{\bf A_1}\to {}^1{\bf T_2}$ и ${}^1{\bf A_1}\to {}^1{\bf T_1}$ [65] для низкоспиновых форм комплексов. Величину ${\bf \it B}$ рассчитывали по формуле:

$$B = [v(^{1}A_{1} \rightarrow ^{1} T_{2}) - v(^{1}A_{1} \rightarrow ^{1} T_{1})]/16.$$

Величины C и $\Delta_{\rm HC}$ рассчитывали, используя следующие приближения: $v_{\rm HC} = \Delta_{\rm HC} - C + 86B^2/\Delta_{\rm HC}$ и C = 4.41B [65, 66, 74]. Полученное значение $\Delta_{\rm HC}$ (табл. 1) указывает на то, что 2,6-бис (имидазол-2-ил)пиридин является лигандом сильного поля и подчиняется неравенству: $19\,000~{\rm cm}^{-1}\!\leq\!\Delta_{\rm HC}\!\leq\!22\,000~{\rm cm}^{-1}$, которое определяет условие проявления спин-кроссовера.

Таблица 2. Параметры спектров Мессбауэра комплексов $\mathbf{1} \cdot \mathbf{H}_2\mathbf{O}$ и $\mathbf{2} \cdot 1.5\mathbf{H}_2\mathbf{O}$

Комплекс	δ, мм/с	ε, мм/с	Г, мм/с
$1 \cdot H_2O$	0.278 (64%)	0.420	0.26
	0.925 (36%)	2.224	0.80
2 · 1.5H ₂ O	0.282	0.465	0.25

В табл. 2 представлены параметры спектров Мессбауэра комплексов $\mathbf{1} \cdot H_2O$ и $\mathbf{2} \cdot 1.5H_2O$. Спектр $\mathbf{2} \cdot 1.5H_2O$ представляет собой квадрупольный дублет, параметры которого соответствуют HC-состоянию железа(II). В спектре $\mathbf{1} \cdot H_2O$ присутствует также уширенный дублет, связанный с BC-формой комплекса (36%).

Исследование температурной зависимости $\mu_{9\Phi}$ комплексов $\mathbf{1} \cdot \mathbf{H}_2\mathbf{O}$ и $\mathbf{2} \cdot 1.5\mathbf{H}_2\mathbf{O}$ показало, что в них наблюдается полный СКО (рис. 14, 15). Значения $\mu_{9\Phi}$, наблюдаемые в ВС-состоянии этих соединений, ниже теоретического значения для Fe(II), однако они находятся в диапазоне экспериментальных значений 4.6-5.7 М.Б., наблюдаемом для соединений Fe(II) [75, 76]. Низкоспиновые формы комплексов $\mathbf{1} \cdot \mathbf{H}_2\mathbf{O}$ и $\mathbf{2} \cdot 1.5\mathbf{H}_2\mathbf{O}$ проявляют диамагнетизм с нулевым значением $\mu_{9\Phi}$. В табл. 3 представлены температуры прямого ($T_c \uparrow$) и обратного ($T_c \downarrow$) переходов.

Для исследования влияния кристаллизационной воды была изучена зависимость $\mu_{ad}(T)$ для комплексов 1 и 2, полученных в результате дегидратации исходных фаз $1 \cdot H_2O$ и $2 \cdot 1.5H_2O$ (рис. 16, 17). Следует отметить, что в случае разреженной атмосферы разложение дегидратированных комплексов происходит в более низкой области температур, чем для исходных соединений. Тем не менее СКО наблюдается и в этом случае. Значение $\mu_{\text{эф}} = 4.65 \text{ M.Б.}$, достигнутое в ВС-состоянии для 1, соответствует значению, наблюдаемому для исходного комплекса. В случае комплекса 2 значение μ_{ad} (4.6 М.Б.) увеличивается после дегидратации. Остаточные значения μ_{ad} (~1–1.5 М.Б.) зарегистрированы для обоих комплексов в НСсостоянии. Температура СКО увеличивается после дегидратации, комплекс 2 демонстрирует самые высокие значения температуры СКО, как и в случае исходного соединения. Таким образом, дегидратация комплексов **1** · H_2O и **2** · $1.5H_2O$ приводит к появлению остаточного значения μ_{ab} и повышению температуры СКО.

Комплексы с 2,6-бис(4,5-диметил-1Hимидазол-2-ил)пиридином

Синтезированы координационные соединения железа(II) с новым лигандом 2,6- δ ис(4,5-диметил-1H-имидазол-2-ил)пиридином (L^2) и κ лозо- δ о-

Рис. 14. Зависимость $\mu_{9\varphi}(T)$ для $[\mathrm{Fe}(L^1)_2][B_{10}H_{10}] \cdot H_2O$ ($1 \cdot H_2O$).

Рис. 16. Зависимость $\mu_{9\varphi}(T)$ дегидратированного комплекса **1**.

рат(2—)-анионами состава $[Fe(L^2)_2][B_{10}H_{10}] \cdot 2H_2O$ $(3 \cdot 2H_2O)$, $[Fe(L^2)_2][B_{12}H_{12}] \cdot H_2O (4 \cdot H_2O) [46]$. 2,6-*Бис*(4,5-диметил-1*H*-имидазол-2-ил)пиридин получен по методике, приведенной в [77]. Соединения выделены из водно-этанольных растворов при концентрации соли железа(II) ~ 0.1 моль/л и стехиометрическом соотношении Fe: L². В качестве восстановителя и слабо подкисляющего реагента к раствору железа(II) добавляли аскорбиновую кислоту. Синтез проводили в две стадии. На первой стадии получали раствор клозо-боратов железа(II) из водного раствора FeSO₄ с использованием полуторакратного избытка солей $K_2[B_{10}H_{10}] \cdot 2H_2O$ или $K_2[B_{12}H_{12}]$. На второй стадии к полученным растворам добавляли раствор лиганда в этаноле. Комплексы получены с высоким выходом (>90%).

Рис. 15. Зависимость $\mu_{9\Phi}(T)$ для $[\text{Fe}(L^1)_2][B_{12}H_{12}] \cdot 1.5H_2O$ ($2 \cdot 1.5H_2O$).

Рис. 17. Зависимость $\mu_{\ni \varphi}(T)$ дегидратированного комплекса **2**.

