____ НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ ____ И НАНОМАТЕРИАЛЫ

УДК 546.62+544.032.4

ТЕРМИЧЕСКИЕ ПРЕВРАЩЕНИЯ ПОРИСТОГО АНОДНОГО ОКСИДА АЛЮМИНИЯ, СФОРМИРОВАННОГО В ЭЛЕКТРОЛИТАХ НА ОСНОВЕ СМЕСЕЙ СЕРНОЙ И ЩАВЕЛЕВОЙ КИСЛОТ

© 2023 г. И. В. Росляков^{*a*, *b*, *, И. В. Колесник^{*b*}, М. А. Белокозенко^{*b*}, А. Д. Япрынцев^{*a*}, К. С. Напольский^{*b*}}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ^bМосковский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия

> *e-mail: ilya.roslyakov@gmail.com Поступила в редакцию 01.12.2022 г. После доработки 06.02.2023 г. Принята к публикации 15.02.2023 г.

Анодирование алюминия в электролитах на основе смесей нескольких кислот открывает возможность формирования пористых пленок анодного оксида алюминия (AOA) с контролируемым в широком интервале периодом структуры. Отдельной задачей является исследование термических превращений пленок AOA, полученных в смешанных электролитах, так как сложный химический состав материала может приводить к особенностям при последующем отжиге. Установлено, что в составе AOA, сформированного анодированием алюминия в электролитах на основе смесей серной и щавелевой кислот, присутствуют примесные оксалат- и сульфат-анионы. При этом массовая доля сульфатов оказывается примерно на порядок больше, чем оксалатов, и увеличивается с ростом соотношения концентраций серной и щавелевой кислот в используемом электролите. Аналогично с ростом соотношения концентраций серной и щавелевой кислот увеличивается температура кристаллизации аморфного AOA в смесь низкотемпературных полиморфных модификаций Al₂O₃. Таким образом, соотношение компонентов в используемом смешанном электролите оказывает влияние на состав и термические превращения AOA.

Ключевые слова: анодный оксид алюминия, анодирование, серная кислота, щавелевая кислота, термическая обработка

DOI: 10.31857/S0044457X22602061, EDN: RHMFAB

ВВЕДЕНИЕ

Анодное окисление алюминия в электролитах на основе растворов кислот приводит к формированию на поверхности металла пористых пленок анодного оксида алюминия (АОА). Структуру АОА можно представить в виде набора непересекающихся цилиндрических каналов, которые расположены перпендикулярно поверхности пленки. В зависимости от выбранных условий анодирования (состав и концентрация электролита, приложенное напряжение, температура и продолжительность процесса) параметры пористой структуры можно контролируемо изменять в широких пределах [1]. Уникальная структура в сочетании с простотой получения материала предопределили широкое использование АОА в различных областях науки и техники. Кроме декоративного и антикоррозионного применения АОА используют для создания мембран [2–4]. матриц для синтеза анизотропных наноструктур

[5-7], планарных устройств [8-10], оптических фильтров [11-13].

Уникальной особенностью АОА является возможность формирования пространственно упорядоченных структур с гексагональной упаковкой пор в плоскости пленки. Отметим, что для выбранного состава электролита подобная морфология наблюдается лишь в узком интервале напряжений анодирования [14, 15]. Данный факт значительно сужает диапазон доступных периодов структуры и диаметров пор в случае высоких требований к пространственному упорядочению системы каналов и. соответственно, ограничивает практическое применение АОА. Необходимо отметить, что в ряде случаев качество упаковки пор оказывает решающее влияние на функциональные характеристики материала [16, 17]. Таким образом, поиск условий анодирования, приводящих к формированию пространственно упорядоченной пористой структуры с ранее недоступным периодом (диаметром пор), является актуальной задачей.

Как правило, анодирование алюминия проводят в электролитах на основе растворов индивидуальных кислот. Среди наиболее распространенных следует отметить серную [18], шавелевую [19]. селеновую [20], фосфористую [21] и ортофосфорную [22] кислоты, для каждой из которых эмпирически найдены узкие диапазоны напряжений. приводящие к формированию АОА с упорядоченной пористой структурой. В то же время электролиты на основе смесей нескольких кислот открывают перспективы формирования АОА с гексагональной упаковкой пор в широком интервале напряжений анодирования и, как следствие, возможность тонко настраивать период структуры (диаметр пор) при сохранении высокой степени упорядочения пор [23-25]. Отдельной задачей является исследование термических превращений АОА, полученного в смешанных электролитах. В данном случае материал имеет сложный химический состав из-за одновременного присутствия примесей анионов нескольких кислот. Это может приводить к особенностям при последуюшей термической обработке, широко используемой для повышения химической стабильности и увеличения удельной площади поверхности АОА [26, 27]. Отметим, что предварительная термическая обработка является необходимой стадией для создания на основе АОА газовых сенсоров [9], твердооксидных топливных элементов [28] и носителей катализаторов [29].

