СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.65.03+54.057+544.174+661.143

ЭКСТРАКЦИОННО-ПИРОЛИТИЧЕСКИЙ СИНТЕЗ И ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА БОРАТОВ La_{0.95}Eu_{0.05}BO₃ : Sm И La_{0.95}Eu_{0.05}(BO₂)₃ : Sm

© 2023 г. Н. И. Стеблевская^{а,} *, М. В. Белобелецкая^а

^аИнститут химии ДВО РАН, пр-т 100-летия Владивостока, 159, Владивосток, 690022 Россия

*e-mail: steblevskaya@ich.dvo.ru Поступила в редакцию 20.12.2022 г. После доработки 21.03.2023 г. Принята к публикации 21.03.2023 г.

Ортобораты La_{0.95-x}Eu_{0.05}Sm_xBO₃ и метабораты La_{0.95-x}Eu_{0.05}Sm_x(BO₂)₃ (x = 0.025, 0.05, 0.075, 0.1) получены в оптимальных условиях экстракционно-пиролитическим методом при меньших по сравнению с известными способами температуре и времени. При увеличении концентрации иона Sm³⁺ объем элементарной ячейки в La_{0.95-x}Eu_{0.05}Sm_xBO₃ (структурный тип арагонита) и La_{0.95-x}Eu_{0.05}Sm_x(BO₂)₃ (моноклинная модификация α -типа) уменьшается. Наибольшие изменения в спектрах возбуждения люминесценции соединений в зависимости от концентрации Sm³⁺ наблюдаются в области 360–450 нм, где проявляются полосы переходов как иона Eu³⁺, так и иона Sm³⁺. При возбуждении люминесценции в полосе максимального поглощения иона Sm³⁺ ($\lambda_{ex} = 404$ нм) интенсивность люминесценции совместно допированных La_{0.925}Eu_{0.05}Sm_{0.025}(BO₂)₃ и La_{0.925}Eu_{0.05}Sm_{0.025}BO₃ возрастает, что можно объяснить возможностью эффективной передачи поглощенной энергии ионом Sm³⁺ иону Eu³⁺.

Ключевые слова: экстракционно-пиролитический метод, бораты лантана, допирование самарием и европием, люминесценция

DOI: 10.31857/S0044457X22602280, EDN: RIDIYM

введение

Оптически активные материалы на основе боратов лантана(III), обладающие высокой термической стабильностью и прозрачностью в ультрафиолетовом диапазоне и легированные другими редкоземельными элементами, являются высокоэффективными люминофорами [1-9]. Их используют в качестве источников в осветительных системах с низким энергопотреблением, в плоских дисплеях, солнечных элементах, оптоволокне, датчиках температуры и флуоресцентных лампах. Ионами-активаторами в указанных люминофорах являются ионы Eu³⁺, Tb³⁺, Sm³⁺, Dy³⁺, Gd³⁺ и Ce³⁺, обладающие интенсивной люминесценцией в видимой и ближней инфракрасных областях при возбуждении ультрафиолетовым светом [1-3, 5-8]. Введение в состав люминофора в процессе синтеза ионов- сенсибилизаторов, например ионов Sm³⁺, Ce³⁺, Bi³⁺, передающих часть поглощенной энергии при возбуждении УФ-светом ионам-активаторам, приводит как к увеличению интенсивности люминесценции иона-активатора, так и к расширению спектра излучения [2, 6, 7, 9–15].

Для получения эффективных люминофоров на основе орто- или метаборатов лантана, легиро-