Выводы о строении координационного узла полученных комплексов сделаны на основании данных EXAFS-спектроскопии (рис. 18, 19) [46] и данных PCA для комплекса меди(II) с L^2 состава $[Cu(L^2)_2]SO_4 \cdot 3H_2O$ (рис. 20) [77]. Параметры микроструктуры комплексов (состав и строение

Таблица 3. Температуры прямого (T_c^{\uparrow}) и обратного (T_c^{\downarrow}) СКО изученных комплексов

Комплекс	$T_c \uparrow$, K	$T_c \downarrow$, K
$[Fe(L^1)_2][B_{10}H_{10}] \cdot H_2O$	436	436
$[Fe(L^1)_2][B_{12}H_{12}] \cdot 1.5H_2O$	455	455
$[\mathrm{Fe}(\mathrm{L}^1)_2][\mathrm{B}_{10}\mathrm{H}_{10}]$	447	440
$[Fe(L^1)_2][B_{12}H_{12}]$	458	458

Рис. 18. Сравнение экспериментальных (черная кривая) и модельных (красная кривая) спектров EXAFS (а) и функций радиального распределения (б) для комплекса $3 \cdot 2H_2O$ в низкоспиновом состоянии.

Рис. 19. Спектры поглощения рентгеновского излучения Fe*K*-края вблизи краевой структуры (а) и первых производных (б) для комплекса $\mathbf{4} \cdot \mathbf{H}_2\mathbf{O}$ в низкоспиновом (300 K, I) и высокоспиновом (420 K, $\mathit{2}$) состояниях.

ближайших сфер окружения вокруг атома железа), полученные на основании данных EXAFS-спектроскопии, представлены в табл. 4 (рис. 18). Измерения спектров поглощения для комплексов в высокоспиновом состоянии удалось выполнить только для комплекса $[Fe(L^2)_2][B_{12}H_{12}] \cdot H_2O$ с более низкой температурой спин-кроссовера. На рис. 19 приведены XANES-спектры в области FeK-края поглощения и первые производные для комплекса в HC- и BC-состоянии. Видно, что при нагреве комплекса до 420 K наблюдается

сдвиг края поглощения в область меньших энергий на 1.5 эВ, обусловленный сдвигом незанятых состояний и увеличением межатомных расстояний от центрального атома железа до соседних атомов (Fe—N) [78]. Это происходит вследствие того, что сила кристаллического поля лиганда в низкоспиновом состоянии комплекса выше, чем в высокоспиновом.

Для комплекса $[Fe(L^2)_2][B_{12}H_{12}] \cdot H_2O$ в BC-состоянии моделирование спектра EXAFS было проведено в однократном приближении для фильтро-

ванного в реальном пространстве спектра ($\Delta R = 1.0-3.2$ Å). Координационные числа ближайших сфер окружения вокруг атома железа были фиксированы в соответствии с октаэдрической структурой координационного узла комплекса, полученного в процессе моделирования структуры комплекса в HC-состоянии в приближении многократного рассеяния. Усредненные данные локальной структуры вокруг атома железа для комплекса [Fe(L^2)₂][$B_{12}H_{12}$] · H_2 O в HC- и BC-состоянии приведены в табл. 5.

По данным РСА для $[Cu(L^2)_2]SO_4 \cdot 3H_2O$, две молекулы L^2 координируются по тридентатноциклическому типу, образуя искаженно-октаэдрический полиэдр, узел CuN_6 (рис. 20) [77]. Два атома N имидазольных групп, расположенных в аксиальных позициях, имеют связи Cu-N, удлиненные на 0.2-0.3 Å по сравнению с экваториальными позициями за счет эффекта Яна—Теллера.

В соединении $[Cu(L^2)_2](SO_4) \cdot 3H_2O$ катионы и анионы связаны водородными связями N—H...O в сотовом слое, расположенном в плоскости *ab* (рис. 21). Соответствующие расстояния N...O находятся в диапазоне 2.66—2.76 Å.

В ИК-спектрах комплексов в области $3600-3500 \,\mathrm{cm^{-1}}$ проявляются полосы валентных колебаний О—Н. В спектре L^2 в интервале $3460-3200 \,\mathrm{cm^{-1}}$ расположены широкие слаборазрешенные полосы валентных колебаний NH-групп, которые включены в водородные связи. В спектрах комплексов полосы $v(\mathrm{NH})$ заметно смещаются ($3250 \,\mathrm{cm^{-1}}$ в комплексе $3 \cdot 2\mathrm{H}_2\mathrm{O}$ и $3291 \,\mathrm{cm^{-1}}$ в $4 \cdot \mathrm{H}_2\mathrm{O}$) по сравнению со спектром L^2 и становятся более четкими, что, вероятно, связано с ослаблением водо-

Рис. 20. Структура комплексного катиона $[Cu(L^2)_2]^{2+}$.

родных связей при комплексообразовании. В области 3200-2800 см $^{-1}$ проявляются полосы $\nu(CH)$ и $\nu(CH_3)$, а в диапазоне 2480-2430 см $^{-1}$ — полосы валентных колебаний В—Н. Число и положение полос валентных и деформационных колебаний колец в спектрах комплексов изменяется по сравнению со спектром L^2 , что свидетельствует о координации атомов азота гетероциклов к железу(II). Это подтверждается и данными спектров $3 \cdot 2H_2O$ и

Таблица 4. Структура координационного узла комплексов [Fe(L²)₂][B₁₀H₁₀] · 2H₂O и [Fe(L²)₂][B₁₂H₁₂] · H₂O по данным EXAFS. R_i -межатомные расстояния, $2\sigma_i^2$ — фактор Дебая-Валлера, F_i — индекс, характеризующий статистическую ошибку полгонки

Связь	$R_{ m i}$, Å		Углы	ω, град	
Связь	3 · 2H ₂ O	4 ⋅ H ₂ O	УПЛЫ	3 · 2H ₂ O	4 · H ₂ O
Fe(1)-N(1)	1.96	1.96	N(1)Fe(1)N(8)	106	104
Fe(1)-N(3)	1.98	1.82	N(1)Fe(1)N(6)	93.7	92.7
Fe(1)-N(4)	1.95	1.95	N(1)Fe(1)N(9)	94.5	94.6
Fe(1)-N(6)	1.94	1.95	N(1)Fe(1)N(3)	75.9	80.2
Fe(1)-N(8)	1.87	1.95	N(3)Fe(1)N(9)	101	100
Fe(1)-N(9)	1.96	1.96	N(3)Fe(1)N(4)	78.0	83.4
$2\sigma^2(\text{Fe-N}), \text{Å}^2$	0.011	0.015	$F_i^{(a)}$	1.6	2.1

Примечание. Точность определения параметров из данных EXAFS: межатомные расстояния и углы $-\pm1\%$ (для ближайшей

сферы окружения).
$${}^{a}F_{i} = \sum_{i}^{N}w_{i}^{2}\left(\chi_{i}^{\exp}\left(k\right) - \chi_{i}^{th}\left(k\right)\right)^{2}, \ w_{i} = \frac{k_{i}^{n}}{\sum\limits_{i}^{N}k_{i}^{n}\left|\chi_{j}^{\exp}\left(k\right)\right|}.$$