В настоящей работе изучены пористые пленки АОА, сформированные анодированием алюминия в электролитах на основе смесей серной и щавелевой кислот. Поведения АОА исследовано в широком диапазоне температур с использованием различных инструментальных методов: растровой электронной микроскопии, рентгеноспектрального, термогравиметрического, дифференциального термического и рентгенофазового анализа, инфракрасной (ИК) спектроскопии. Установлены состав и кристаллическая структура материала на различных этапах термической обработки.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходного материала использовали алюминиевую фольгу высокой чистоты (99.99%) толщиной 100 мкм. На предварительном этапе выполняли электрохимическую полировку алюминия для очистки и уменьшения шероховатости его поверхности [30].

Анодное окисление алюминия проводили в двухэлектродной электрохимической ячейке, в которой подвергаемая анодированию область алюминиевой фольги была ограничена резиновым кольцом с диаметром 3.2 см. Катодом выступало алюминиевое кольцо сопоставимого размера, расположенное на расстоянии 8 см от анода. В качестве электролита использовали водные растворы смесей серной (H_2SO_4) и щавелевой ($H_2C_2O_4$) кислот с различной концентрацией компонентов: 0.3 M $H_2SO_4 + 0.1$ M $H_2C_2O_4$; 0.3 M $H_2SO_4 + 0.3$ M $H_2C_2O_4$; 0.1 M $H_2SO_4 + 0.3$ M $H_2C_2O_4$ (ниже обозначены как 3S1O, 3S3O и 1S3O соответственно). В процессе анодирования электролит термостатировали при 1°С и интенсивно перемешивали. Продолжительность процесса контролировали кулонометрически: анодирование прекращали, когда плотность заряда достигала 100 Кл/см² (соответствует толщине AOA ~50 мкм).

Для получения AOA в свободном состоянии оставшийся алюминий селективно растворяли в смеси брома и метанола, взятых в соотношении 1 : 10 по объему.

Термическую обработку АОА проводили в печи Nabertherm L5/12 на воздухе со скоростью нагрева 5 град/мин до температуры 1000°С с последующей закалкой. Пористые пленки располагали между двумя корундовыми пластинами для предотвращения механических деформаций.

Для исследования кинетики анодирования в каждом из используемых электролитов применяли метод линейной вольтамперометрии (**ЛВА**). Напряжение линейно увеличивали с помощью источника постоянного тока Agilent N5751A со скоростью 100 мВ/с с шагом 50 мВ. Протекающий ток регистрировали при помощи мультиметра Tektronix DMM4020.

Растровую электронную микроскопию (РЭМ) и рентгеноспектральный микроанализ (РСМА) проводили на микроскопе Carl Zeiss NVision 40, оснащенном детектором Oxford Instruments X-Max 80. Предварительно на поверхность AOA наносили слой хрома толщиной 5 нм с помощью установки магнетронного напыления Quorum Technologies Q150T ES. Обработку РЭМ-изображений для вычисления геометрических параметров пористой структуры производили в программах ImageJ [31] и Statistics2D [32]. Долю пор в гексагональном окружении определяли по алгоритму Вороного с использованием программы Statistics2D [32].

Термогравиметрический (**ТГ**) и дифференциальный термический анализ (**ДТА**) с масс-спектрометрией отходящих газов проводили при скоростях нагрева 5, 20 и 50 град/мин на термоанализаторе Netzsch STA 409 PC Luxx, совмещенном с квадрупольным масс-спектрометром Netzch QMS 403C Aëolos. Измерения осуществляли в динамической воздушной атмосфере при скорости потока 50 мл/мин. Масса навески составляла ~10 мг.