ванных другими ионами, предложены различные методы: твердофазный [1-3, 5-7], золь-гель, гидротермальный [4, 8, 9], осаждения и соосаждения из растворов [16], термической диссоциации или пиролиза солей органических кислот или комплексных соединений металлов с органическими лигандами [10, 16, 17]. Каждый из этих методов имеет свои преимушества и недостатки. Так. для твердофазного синтеза характерны высокие температуры и длительность прокаливания исходных прекурсоров, а также гранулометрическая неоднородность продуктов. Указанные неудобства частично исключаются при использовании альтернативных методов синтеза: гидротермального или золь-гель метода. Кроме того, следует отметить влияние на функциональные свойства оксидных материалов, в том числе и люминофоров, ряда факторов: морфологии, структуры и микроструктуры, соотношения концентрации легирующих ионов и т.д., которые, в свою очередь, во многом определяются используемым методом синтеза. Зачастую получить функциональный материал с улучшенными свойствами, в том числе и наиболее экономично, возможно только определенным методом. Так, например, установлено [18], что интенсивность люминесценции люминофоров на основе ортоборатов РЗЭ, полученных гидротермальным синтезом, значительно выше, чем соединений такого же состава, полученных твердофазным методом.

В настоящей работе представлены результаты изучения применения экстракционно-пиролитического (ЭП) метода для синтеза мета- и ортоборатов лантана, активированных ионами европия(III) и дополнительно ионами самария(III), и исследования состава и спектрально-люминесцентных характеристик полученных люминофоров. Ранее ЭП-метод использовали для синтеза однородных высокотемпературных сверхпроводников, магнитных материалов с ультрадисперсной структурой, сегнетоэлектриков, твердых электролитов, некоторых люминофоров, в том числе нанодисперсных [19, 20]. В частности, в [20] ЭП-методом успешно получены люминофоры на основе оксидов, оксисульфидов, фосфатов, ниобатов, танталатов и боратов европия и тербия, в том числе допированные другими ионами. ЭПметод получения подобных материалов в некоторых случаях предпочтительнее других за счет снижения температуры и (или) времени процесса синтеза. При этом с большой точностью вводятся легирующие добавки в широком диапазоне соотношений элементов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза боратов лантана LaBO3 и $La(BO_2)_3$, совместно допированных ионами Eu^{3+} и Sm³⁺, предварительно получали насыщенные экстракты лантана, европия и самария. Экстракцию РЗЭ проводили из водных нитратных растворов, содержащих 0.012 моль/л La^{3+} , 6.6 × $\times 10^{-3}$ моль/л Eu³⁺ или Sm³⁺, смешанными растворами 1.95 моль/л ацетилацетона и 0.0167 моль/л 1.10-фенантролина в бензоле. Значение рН водной фазы (7.0-7.5), необходимое для получения насыщенных металлами органических фаз, создавали добавлением водного раствора аммиака и контролировали при помощи pH-метра Radelkis OP-211/1. Насыщенный по бору экстракт получали экстракцией 0.45 моль/л раствором три-*н*-октиламина в бензоле из водной фазы. содержащей 0.5 моль/л борной и 0.7 моль/л винной кислот. Органическую и водную фазы (1:1) интенсивно перемешивали при комнатной температуре в течение 30 мин на механическом встряхивателе SK-30 (Южная Корея). Количественный состав водных и органических фаз контролировали атомноабсорбционным или рентгенофлюоресцентным анализом. Мольные соотношения La : В в смешиваемых экстрактах при получении соединений LaBO₃ составляли 1 : 1.2, а для $La(BO_2)_3 - 1 : 4$. Для получения допированных боратов лантана в

такой экстракт вводили определенные количества экстрактов, содержащих европий и самарий в требуемых соотношениях. Гомогенные смешанные экстракты нагревали на воздухе при 60– 80°С до образования паст, которые подвергали пиролизу при различных температурах в муфельной печи в течение 2 ч.

Рентгенофазовый анализ образцов осуществляли на дифрактометре D8 Advance BrukerAXS в Cu K_{α} -излучении с использованием программы поиска EVA с банком порошковых данных PDF-2. Спектры возбуждения люминесценции и спектры люминесценции люминофоров регистрировали в одинаковых условиях при 300 K на спектрофлуориметре Shimadzu RF-5301 PC. ИК-спектры образцов записывали при комнатной температуре на приборе Vertex 70 в области 4000–400 см⁻¹.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Допирование ионами Sm³⁺ осуществляли, используя ортоборат состава La_{0.95}Eu_{0.05}BO₃ и метаборат состава La_{0.95}Eu_{0.05}(BO₂)₃, которые обладают наиболее интенсивной люминесценцией с максимумом в области ~615 нм [21]. Синтез ортоборатов La_{0.95-x}Eu_{0.05}Sm_xBO₃, а также метаборатов La_{0.95-x}Eu_{0.05}Sm_x(BO₂)₃ (x = 0.025, 0.05, 0.075, 0.1) проводили экстракционно-пиролитическим методом при более низких температурах и меньшем времени по сравнению с другими известными способами.