Таблица 5. Структура локального окружения атома железа для комплекса $[Fe(L^2)_2][B_{12}H_{12}] \cdot H_2O$ в HC- и BC-состоянии по данным EXAFS

	Центральный			НС			BC	
Соединение	атом (Fe) – Рассеиватель	N_i	R_i , Å	$2\sigma_i^2$, Å ²	F_i	R_i , Å	$2\sigma_i^2$, Å ²	F_i
$[Fe(L^2)_2][B_{12}]$	Fe – N	6	1.95	0.011		2.17	0.016	
$H_{12}] \cdot H_2O$ $(4 \cdot H_2O)$	Fe – C Fe – C	8 4	2.80 3.19	0.013	2.1	3.00 3.46	0.020	1.2

Таблица 6. Параметры спектров диффузного отражения комплексов и значения B, C, Δ_{HC}

Комплекс	$\lambda(^{1}A_{1} \rightarrow {}^{1}T_{2})$	$\lambda(^{1}A_{1} \rightarrow {}^{1}T_{1})$	$v(^{1}A_{1} \rightarrow {}^{1}T_{2}) - v(^{1}A_{1} \rightarrow {}^{1}T_{1})$	В	С	$\Delta_{ m HC}$
$\overline{[\text{Fe}(L^2)_2][B_{10}H_{10}] \cdot 2H_2O}$	405	519	5423	161.8	713.5	1.92×10^4
$[Fe(L^2)_2][B_{12}H_{12}] \cdot H_2O$	450	524	3138	155.6	686.2	1.92×10^4

 $4 \cdot H_2O$ в дальней области, где проявляются валентные колебания металл—лиганд. Здесь обнаруживаются отсутствующие в спектре лиганда полосы при 294 и 295 см $^{-1}$, которые принадлежат валентным колебаниям Fe—N.

В спектрах диффузного отражения комплексов $3 \cdot 2H_2O$ и $4 \cdot H_2O$ присутствуют полосы погло-

щения, которые относятся к переходам ${}^{1}A_{1} \rightarrow {}^{1}T_{2}$ и ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ в сильном октаэдрическом поле лигандов. В спектрах обоих комплексов отсутствует полоса ${}^{5}T_{2} \rightarrow {}^{5}E$, относящаяся к высокоспиновому состоянию железа(II). Расчет параметров расщепления проводили так же, как для комплексов с L^{1} , по разности частот поглощения ${}^{1}A_{1} \rightarrow {}^{1}T_{2}$ и

Рис. 21. Структура сотового слоя соединения $[Cu(L^2)_2](SO_4) \cdot 3H_2O$. Водородные связи представлены красными пунктирными линиями. Атомы водорода, за исключением участвующих в водородных связях, не показаны.

Рис. 22. Мессбауэровские спектры комплексов [Fe(L^2)₂][B₁₀H₁₀] · 2H₂O (1) и [Fe(L^2)₂][B₁₂H₁₂] · H₂O (2).

 $^{1}A_{1} \rightarrow {}^{1}T_{1}$. Полученные данные (табл. 6) свидетельствуют о том, что 2,6-*бис*(4,5-диметил-1H-имидазол-2-ил)пиридин является лигандом сильного поля. Рассчитанные величины параметров расщепления соответствуют неравенству, которое является условием проявления спин-кроссовера: $19000 \le \Delta_{HC} \le 22000 \text{ см}^{-1}$.

Мессбауэровские спектры обоих комплексов представляют собой квадрупольные дублеты (рис. 22, табл. 7), параметры которых соответствуют НС-состоянию железа.

Температурные зависимости χT исследуемых комплексов и их дегидратированных аналогов представлены на рис. 23, 24. Спин-кроссовер 1 A₁ \leftrightarrow 5 T₂ наблюдается как для синтезированной фазы комплекса $[Fe(L^2)_2][B_{10}H_{10}] \cdot 2H_2O (3 \cdot 2H_2O),$ так и для его дегидрата (3) (рис. 23). Величина χT 3 · 2H₂O в эмпирически подобранном температурном диапазоне стабильности комплекса достигает значения ~1.53 K см³/моль. Комплекс полностью не переходит в высокоспиновое состояние $(\chi T^{\text{reop}} = 3 \text{ K см}^3/\text{моль})$ при нагреве до 520 K. Кристаллизационная вода существенно не сказывается на достигаемых в рассматриваемом температурном диапазоне величинах χT . Вместе с тем остаточная величина χT в низкоспиновом состоянии для дегидратированного комплекса увеличивается до $0.21~{
m K}\cdot{
m cm}^3$ /моль относительно 0.1 K см 3 /моль для исходного **3** · 2H $_2$ O. Остаточное значение $\chi T \neq 0$ может быть обусловлено наличием температурно-независимого парамагнетизма либо частичным "размораживанием" орбитального момента. Несмотря на неполный спинкроссовер, в изученном температурном диапазоне выполняется условие $d^2(\mu_{9\varphi}(T))/dT^2=0$, что позволяет определить температуры прямого ($T_c \uparrow$) и обратного ($T_c \downarrow$) переходов для $\mathbf{3} \cdot 2\mathbf{H}_2\mathbf{O}$ (табл. 8). Видно, что температуры перехода при дегидратации несколько снижаются, в то время как гистерезис существенно не изменяется. Таким образом, дегидратация комплекса $\mathbf{3} \cdot 2\mathbf{H}_2\mathbf{O}$ наиболее существенно сказывается на температуре прямого и обратного переходов.

В отличие от предыдущих комплексов, для $[\text{Fe}(\text{L}^2)_2][\text{B}_{12}\text{H}_{12}] \cdot \text{H}_2\text{O}$ ($\mathbf{4} \cdot \text{H}_2\text{O}$) и $[\text{Fe}(\text{L}^2)_2][\text{B}_{12}\text{H}_{12}]$ ($\mathbf{4}$) наблюдается полный спин-кроссовер (рис. 24). Следует отметить, что в сравнении с предыдущей парой комплексов наблюдаемые температуры прямого СКО, T_c^{\uparrow} , ниже на 110-177 К (табл. 8 в сравнении с табл. 3). Величина χT для данных

Таблица 7. Параметры мессбауэровских спектров комплексов

Соединение	δ, мм/с	ε, мм/с	Г, мм/с
${[\text{Fe}(L^2)_2][B_{10}H_{10}] \cdot 2H_2O}$	0.296	0.49	0.27
$[Fe(L^2)_2][B_{12}H_{12}] \cdot H_2O$	0.311	0.55	0.25

Рис. 23. Температурные зависимости (a, b) $\chi T(T)$ и (c, d) $d^2(\mu_{adb}(T))/dT^2$ для комплексов **3** · 2H₂O (a, в) и **3** (б, г).