Рис. 1. Электрохимические отклики, зарегистрированные в процессе анодирования алюминия в электролитах на основе смесей серной и щавелевой кислот. Линейная вольтамперометрия со скоростью развертки напряжения 100 мВ/с (а). Хроноамперограммы анодирования алюминия, зарегистрированные при постоянном напряжении (б) (показана только начальная стадия эксперимента).

Рентгенофазовый анализ (**РФА**) проводили на дифрактометре Bruker D8 Advance, используя Cu K_{α} -излучение с длиной волны 1.5418 Å, в диапазоне углов 20 от 30° до 50° с шагом сканирования 0.02°. Фазы идентифицировали с использованием базы данных ICDD PDF2.

Регистрацию ИК-спектров проводили на ИК-Фурье-спектрометре Perkin Elmer Spectrum Three в геометрии нарушенного полного внешнего отражения с использованием приставки Universal ATR Accessory (кристалл алмаз/KRS-5). Термический анализ, РФА и ИК-спектроскопию выполняли для пористых пленок AOA, перетертых в порошок в агатовой ступке.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Зависимости плотности тока от напряжения анодирования демонстрируют экспоненциаль-

ный рост в исследуемом диапазоне напряжений (рис. 1а). Подобное поведение согласуется с численной моделью транспорта ионов в барьерном диэлектрическом слое при приложении сильного электрического поля [33]. Согласно литературным данным [18], оптимальное напряжение для формирования гексагональной упаковки каналов при анодировании алюминия в 0.3 М серной кислоте составляет 25 В. Данное значение было использовано для получения АОА в электролитах 3S1O и 3S3O. В случае электролита 1S3O напряжение формирования AOA было увеличено до 30 В для сохранения плотности тока ~1.37 мA/см², соответствующей напряжению 25 В в электролитах 3S1O и 3S3O по данным ЛВА (рис. 1а, табл. 1).

Хроноамперограммы анодирования алюминия в различных электролитах при постоянном напряжении представлены на рис. 16. Резкое уменьшение плотности тока на начальной стадии

Параметр	3S1O 0.3 M H ₂ SO ₄ + 0.1 M H ₂ C ₂ O ₄	3\$30 0.3 M H ₂ \$O ₄ + 0.3 M H ₂ C ₂ O ₄	1S3O 0.1 M H ₂ SO ₄ + 0.3 M H ₂ C ₂ O ₄
<i>U</i> , B	25	25	30
<i>ј</i> _{ЛВА} , мА/см	1.37	1.47	1.28
$j_{\rm средн},$ мА/см	2.02 ± 0.07	2.04 ± 0.06	1.69 ± 0.06
D _{int} , нм	64 ± 7	64 ± 9	77 ± 10
<i>D</i> _р , нм	20 ± 2	19 ± 3	24 ± 4
Ψ, %	44	46	39

Таблица 1. Условия анодирования алюминия в электролитах на основе смесей серной и щавелевой кислот и параметры структуры полученного АОА

Примечание. U – напряжение анодирования; $j_{\text{ЛВА}}$ – плотность тока при напряжении анодирования по данным линейной вольтамперометрии; $j_{\text{средн}}$ – средняя плотность тока за все время анодирования при постоянном напряжении; D_{int} – расстояние между соседними порами, D_{p} – диаметр пор, Ψ – доля пор в гексагональном окружении.

Рис. 2. Изображения растровой электронной микроскопии для нижней стороны пористой пленки анодного оксида алюминия, полученной анодированием металла в различных условиях: $0.3 \text{ M H}_2\text{SO}_4 + 0.1 \text{ M H}_2\text{C}_2\text{O}_4$ при 25 В (а); 0.3 M H $_2\text{SO}_4 + 0.3 \text{ M}$ H $_2\text{C}_2\text{O}_4$ при 25 В (а); 0.1 M H $_2\text{SO}_4 + 0.3 \text{ M}$ H $_2\text{C}_2\text{O}_4$ при 25 В (б); 0.1 M H $_2\text{SO}_4 + 0.3 \text{ M}$ H $_2\text{C}_2\text{O}_4$ при 25 В (б); 0.1 M H $_2\text{SO}_4 + 0.3 \text{ M}$ H $_2\text{C}_2\text{O}_4$ при 30 В (в). Масштабная метка одинакова для всех изображений.

вызвано увеличением толщины барьерного слоя АОА. В момент наблюдения минимума тока происходит зарождение пор, затем ток возрастает до стационарного значения, что соответствует установившемуся режиму роста пористой структуры. Подобное поведение характерно для формирования АОА при постоянном напряжении в порообразующих электролитах [34, 35]. Постоянство плотности тока через 5 мин после начала анодирования полтверждает кинетический контроль процесса при выбранных условиях, так как скорость электрохимической реакции оказывается независимой от толщины АОА [14, 15]. Иными словами, массоперенос в порах АОА от их основания к верхней поверхности оксидной пленки достаточно быстрый и не ограничивает скорость электрохимического окисления.

Морфология полученного АОА была изучена с помощью РЭМ (рис. 2) с последующей статистической обработкой изображений, позволившей рассчитать параметры пористой структуры (табл. 1). В качестве количественной характеристики степени упорядочения была рассчитана доля пор в гексагональном окружении. В полученных образцах она не превышает 46%. Для достижения большей степени порядка требуется последующая дополнительная оптимизация выбранного напряжения анодирования для каждого из используемых электролитов. Отметим, что расстояние между соседними порами пропорционально приложенному напряжению с коэффициентом ~2.55 нм/В, что хорошо согласуется с литературными данными для индивидуальных кислот [33]. Напротив, диаметр пор в нижней части пористого АОА (со стороны барьерного слоя) мало зависит от условий анодирования и составляет ~21 нм.

ИК-спектры АОА, полученного анодированием алюминия в различных электролитах, представлены на рис. 3. Уменьшение пропускания в низкоэнергетической области спектра ниже 1000 1/см соответствует колебаниям связей Al–O. Примесные анионы серной кислоты в составе AOA проявляются в виде широкой полосы при ~1150 1/см [36], интенсивность которой больше при анодировании алюминия в электролитах с большей концентрацией H_2SO_4 (S3O1 и S3O3). Двойной минимум пропускания в районе 1500 1/см соответствует симметричным и асимметричным колебаниям $C_2O_4^{2-}$ [37]. По аналогии с анионами серной кислоты, интенсивность данной полосы оказывается больше при использовании электролитов с большей концентрацией щавелевой кислоты (S3O3 и S1O3).

Термическая обработка АОА сопровождается несколькими стадиями потери массы (рис. 4а). На первой стадии (Δm_1) в диапазоне температур ниже 800°С происходит удаление воды. Величина Δm_1 практически не зависит от используемого электролита и составляет ~3.8 мас. % (табл. 2). Удаление воды происходит в несколько этапов. В диапазоне температур до ~300°С наблюдается удаление молекул H₂O, сорбированных стенками пор АОА. Менее выраженное уменьшение массы при больших температурах вплоть до 800°С соответствует разложению гидроксидов и оксогидроксидов алюминия. Дополнительным подтверждением двойственной химической природы воды в структуре АОА являются два широких максимума на масс-спектрах (рис. 4б), соответствующие массовому числу 18 (H_2O^+).

Резкая потеря массы при температуре ~900°С (Δm_2) сопровождается максимумом ионного тока на масс-спектрах для массовых чисел 16 (O⁺), 32 (S⁺/O₂⁺) и 44 (CO₂⁺) (рис. 46). Этот набор соответствует характерным продуктам термического разложения анионов щавелевой и серной кислот,

Рис. 3. Данные ИК-спектроскопии для анодного оксида алюминия, полученного анодированием алюминия в электролитах на основе смесей серной и щавелевой кислот.

которые внедряются в структуру АОА в процессе анодирования. Потеря массы на данной стадии мало зависит от используемого электролита и составляет ~7.6 мас. % (табл. 2). В указанном диапазоне температур также виден резкий экзотермический максимум на кривых ДТА (рис. 4в), который, согласно литературным данным для индивидуальных электролитов, соответствует кристаллизации исходного аморфного материала в смесь низкотемпературных полиморфных модификаций Al₂O₃ (в основном γ-Al₂O₃) [38–40].

Потеря массы на третьей стадии удаления примесей (Δm_3) в диапазоне от 900 до 1200°С, напротив. в значительной степени определяется соотношением кислот в используемом электролите. В частности, относительное уменьшение Δm_3 составляет более 50% при переходе от 3S1O к 1S3O. Это может свидетельствовать о том, что на данной стадии преимущественно разлагаются примесные анионы серной кислоты, тогда как анионы щавелевой кислоты менее устойчивы при нагреве и их удаление из структуры АОА в основном соответствует Δm_2 . Аналогичные выводы можно сделать на основе сопоставления литературных данных по термическому поведению АОА, полученного в индивидуальных электролитах. Расчеты показывают, что отношение $\Delta m_2/(\Delta m_2 + \Delta m_3)$ составляет ~90% для шавелевокислого АОА [39] и стремится к 60% для сернокислого материала [40].