комплексов в высокоспиновом состоянии составляет 2.88 К см³/моль, что близко к теоретическому значению 3.0 К см³/моль для Fe(II) в высокоспиновом состоянии и согласуется с экспериментальными величинами 2.76—3.92 К см³/моль для комплексов переходных металлов с конфигурацией $3d^6$ [70]. В низкоспиновом состоянии величина остаточного магнитного момента составляет 0.03 К см³/моль для $4 \cdot H_2O$ и 0.18 К см³/моль для $4 \cdot H_$

Таблица 8. Характеристики спин-кроссовера в исследуемых комплексах κ лозо-боратов Fe(II) с L^2

Соединение	$T_c \uparrow$, K	$T_c\downarrow$, K	ΔT_c , K
3 ⋅ 2H ₂ O	505	492	13
3	502	488	14
$4 \cdot \mathbf{H}_2 \mathbf{O}$	395	387	8
4	325	325	0

личины остаточного магнитного момента. Для комплекса $\mathbf{4} \cdot \mathbf{H}_2\mathbf{O}$ на кривой зависимости $\chi T(T)$ можно отметить наличие гистерезиса (8° , табл. 8). При переходе к дегидратированному комплексу $\mathbf{4}$ наблюдается снижение температуры перехода, а гистерезис на кривой отсутствует. Таким образом, кристаллизационная вода для $[\mathrm{Fe}(L^2)_2][B_{12}H_{12}] \cdot \mathbf{H}_2\mathbf{O}$ и $[\mathrm{Fe}(L^2)_2][B_{12}H_{12}]$ оказывает более существенное влияние на параметры спин-кроссовера, чем в случае предыдущей пары комплексов.

Комплексы с 2,6-бис(бензимидазол-2-ил)пиридином

В работе [45] представлены результаты синтеза и исследования комплексов железа(II) с 2,6-бис(бензимидазол-2-ил)пиридином (L^3) и клозо-борат(2—)-ионами состава [Fe(L^3)2][$B_{10}H_{10}$] · 2 H_2 O (5 · 2 H_2 O), [Fe(L^3)2][$B_{12}H_{12}$] · H_2 O (6 · H_2 O). Комплексы выделены из водно-этанольных растворов при стехиометрическом соотношении Fe(II) : L^3 . Выводы о структуре 5 · 2 H_2 O и 6 · H_2 O сделаны на основании данных методов статической магнитной восприимчивости, ИК-, СДО и EXAFS-спектро-

Рис. 24. Температурные зависимости (a, b) $\chi T(T)$ и (c, d) $d^2(\mu_{3\Phi}(T))/dT^2$ для комплексов 4 · H₂O (a, в) и 4 (б, г).

скопии, РФА и РСА для комплекса бромида никеля(II) с L^3 состава $[Ni(L^3)_2]Br_2 \cdot 1.23H_2O \cdot 3.33EtOH$ (7), имеющего такое же строение координационного полиэдра, как и комплекс железа(II) [79].

На рис. 25 и в табл. 9 приведены структурные данные для координационного узла, полученные в процессе моделирования спектра EXAFS комплекса [Fe(L³)2][B12H12]·H2O. Точность определения параметров из данных EXAFS: межатомные расстояния $\pm 1\%$ (для ближайшей сферы окружения).

Фаза 7 кристаллизуется в моноклинной сингонии. В независимой части находятся два комплексных катиона $[Ni(L^3)_2]^{2+}$ (рис. 26), расположенных в общих позициях.

Ион никеля имеет искаженно-октаэдрическое координационное окружение из-за присущей хелатным циклам стерической жесткости: "центральные" расстояния Ni—N в среднем на 0.08 Å короче "боковых" (2.03 и 2.11 Å соответственно), а хелатные углы NNiN находятся в диапазоне 77.15°—77.97°. Молекулы лиганда имеют небольшое, но весьма значительное отклонение от пла-

нарности: угол наклона среднеквадратичных плоскостей бензимидазольных фрагментов по отношению к плоскостям соответствующих пиридильных фрагментов составляет 3.4°-7.6°. Сложные катионы образуют псевдосимметричные слои (псевдо = a/2), перпендикулярные направлению b, чередующиеся с водородносвязанными сольватно-анионными слоями, нарушающими псевдосимметрию (рис. 27, 28). Катионы {Ni1} образуют три водородные связи N-Н...О с молекулами спирта (dN...O 2.79, 2.78 и 2.75 Å) и одну связь N-H...O с молекулой воды (dN...O 2.87 Å). Катионы {Ni2} образуют только две водородные связи с молекулами спирта (dN...O 2.74 и 2.73 Å) и еще две с внешнесферными ионами брома (dN...Br 3.27, 3.19 Å).

В высокочастотной области спектров комплексов $\mathbf{5} \cdot 2H_2O$ и $\mathbf{6} \cdot H_2O$ (3460—3630 см $^{-1}$) проявляются полосы валентных колебаний O—H. В спектре \mathbf{L}^3 в области 3400—2800 см $^{-1}$ расположены широкие полосы валентных колебаний NH-групп, участвующих в водородных связях. В спек-

Рис. 25. Структура координационного узла, полученная в процессе моделирования спектра EXAFS комплекса [$Fe(L^3)_2$][$B_{12}H_{12}$] · H_2O .

трах комплексов полосы v(NH) становятся более узкими и проявляются при 3210, 3183 см $^{-1}$ (5 · 2H $_2$ O) и 3274 см $^{-1}$ (6 · H $_2$ O). Смещение полос v(NH) в высокочастотную область и более четкое их проявление по сравнению со спектром L связано с ослаблением водородных связей при переходе от лиганда к комплексам. В диапазоне 2500-2400 см $^{-1}$

Таблица 9. Некоторые длины связей и валентные углы в структуре комплекса $[Fe(L^3)_2][B_{12}H_{12}]\cdot H_2O$ по данным EXAFS

Связь	d, Å	Угол	ω, град	
Fe(1)-N(8)	1.90	N(1)Fe(1)N(8)	102.9	
Fe(1)-N(1)	1.95	N(1)Fe(1)N(6)	93.3	
Fe(1)-N(9)	1.98	N(1)Fe(1)N(9)	93.6	
Фактор Дебая-Валлера		0.009; T = 300 F	ζ.	
$\sigma^2(\text{Fe-N}), \text{Å}^2$	0.014; T = 520 K			
$F_{\mathrm{EXAFS}}^{\mathrm{(a)}}$		1.6		

(a)
$$F_{\text{EXAFS}} = \sum_{i}^{N} w_i^2 \left(\chi_i^{\text{exp}}(k) - \chi_i^{th}(k) \right)^2$$
, $w_i = \frac{k_i^n}{\sum_{i} k_i^n \left| \chi_j^{\text{exp}}(k) \right|}$

 $F_{\rm EXAFS}$ — индекс, характеризующий качество моделирования. Точность определения параметров из данных EXAFS: межатомные расстояния $\pm 1\%$ (для ближайшей сферы окружения), парциальные координационные числа $\pm 10-20\%$.