После второго фазового перехода при температуре ~1200°С, который, согласно литературным данным для индивидуальных электролитов, соответствует кристаллизации в фазу корунда [38–40], дальнейшей потери массы не наблюдается. Это свидетельствует о формировании при данной температуре стехиометрического оксида алюми-

Рис. 4. Термические превращения анодного оксида алюминия, полученного анодированием алюминия в электролитах на основе смесей серной и щавелевой кислот: термогравиметрические кривые (скорость нагрева 5 град/мин) (а); масс-спектры продуктов разложения для AOA, полученного в электролите состава 0.3 М $H_2SO_4 + 0.3$ М $H_2C_2O_4$ при 25 В (скорость нагрева 50 град/мин) (б); данные дифференциального термического анализа (скорость нагрева 5 град/мин) (в).

ния, не содержащего в составе примесей электролита.

Рассмотрим зависимости характерных температур термических превращений АОА, получен-

Таблица 2. Результаты термогравиметрического и дифференциального термического анализа анодного оксида алюминия, полученного анодированием алюминия в электролитах на основе смесей серной и щавелевой кислот

Параметр	3\$10	3\$30	1830
Δ <i>m</i> ₁ , мас. %	4.2	3.8	3.5
Δ <i>m</i> ₂ , мас. %	7.7	7.9	7.2
Δ <i>m</i> ₃ , мас. %	2.9	2.1	1.7
$\Delta m_{ m o m o m u}$, мас. %	14.8	13.8	12.4
T_{γ} , °C	940	920	895
T_{α} , °C	1185	1185	1185
$T_{\Delta m_2}, ^{\circ}\mathrm{C}$	945	930	900

Примечание. Δm_{1-3} — потеря массы на различных стадиях термического разложения (см. обозначения в тексте); $\Delta m_{\rm ofull}$ — общая потеря массы при отжиге до 1400°С; T_{γ} — температура кристаллизации в смесь низкотемпературных полиморфных модификаций Al₂O₃; T_{α} — температура кристаллизации в фазу корунда (α -Al₂O₃); $T_{\Delta m2}$ — температура основной стадии потери массы при 900°С (Δm_2).

Таблица 3. Химический состав анодного оксида алюминия, полученного анодированием алюминия в электролитах на основе смесей серной и щавелевой кислот, для исходного материала и после отжига при 1000°С с закалкой (скорость нагрева 5 град/мин). Расчеты проведены на основе данных ТГ и РСМА

Параметр	3S1O	3830	1830			
Исходный материал						
$H_2O + OH^-$, мас. %	4.2	3.8	3.5			
С ₂ О ₄ ^{2–} , мас. %	0.6	1.2	1.4			
SO ₄ ²⁻ , мас. %	10.0	8.8	7.5			
Al ₂ O ₃ , мас. %	85.2	86.2	87.6			
После отжига при 1000°С						
$H_2O + OH^-$, мас. %	1.9	1.7	2.0			
С ₂ О ₄ ^{2–} , мас. %	0.0	0.0	0.0			
SO ₄ ^{2–} , мас. %	3.0	2.4	1.8			
Al ₂ O ₃ , мас. %	95.1	95.9	96.2			

ного в различных электролитах (табл. 2). Отчетливо видно, что температура первого фазового перехода (T_{γ}) уменьшается с увеличением концентрации щавелевой кислоты в электролите. Аналогичную зависимость демонстрирует положение основной стадии потери массы на шкале температур ($T_{\Delta m_2}$). Это позволяет предположить, что рост массовой доли сульфатов как анионов, более устойчивых при высоких температурах по сравнению с оксалатами, увеличивает термическую стабильность АОА. Напротив, к моменту достижения температуры второго фазового перехода (T_{α}) примеси в составе АОА практически отсутствуют. Это приводит к тому, что T_{α} почти не зависит от состава используемого электролита. Указанные характерные температуры термических превращений (T_{γ} и $T_{\Delta m_2}$) для АОА, полученного в индивидуальных электролитах, также оказываются выше в случае применения сернокислого электролита, чем при использовании раствора щавелевой кислоты [38–40].

Для количественного определения соотношения сульфат- и оксалат-анионов в составе АОА данные ТГ дополнены результатами РСМА. Это позволило с помощью независимого метода установить соотношение серы и алюминия в исследованном материале. Массовую долю оксалат-анионов принимали равной разнице между потерей массы (по данным ТГ) в диапазоне температур от 800 до 1400°С ($\Delta m_2 + \Delta m_3$) и массовой долей сульфатанионов, рассчитанной из РСМА. Полученные массовые доли примесей различного состава представлены в табл. 3.

В среднем по трем используемым электролитам массовая доля анионов серной кислоты (~9 мас. %) практически на порядок превышает содержание оксалат-анионов (~1 мас. %). Это может быть следствием большей равновесной концентрации анионов серной кислоты по сравнению с анионами щавелевой кислоты для всех используемых электролитов из-за значительно большей степени диссоциации серной кислоты по сравнению с щавелевой (для серной кислоты рКа₁ < 0, рКа₂ = 1.99; для щавелевой кислоты $pKa_1 = 1.25$, $pKa_2 = 3.81$ [41]). При этом массовая доля сульфатов в составе АОА увеличивается с увеличением соотношения концентраций серной/щавелевой кислот в электролите. Аналогичное утверждение справедливо и для оксалат-анионов, массовая доля которых увеличивается с ростом соотношения концентраций щавелевой/серной кислот в электролите.

Для уточнения химического состава АОА после основной стадии потери массы при 900°С (Δm_2) был проведен отжиг материала при 1000°С со скоростью нагрева 5 град/мин с последующей закалкой. Полученные пористые пленки исследованы с помощью ТГ, РСМА, РФА и ИК-Фурье-спектроскопии. Данные ТГ демонстрируют две стадии потери массы (рис. 5а). Вплоть до 500°С наблюдается удаление примесей, адсорбированных высокоразвитой поверхностью материала в процессе хранения на воздухе. Отметим, что для АОА характерно значительное увеличение площади поверхности вследствие кристаллизации материала в смесь низкотемпературных по-

Рис. 5. Термическое поведение, структура и состав АОА после отжига при 1000°С с закалкой (скорость нагрева 5 град/мин): термогравиметрия (скорость нагрева 20 град/мин) (а), рентгенофазовый анализ (б) и ИК-Фурье-спектроскопия (в).

лиморфных модификаций Al_2O_3 (в основном γ - Al_2O_3) при температуре ~900°С (рис. 56) [39, 42].

В диапазоне температур от 1000 до 1200°С наблюдается плавная потеря массы, которая в количественном выражении хорошо согласуется с потерей массы на стадии Δm_3 для исходного материала (табл. 2). Отметим, что потеря массы на данной стадии согласуется в пределах погрешности с массовой долей сульфат-анионов, рассчитанной из соотношения серы и алюминия по данным PCMA. Таким образом, в составе AOA после отжига при 1000°С отсутствуют оксалат-анионы (табл. 3). Это подтверждает, что примеси щавелевой кислоты полностью удаляются на стадии Δm_2 при 900°С. На ИК-спектрах AOA после отжига при 1000°С заметны слабые минимумы пропускания при ~1150 1/см, которые соответствуют остаточному содержанию сульфат-анионов (рис. 5в).

ЗАКЛЮЧЕНИЕ

Анодирование алюминия в электролитах на основе смесей серной и щавелевой кислот приводит к формированию пористых оксидных пленок. По данным РЭМ, расстояние между соседними порами пропорционально приложенному напряжению с коэффициентом 2.56 нм/В, тогда как диаметр пор в нижней части АОА мало зависит от условий анодирования и составляет ~21 нм.

В составе пористых пленок, полученных в смешанных электролитах, присутствует сорбированная и химически связанная вода, массовая доля которой (~3.8 мас. %) практически не зависит от используемого электролита. Массовые доли примесных анионов серной и щавелевой кислот в составе АОА экспериментально определены с помощью термогравиметрии и рентгеноспектрального микроанализа и составляют в среднем 8.8 и 1.2%, соответственно. Увеличение концентрации серной кислоты в электролите приводит к увеличению массовой доли сульфатов в материале, которые за счет большей устойчивости при высоких температурах по сравнению с оксалатами увеличивают термическую стабильность АОА (в частности, температуру кристаллизации исходно аморфного АОА в смесь низкотемпературных полиморфных модификаций Al₂O₃). Отметим, что сульфаты присутствуют в составе АОА вплоть до кристаллизации материала в фазу корунда при ~1200°С, тогда как оксалаты менее термически устойчивы и полностью разлагаются при температуре ~1000°С.