проявляются полосы валентных колебаний B-H. Положение полос в области колебаний колец в спектрах комплексов $\mathbf{5} \cdot 2H_2O$ и $\mathbf{6} \cdot H_2O$ заметно изменяется по сравнению со спектром L^3 , что указывает на координацию атомов азота гетероциклов к железу(II). Это подтверждается и характером спектров $\mathbf{5} \cdot 2H_2O$, $\mathbf{6} \cdot H_2O$ в низкочастотной области. Здесь обнаруживаются полосы при 280 см^{-1} , отсутствующие в спектре лиганда, которые можно отнести к валентным колебаниям M-N.

В СДО комплексов $5 \cdot 2H_2O$ и $6 \cdot H_2O$ в видимой и ближней инфракрасной областях присутствуют две широкие полосы поглощения: 537 и 755 нм (1); 510 и 709 (2) нм. Полосы в интервале 500-540 нм с максимумами при 537 (5 · 2H₂O) и 510 (**6** · H_2O) см $^{-1}$ можно отнести к d-d-переходу 1 A₁ \rightarrow 1 T₁ в сильном искаженно-октаэдрическом поле лигандов. Положение этих полос типично для низкоскоспиновых (НС) октаэдрических комплексов железа(II) с азотсодержащими лигандами, имеющих хромофор FeN_6 [43, 49]. Полосы поглощения в интервале 700-760 нм с максимумами 755 (**5** · 2H₂O) и 709 нм (**6** · H₂O) относятся к d-dпереходу ${}^5\overline{\rm T}_2$ \rightarrow ${}^5{\rm E}$ в высокоспиновых октаэдрических комплексах Fe(II) с азотсодержащими лигандами. Для этих форм комплексов $v_{BC} = \Delta_{BC}$. Мы рассчитали значения параметров расщепления для $5 \cdot 2H_2O$ и $6 \cdot H_2O$ с использованием приближений: $\nu_{\rm HC} = \Delta_{\rm HC} - C + 86 \emph{B}^2/\Delta_{\rm HC}; \ \Delta_{\rm BC} \sim 19 \emph{B}; \ C = 4.41 \emph{B} \ [65, 66, 74] \ (табл. 10).$

Сравнение значений параметров расщепления для трех классов изучаемых нами соединений — комплексов Fe(II) с 1,2,4-триазолами [43], mpuc(пиразол-1-ил)метанами [8, 43] и 2,6- $\mathit{бuc}$ (1H-имидазол-2-ил)пиридинами [45—47, 77, 79] показывает, что 2,6- $\mathit{бuc}$ (1H-имидазол-2-ил)пиридины являются лигандами более сильного поля по сравнению с 1,2,4-триазолами, в то время как значения параметров расщепления Δ_{HC} и Δ_{BC} в комплексах с mpuc (пиразол-1-ил)метанами и 2,6- $\mathit{бuc}$ (1H-имидазол-2-ил)пиридинами близки.

Мессбауэровские спектры комплексов, приведенные на рис. 29, представляют собой суперпозицию линий, относящихся к низкоспиновому и высокоспиновому состояниям атомов железа(II). В результате обработки спектров находили химический сдвиг δ (относительно α -Fe) и квадрупольное расщепление ϵ для каждой из форм (табл. 11). В обоих случаях основной является НС-форма с более низкими значениями δ и ϵ , при этом значение α_{BC} для комплекса с анионом $[B_{12}H_{12}]^{2-}$ почти в 2 раза выше, чем для комплекса с анионока с анионом $[B_{10}H_{10}]^{2-}$.

Результаты исследования статической магнитной восприимчивости изучаемых соединений представлены на рис 30, 31. Оба изученных ком-

Рис. 26. Нумерация неводородных атомов и длина координационных связей в комплексных катионах $[Ni(L^3)_2]^{2^+}$. Неводородные атомы показаны как эллипсоиды с вероятностью 50%. Атомы водорода, связанные с атомами углерода, для простоты опущены.

Рис. 27. Катионный (а) и сольватно-анионный (б) слои. Симметрично неэквивалентные катионы показаны синим цветом для $\{Ni1\}$ и бежевым цветом для $\{Ni2\}$. В (б) лиганды показаны схематически в виде сегментов соответствующего цвета, атомы H опущены, водородные связи обозначены пунктирной линией.

плекса в эмпирически подобранных температурных диапазонах стабильности комплексов демонстрируют спин-кроссовер как при наличии кристаллизационной воды (комплексы $5 \cdot 2H_2O$ и $6 \cdot H_2O$), так и в дегидратированном состоянии

(комплексы 5 и 6). Температуры прямого и обратного переходов представлены в табл. 12.

В случае комплексов $\mathbf{5} \cdot 2H_2O$ и $\mathbf{6} \cdot H_2O$ в высокоспиновой форме достигаются значения $\mu_{\text{эф}} = 4.5-4.7$ М.Б., что несколько ниже теоретического зна-

Таблица 10. Параметры спектров диффузного отражения комплексов и значения B, C, Δ_{HC}

Комплекс	$v(^{1}A_{1} \rightarrow {}^{1}T_{1}), cm^{-1}$	$v(^5T_2 \rightarrow ^5E), cm^{-1}$	B, cm^{-1}	С, см ⁻¹	$\Delta_{\mathrm{HC}},\mathrm{cm}^{-1}$
5 · 2H ₂ O	1.86×10^4	1.32×10^4	697	3.07×10^3	1.96×10^4
6 ⋅ H ₂ O	1.96×10^4	1.41×10^4	742	3.27×10^{3}	2.06×10^4

Рис. 28. Чередование катионного и сольватно-анионного слоев в структуре 7.

Рис. 29. Мессбауэровские спектры комплексов **5** · 2H₂O (*1*) и **6** · H₂O (*2*).