БЛАГОДАРНОСТЬ

И.В. Росляков, И.В. Колесник и К.С. Напольский благодарят за поддержку Междисциплинарную научно-образовательную школу Московского университета "Будущее планеты и глобальные изменения окружающей среды". Авторы признательны Д.Д. Холманских (МГУ) за помощь в получении пористых пленок АОА и Т.Б. Шаталовой (МГУ) за помощь в проведении экспериментов методами ТГ/ДТА. Исследования методами РЭМ, РСМА и РФА выполнены с использованием оборудования ЦКП ФМИ ИОНХ РАН. Методы Исследование выполнено при финансовой поддержке РФФИ (грант № 19-33-60088).

ТГ. ДТА и ИК-Фурье-спектроскопии реализованы на

оборудовании, приобретенном за счет средств Про-

граммы развития Московского университета.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Domagalski J.T., Xifre-Perez E., Marsal L.F. // Nanomaterials. 2021. V. 11. P. 430. https://doi.org/10.3390/nano11020430
- Petukhov D.I., Chernova E.A., Kapitanova O.O. et al. // J. Membr. Sci. 2019. V. 577. P. 184. https://doi.org/10.1016/j.memsci.2019.01.041
- Roslyakov I.V., Petukhov D.I., Napolskii K.S. // Nanotechnology. 2021. V. 32. P. 33LT01. https://doi.org/10.1088/1361-6528/abfeea
- Petukhov D.I., Kan A.S., Chumakov A.P. et al. // J. Membr. Sci. 2021. V. 621. P. 118994. https://doi.org/10.1016/j.memsci.2020.118994
- Valeev R., Romanov E., Beltukov A. et al. // Phys. Status Solidi C. 2012. V. 9. P. 1462. https://doi.org/10.1002/pssc.201100677
- Gordeeva E.O., Roslyakov I.V., Leontiev A.P. et al. // Beilstein J. Nanotechnology. 2021. V. 12. P. 957. https://doi.org/doi:10.3762/bjnano.12.72
- Ryzhkov I.I., Kharchenko I.A., Mikhlina E.V. et al. // Int. J. Heat Mass Transfer. 2021. V. 176. P. 121414. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121414
- Lee Y.H., Chang I., Cho G.Y. et al. // Int. J. Precision Engineering Manufacturing-Green Technology. 2018. V. 5. P. 441. https://doi.org/10.1007/s40684-018-0047-0
- Roslyakov I.V., Kolesnik I.V., Evdokimov P.V. et al. // Sens. Actuators, B. 2021. V. 330. P. 129307. https://doi.org/10.1016/j.snb.2020.129307
- Kalinin I.A., Roslyakov I.V., Tsymbarenko D.M. et al. // Sens. Actuators, A. 2021. V. 317. P. 112457. https://doi.org/10.1016/j.sna.2020.112457
- 11. *Santos A.* // J. Mater. Chem. C 2017. V. 5. P. 5581. https://doi.org/10.1039/C6TC05555A
- Szwachta G., Bialek E., Włodarski M. et al. // Nanotechnology. 2022. V. 33. P. 455707. https://doi.org/10.1088/1361-6528/ac83ca
- Sadykov A.I., Kushnir S.E., Roslyakov I.V. et al. // Electrochem. Commun. 2019. V. 100. P. 104. https://doi.org/10.1016/j.elecom.2019.01.027