Комплекс	δ, мм/с	€, мм/с	$\Gamma_{1,2}$, mm/c	α_{BC}
$[Fe(L^3)_2][B_{10}H_{10}] \cdot 2H_2O$	0.272 (HC)	0.435	0.266	10.4
231 10 103 2	1.223 (BC)	1.698	0.245	
$[Fe(L^3)_2][B_{12}H_{12}] \cdot H_2O$	0.289 (HC)	0.344	0.350	19.2
t 1 /23t 12 123 2 1	1.094 (BC)	1.939	0.531	
Абсолютная погрешность	± 0.001	± 0.002	± 0.010	

Таблица 11. Параметры мессбауэровских спектров комплексов $5 \cdot 2H_2O$ и $6 \cdot H_2O$

чения 4.9 М.Б. В низкоспиновой форме для данных соединений наблюдаются значения остаточного $\mu_{\rm 9\phi}=0.5-1.0$ М.Б. Переход от соединения [Fe(L³)₂][B₁₀H₁₀] · 2H₂O к [Fe(L³)₂][B₁₂H₁₂] · H₂O сопровождается снижением температур кроссовера на ~80 К и исчезновением гистерезиса (ΔT_c) для прямого и обратного переходов.

При дегидратации комплексов наблюдается увеличение максимальной температуры переходов и остаточного магнитного момента в низкоспиновом состоянии до величин $\mu_{\rm эф} = 1.2 - 1.6$ М.Б. Сохраняется тенденция уменьшения температур СКО при переходе от $[{\rm Fe}({\rm L}^3)_2][{\rm B}_{10}{\rm H}_{10}]$ к

 $[{\rm Fe}({\rm L}^3)_2][{\rm B}_{12}{\rm H}_{12}]$. При этом для $[{\rm Fe}({\rm L}^3)_2][{\rm B}_{10}{\rm H}_{10}]$ в температурном диапазоне стабильности достигаются значения $\mu_{\rm sp}=3.3$ М.Б. При удалении молекул кристаллизационной воды также наблюдается увеличение/появление гистерезиса для прямого и обратного переходов в изучаемых комплексах (табл. 12).

Следует отметить, что значения T_c в комплексах *клозо*-боратов железа(II) с L^2 и L^3 выше для $[B_{10}H_{10}]^{2-}$ в качестве противоиона по сравнению с $[B_{12}H_{12}]^{2-}$, в то время как в комплексах с L^1 , напротив, T_c выше для $[B_{12}H_{12}]^{2-}$. Это происходит вследствие того, что температуры прямого и об-

Рис. 30. Температурные зависимости $\mu_{\ni \Phi}$ (а, б) и $d^2\mu_{\ni \Phi}/dT^2$ (в, г) для [Fe(L³)2][B₁₀H₁₀] · 2H₂O и [Fe(L³)2][B₁₂H₁₂] · H₂O соответственно.

Рис. 31. Температурные зависимости $\mu_{\ni \varphi}$ (а и б) и $d^2 \mu_{\ni \varphi}/dT^2$ (в и г) для дегидратированных комплексов [Fe(L³)₂][B₁₀H₁₀] и [Fe(L³)₂][B₁₂H₁₂] соответственно.

ратного СКО зависят от многих факторов и, в частности, от влияния внешнесферного аниона на силу поля лиганда.

ЗАКЛЮЧЕНИЕ

В настоящем обзоре приведены данные по синтезу и исследованию комплексов железа(II) с производными полиазотистых гетероциклических

Таблица 12. Температуры прямого (T_c^{\uparrow}) и обратного (T_c^{\downarrow}) переходов для комплексов $[\text{Fe}(\text{L}^3)_2]\text{A} \cdot n\text{H}_2\text{O}$

Комплекс	$T_{\rm c}\uparrow$, K	$T_{\rm c}\downarrow$, K	$\Delta T_{\rm c}$, K
5 · 2H ₂ O	419	416	3
6 ⋅ H ₂ O	332	332	0
5	468	463	5
6	347	336	11

лигандов трех классов: 1,2,4-триазола, *трис* (пиразол-1-ил)метана и 2,6-*бис* (1*H*-имидазол-2-ил)пиридина общего состава [FeL_n]A_i · mH₂O (n = 2.3; i = 1.2; m = 0–2), внешнесферное положение в которых занимают кластерные анионы бора. Все синтезированные комплексы имеют искаженнооктаэдрическое строение координационного полиэдра, координационный узел FeN₆. Проведенная на основании данных СДО оценка силы поля лигандов показала, что для производных 1,2,4-триазола сила поля лиганда несколько ниже, чем *трис* (пиразол-1-ил)метана и 2,6-*бис* (1*H*-имидазол-2-ил)пиридина. Вместе с тем для всех трех классов лигандов соблюдается условие проявление спинкроссовера: 19000 \leq Δ_{HC} \leq 22000 см⁻¹.

Изучение зависимости $\mu_{9\varphi}(T)$ синтезированных комплексов методом статической магнитной восприимчивости показало, что они обладают спин-кроссовером ${}^{1}A_{1} \leftrightarrow {}^{5}T_{2}$. Исследованы характер спин-кроссовера, его резкость и температуры прямого и обратного переходов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа поддержана министерством науки и высшего образования Российской Федерации, проект № 121031700313-8.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Gütlich P., Goodwin H. Spin Crossover in Transition Metal Compounds I-III. // Top Curr. Chem. 2004. V. 233–235.
- 2. *Halcrow M.A.* Spin-Crossover Materials Properties and Applications. U.K: J. Wiley & Sons Ltd., 2013, 562 p.
- Levchenko G.G., Khristov A.V., Varyukhin V.N. // Low Temperature Phys. 2014. V. 40. P. 571. https://doi.org/10.1063/1.4891445
- 4. *Gütlich P.* // Coord. Chem. Rev. 2001. V. 219—221. P. 839. https://doi.org/10.1016/S0010-8545(01)00381-2
- 5. *Halcrow M.A.* // Crystals. 2016. V. 6. № 5. P. 58. https://doi.org/10.3390/cryst6050058
- 6. Boillot M.-L., Zarembowitch J., Sour A. // in: Spin Crossover in Transition Metal Compounds II, Top Curr. Chem. 2004. V. 234. P. 261. https://doi.org/10.1007/b95419
- 7. *Miller R.G., Brooker S.* // Chem. Sci. 2016. V. 7. P. 2501. https://doi.org/10.1039/c5sc04583e
- Shakirova O.G., Lavrenova L.G. // Crystals. 2020.
 V. 10. P. 843. https://doi.org/10.3390/cryst10090843
- Enriquez-Cabrera A., Rapakousiou A., Bello M.P. et al. // Coord. Chem. Rev. 2020. V. 419. P. 213396. https://doi.org/10.1016/j.ccr.2020.213396
- Kumar K.S., Vela S., Heinrich B. et al. // Dalton Trans. 2020. V. 49. P. 1022. https://doi.org/10.1039/C9DT04411F
- 11. *Kuppusamy S.K., Mizuno A., García-Fuente A. et al.* // ACS Omega. 2022. V. 7. № 16. P. 13654. https://doi.org/10.1021/acsomega.1c07217
- Bousseksou A., Molnár G., Salmon L. et al. // Chem. Soc. Rev. 2011. V. 40. P. 3313. https://doi.org/10.1039/C1CS15042A
- Molnár G., Rat S., Salmon L. et al. // Adv. Mater. 2018.
 V. 30. P. 1703862.
 https://doi.org/10.1002/adma.201703862
- 14. *Ibrahim N.M.J.N.*, *Said S.M.*, *Mainal A. et al.* // Mater. Res. Bull. 2020. V. 126. P. 110828. https://doi.org/10.1016/j.materresbull.2020.110828
- Guo W., Daro N., Pillet S. et al. // Chem. Eur. J. 2020.
 V. 26. № 57. P. 12927.
 https://doi.org/10.1002/chem.202001821
- 16. *Cuza E., Mekuimemba C.D., Cosquer N., et al.* // Inorg. Chem. 2021. V. 60. № 9. P. 6536. https://doi.org/10.1021/acs.inorgchem.1c00335
- 17. *Craze A.R., Zenno H., Pfrunder M.C. et al.* // Inorg. Chem. 2021. V. 60. № 9. P. 6731. https://doi.org/10.1021/acs.inorgchem.1c00553

- 18. Piedrahita-Bello M., Angulo-Cervera J.E., Courson R. et al. // J. Mater. Chem C. 2020. V. 8. № 18. P. 6001. https://doi.org/10.1039/D0TC01532F
- 19. *Nguyen T.D., Veauthier J.M., Angles-Tamayo G.F. et al.* // J. Amer. Chem. Soc. 2020. V. 142. № 10. P. 4842. https://doi.org/10.1021/jacs.9b13835
- 20. *Luo B.-X.*, *Pan Y.*, *Meng Y.-Sh. et al.* // Eur. J. Inorg. Chem. 2021. № 38. P. 3992. https://doi.org/10.1002/eiic.202100622
- Turo-Cortés R., Meneses-Sánchez M., Delgado T. et al. // J. Mater. Chem. C. 2022. V. 10. P. 10686. https://doi.org/10.1039/D2TC02039D
- 22. Aleshin D.Yu., Nikovskiy I., Novikov V.V. et al. // ACS Omega. 2021. V. 6. № 48. P. 33111. https://doi.org/10.1021/acsomega.1c05463
- Shakirova O., Kokovkin V., Korotaev E. et al. // Inorg. Chem. Commun. 2022. V. 146. P. 110112. https://doi.org/10.1016/j.inoche.2022.110112
- 24. Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Coord. Chem. Rev. 2022. V. 469. P. 214636. https://doi.org/10.1016/j.ccr.2022.214636
- 25. *Avdeeva V.V., Korolenko S.E., Malinina E.A. et al.* // Russ. J. Gen. Chem. 2022. V. 92. № 3. P. 393. https://doi.org/10.1134/S1070363222030070
- 26. *Авдеева В.В., Малинина Е.А., Жижин К.Ю. и др. //* Журн. неорг. химии. 2020. Т. 65. № 4. С. 495. https://doi.org/10.31857/S0044457X20040029
- 27. *Matveev E.Y., Avdeeva V.V., Zhizhin K.Y. et al.* // Inorganics. 2022. V. 10. № 12. P. 238. https://doi.org/10.3390/inorganics10120238
- Ali F, Hosmane N.S., Zhu Y. // Molecules. 2020. V. 25. P. 828. https://doi.org/10.3390/molecules25040828
- 29. *Sivaev I.B., Bregadze V.I., Kuznetsov N.T.* // Russ. Chem. Bull. 2002. V. 51. P. 1362. https://doi.org/10.1023/A:1020942418765
- 30. Barba-Bon A., Salluce G., Lostalé-Seijo I. et al. // Nature. 2022. V. 603. № 7902. P. 637. https://doi.org/10.1038/s41586-022-04413-w
- 31. *Avdeeva V.V., Garaev T.M., Malinina E.A. et al.* // Rus. J. Inorg. Chem. 2022. V. 67. № 1. P. 28. https://doi.org/10.1134/S0036023622010028
- 32. Fanfrlík J., Lepšík M., Horinek D. et al. // ChemPhysChem. 2006. V. 7. № 5. P. 1100. https://doi.org/10.1002/cphc.200500648
- 33. *Thirumamagal B.T.S.*, *Zhao X.B.*, *Bandyopadhyaya A.K. et al.* // Bioconjugate chemistry. 2006. V. 17. № 5. P. 1141. https://doi.org/10.1021/bc060075d
- 34. *Hu K., Yang Z., Zhang L. et al.* // Coord. Chem. Rev. 2020. V. 405. P. 213139. https://doi.org/10.1016/j.ccr.2019.213139213139
- 35. *Goswami L.N., Ma L., Chakravarty S. et al.* // Inorg. Chem. 2013. V. 52. № 4. P. 1694. https://doi.org/10.1021/ic3017613
- 36. *Fink K.*, *Uchman M.* // Coord. Chem. Rev. 2021. V. 431. P. 213684. https://doi.org/ 213684 https://doi.org/10.1016/j.ccr.2020.213684
- 37. *Pankhurst Q.A.*, *Thanh N.T.K.*, *Jones S.K. et al.* // J. Phys. D: Appl. Phys. 2009. V. 42. № 22. P. 224001. https://doi.org/10.1088/0022-3727/42/22/224001