- Roslyakov I.V., Gordeeva E.O., Napolskii K.S. // Electrochim. Acta. 2017. V. 241. P. 362. https://doi.org/10.1016/j.electacta.2017.04.140
- Gordeeva E.O., Roslyakov I.V., Napolskii K.S. // Electrochim. Acta. 2019. V. 307. P. 13. https://doi.org/10.1016/j.electacta.2019.03.098
- Petukhov D.I., Napolskii K.S., Berekchiyan M.V. et al. // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 7819. https://doi.org/10.1021/am401585q
- Noyan A.A., Leontiev A.P., Yakovlev M.V. et al. // Electrochim. Acta. 2017. V. 226. P. 60. https://doi.org/10.1016/j.electacta.2016.12.142
- Masuda H., Hasegwa F., Ono S. // J. Electrochem. Soc. 1997. V. 144. P. L127. https://doi.org/10.1149/1.1837634
- Masuda H., Fukuda K. // Science. 1995. V. 268. P. 1466. https://doi.org/10.1126/science.268.5216.1466
- 20. Nishinaga O., Kikuchi T., Natsui S. et al. // Sci. Rep. 2013. V. 3. P. 2748. https://doi.org/10.1038/srep02748
- Akiya S., Kikuchi T., Natsui S. et al. // Electrochim. Acta. 2016. V. 190. P. 471. https://doi.org/10.1016/j.electacta.2015.12.162
- Masuda H., Yada K., Osaka A. // Jpn. J. Appl. Phys. Lett. 1998. V. 37. P. L1340. https://doi.org/10.1143/JJAP.37.L1340
- Almasi Kashi M., Ramazani A., Noormohammadi M. et al. // J. Phys. D: Appl. Phys. 2007. V. 40. P. 7032. https://doi.org/10.1088/0022-3727/40/22/025
- 24. Almasi Kashi M., Ramazani A., Mayamai Y. et al. // Jpn. J. Appl. Phys. 2010. V. 49. P. 015202–1. https://doi.org/10.1143/JJAP.49.015202
- 25. *Xu Y.F., Liu H., Li X.J. et al.* // Mater. Lett. 2015. V. 151. P. 79.

https://doi.org/10.1016/j.matlet.2015.03.049 26. Mardilovich P.P., Govyadinov A.N., Mazurenko N.I.

- *et al.* // J. Membr. Sci. 1995. V. 98. P. 143. https://doi.org/10.1016/0376-7388(94)00185-2
- 27. Ширин Н.А., Росляков И.В., Берекчиян М.В. и др. // Журн. неорган. химии. 2013. Т. 67. № 6. С. 868.
- 28. Lee Y.H., Ren H., Wu E.A. et al. // Nano Lett. 2020. V. 20. P. 2943. https://doi.org/10.1021/acs.nanolett.9b02344
- Kousar R., Kim S.H., Byun J.Y. // J. King Saud University Engineer. Sci. 2021. https://doi.org/10.1016/j.jksues.2021.09.003
- 30. Гордеева Е.О., Росляков И.В., Садыков А.И. и др. // Электрохимия. 2018. Т. 54. № 11. С. 999.
- 31. *Schneider C.A., Rasband W.S., Eliceiri K.W.* // Nat. Methods. 2012. V. 9. P. 671. https://doi.org/10.1038/nmeth.2089
- 32. Программы для анализа упорядочения пор в анодном оксиде алюминия. http://www.eng.fnm.msu.ru/software/
- 33. *Lee W., Park S.J.* // Chem. Rev. 2014. V. 114. P. 7487. https://doi.org/10.1021/cr500002z

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 7 2023

- 34. Parkhutik V.P. // J. Phys. D: Appl. Phys. 1992. V. 25. P. 1258. https://doi.org/10.1088/0022-3727/25/8/017
- *Kim M., Kim H., Bae C. et al.* // J. Phys. Chem. C. 2014.
 V. 118. P. 26789. https://doi.org/10.1021/jp507576c
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений / Пер. с англ. под ред. Пентина Ю.А. М.: Мир, 1991.
- Vrublevsky I., Chernyakova K., Ispas A. et al. // J. Lumin. 2011. V. 131. P. 938. https://doi.org/10.1016/j.jlumin.2010.12.027
- Mata-Zamora M.E., Saniger J.M. // Revista Mexicana de Fisica. 2005. V. 51. P. 502.

- Roslyakov I.V., Kolesnik I.V., Levin E.E. et al. // Surf. Coat. Technol. 2020. V. 381. P. 125159. https://doi.org/10.1016/j.surfcoat.2019.125159
- 40. Roslyakov I.V., Shirin N.A., Berekchiian M.V. et al. // Microporous Mesoporous Mater. 2020. V. 294. P. 109840. https://doi.org/10.1016/j.micromeso.2019.109840
- 41. *Lide D.R.* CRC Handbook of Chemistry and Physics, 84th ed. CRC Press (2003).
- Mardilovich P.P., Govyadinov A.N., Mukhurov N.I. et al. // J. Membr. Sci. 1995. V. 98. P. 131. https://doi.org/10.1016/0376-7388(94)00184-Z

996