- 38. Zimmermann L.W., Schleid T. // Z. Kristallogr. 2013. V. 228. № 10. P. 558. https://doi.org/10.1524/zkri.2013.1634
- 39. Avdeeva V.V., Vologzhanina A.V., Goeva L.V. et al. // Z. Anorg. Allg. Chem. 2014. V. 640. № 11. P. 2149. https://doi.org/10.1002/zaac.201400137
- Kravchenko E.A., Gippius A.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2020. V. 65. P. 546. https://doi.org/10.1134/S0036023620040105
- 41. *Kravchenko E.A., Gippius A.A., Polyakova I.N. et al.* // Z. Anorg. Allg. Chem. 2017. V. 643. № 23. P. 1939. https://doi.org/10.1002/zaac.201700293
- 42. *Korolenko S.E., Avdeeva V.V., Malinina E.A. et al.* // Russ. J. Coord. Chem. 2020. V. 46. P. 297. https://doi.org/10.1134/S1070328420050024
- 43. *Lavrenova L.G.*, *Shakirova O.G.* // Eur. J. Inorg. Chem. 2013. № 5–6. P. 670. https://doi.org/10.1002/ejic.201200980
- 44. *Lavrenova L.G.* // Rus. Chem. Bull. 2018. V. 67. № 7. P. 1142. https://doi.org/10.1007/s11172-018-2195-3
- 45. *Иванова А.Д., Лавренова Л.Г., Коротаев Е.В. и др.* // Журн. неорг. химии. 2020. Т. 65. № 11. С. 1497. https://doi.org/10.1134/S0036023620110078
- 46. *Иванова А.Д., Лавренова Л.Г., Коротаев Е.В. и др.* // Журн. неорг. химии. 2022. Т. 67. № 8. С. 1058. https://doi.org/10.31857/S0044457X22080177
- 47. Lavrenova L.G., Shakirova O.G., Korotaev E.V. et al. // Molecules. 2022. V. 27. № 16. P. 5093. https://doi.org/10.3390/molecules27165093
- 48. Goldstein P., Ladell J., Abowts G. // Acta Crystallogr. 1969. V. B25. № 1. P. 135. https://doi.org/10.1107/S0567740869001865
- 49. *Лавренова Л.Г.*, *Ларионов С.В.* // Коорд. химия. 1998. Т. 24. № 6. С. 403.
- 50. Зеленцов В.В. // Коорд. химия. 1992. Т. 18. № 8. С. 787.
- 51. Bushuev M.B., Lavrenova L.G., Shvedenkov Yu.G. et al. // Russ. J. Coord. Chem. 2008. V. 34. № 3. P. 190. https://doi.org/10.1134/S107032840803007X
- 52. *Berezovskii G.A.*, *Bushuev M.B.*, *Pishchur D.P. et al.* // J. Therm. Anal. Calorim. 2008. V. 93. № 3. P. 999. https://doi.org/10.1007/s10973-007-8703-6
- 53. Шакирова О.Г., Лавренова Л.Г., Икорский В.Н. и др. // Химия в интересах устойчивого развития. 2002. Т. 10. № 6. С. 795.
- 54. Шакирова О.Г., Далецкий В.А., Лавренова Л.Г. и др. // Журн. неорг. химии. 2013. Т. 58. № 6. С. 739. https://doi.org/10.1134/S0036023613060211
- 55. *Haasnoot J.G., Vos G., Groeneveld W.L.* // Z. Naturforsch. B. 1977. V. 32. № 12. P. 1421. https://doi.org/10.1515/znb-1977-1212
- Синдицкий В.П., Сокол В.И., Фогельзанг А. И др. // Журн. неорг. химии. 1987. Т. 32. № 8. С. 1950.
- 57. *Trofimenko S.* // J. Am. Chem. Soc. 1970. V. 92. № 17. P. 5118. https://doi.org/10.1021/ja00720a021
- 58. *Reger D. L., Little C A., Rheingold A. L. et al.* // Inorg. Chem. 2001. V. 40. № 7. P. 1508. https://doi.org/10.1021/ic001102t

- Bigmore H.R., Lawrence S.C., Mountford P. et al. // Dalton Trans. 2005. P. 635. https://doi.org/10.1039/B413121E
- 60. *Hawthorne M.F.* // Angew. Chem. Int. Ed. Engl. 1993. V. 32. № 7. P. 950. https://doi.org/10.1002/anie.199309501
- 61. *Спрышкова Р.А*. Биологические основы нейтроннозахватной терапии на боре-10. Дис. ... докт. биол. наук. М.: ОНЦ им. Н.Н. Блохина РАМН. 1999.
- 62. Шакирова О.Г., Лавренова Л.Г., Куратьева Н.В. и др. // Коорд. химия. 2010. Т. 36. № 4. С. 275. https://doi.org/10.1134/S1070328410040068
- 63. Шакирова О.Г., Далецкий В.А., Лавренова Л.Г. и др. // Коорд. химия. 2011. Т. 37. № 7. С. 511. https://doi.org/10.1134/S107032841106008X
- 64. *Шакирова О.Г., Лавренова Л.Г., Богомяков А.С. и др.* // Журн. неорг. химии. 2015. Т. 60. № 7. С. 869. https://doi.org/10.1134/S003602361507013X
- 65. Ливер Э., Гринбере Я.Х., Тульчинский М.Л. Электронная спектроскопия неорганических соединений. М.: Мир, 1987. Т. 2. 443 с.
- Hauser A. // Top. Curr. Chem. 2004. V. 233. P. 49. https://doi.org/10.1007/b13528
- 67. *Шакирова О.Г., Далецкий В.А., Лавренова Л.Г. и др.* // Журн. структ. химии. 2014. Т. 55. № 1. С. 50. https://doi.org/10.1134/S0022476614010077
- 68. *Wiesboeck R.A.*, *Hawthorne M.F.* // J. Am. Chem. Soc. 1964. V. 86. № 8. P. 1642. https://doi.org/10.1021/ja01062a042
- 69. *Кононова Е.Г.* Колебательные спектры и особенности электронного строения 11-вершинных *клозо-* и *нидо*-карборанов. Дис. ... канд. хим. наук. М., 2005. 120 с.
- Carlin R.L. Magnetochemistry. Berlin: Springer-Verlag, 1986. 328 p.
- 71. *Варнек В.А., Лавренова Л.Г.* // Журн. структ. химии. 1995. Т. 36. № 1. С. 120.
- 72. Лавренова Л.Г., Шакирова О.Г., Икорский В.Н. и др. // Коорд. химия. 2003. Т. 29. № 1. С. 24. https://doi.org/10.1023/A:1021834715674
- 73. *Накамото К.* ИК-спектры и спектры КР неорганических координационных соединений. М.: Мир, 1991. 536 с.
- 74. Sugano S., Tanabe Y., Kamimura H. Multiplets of transition metal ions in crystals. N.Y.: Academic Press, Pure Appl. Chem., 1970.
- 75. Selwood P.W. Magnetochemistry 2nd E. Interscience Publishers. N.Y., 1956.
- 76. *Ракитин Ю.В., Калинников В.Т.* Современная магнетохимия. СПб.: Наука, 1994.
- 77. *Ivanova A.D., Korotaev E.V., Komarov V.Yu. et al.* // Inorg. Chim. Acta. 2022. V. 532. P. 120746. https://doi.org/10.1016/j.ica.2021.120746
- 78. Vlasenko V.G., Kubrin S.P., Garnovskii D.A. et al. // Chem. Phys. Lett. 2020. V. 739. P. 136970. https://doi.org/10.1016/j.cplett.2019.136970
- 79. *Ivanova A.D., Korotaev E.V., Komarov V.Yu. et al.* // New. J. Chem. 2020. V. 44. P. 5834. https://doi.org/10.1039/D0NJ00474J