Ранее ЭП-методом нами были получены ортобораты $LaBO_3$ и метабораты лантана α -La(BO₂)₃, в том числе допированные ионами Eu³⁺, Tb³⁺, Ві³⁺ [21, 22]. В процессе синтеза ортобората лантана LaBO₃ или ортобората лантана, допированного указанными ионами, при повышении температуры пиролиза прекурсоров от 550 до 900°С происходит образование двух фаз: ромбической фазы структурного типа арагонита и высокотемпературной моноклинной фазы. При достижении температуры 650-750°С образуется индивидуальная ромбическая фаза структурного типа арагонита (пр. гр. *Pnam* (62), a = 5.872, b = 8.257, c == 5.107 Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, Z = 4) [8], r.e., температура перехода в индивидуальную фазу структурного типа арагонита при использовании ЭП-метода [21, 22] ниже, чем в твердофазном синтезе (800-1000°С) [1, 5, 6] или золь-гель методе (900°С) [8]. Моноклинная модификация допированных метаборатов La_{0.95}Eu_{0.05}(BO₂)₃: Tb³⁺, Bi³⁺ (пр. гр. I2/a (15), a = 7.956, b = 8.161, c = 6.499 Å, $\alpha = 90^{\circ}, \beta = 93.63^{\circ}, \gamma = 90^{\circ}, Z = 4$) в ЭП-методе образуется также при более низкой температуре (800°С) [21, 22], чем в известных методах синтеза.

Рентгенофазовый анализ показал, что структурный тип арагонита при добавлении ионов Sm³⁺ в состав La_{0.95}Eu_{0.05}BO₃ в пределах исследуемых концентраций Sm^{3+} (x = 0.025, 0.05, 0.075,0.10) также сохраняется. На рис. 1 (кривые 1, 2) для примера приведены дифрактограммы La_{0.95}Eu_{0.05}BO₃ и La_{0.925}Eu_{0.05}Sm_{0.025}BO₃. При этом, как было показано ранее для LaBO3 и La_{0.95}Eu_{0.05}BO₃ [21], для совместно допированных ЭП-методом ортоборатов La_{0 95-x}Eu_{0 05}Sm_xBO₃ наблюдается последовательность смены фаз при тех же температурах: при 550°С образуются две фазы: ромбическая фаза структурного типа арагонита и высокотемпературная моноклинная фаза, а при 650-750°С происходит полный переход в фазу арагонита. Ортобораты редкоземельных элементов чаше всего могут кристаллизоваться в структурах типа фатерита (ватерита), кальцита или арагонита, а иногда псевдоволластонита. В частности, EuBO₃ кристаллизуется в структурном типе кальцита, а SmBO₃ – в структурном типе фатерита [1-3, 5, 8], в котором реализуется координация ионов Ln³⁺ восемью ионами кислорода. Ион La³⁺ координирован девятью ионами кислорода в структурном типе арагонита LaBO₃ [1, 5, 8], который сохраняется и для La_{0.95}Eu_{0.05}BO₃, как показано в [21], и для La_{0.95}Eu_{0.05}Sm_xBO₃: дифрактограммы образцов допированных соединений идентичны и не содержат никаких примесных пиков (рис. 1). Следовательно, можно говорить о замещении иона La³⁺ в элементарной ячейке ионами Sm³⁺. В пределах используемых концентраций допирующих ионов в LaBO3 имеет место заместительное легирование с сохранением структурного типа арагонита. Однако известно [2, 18, 23, 24], что при концентрациях ионов-активаторов более 15% в структурном типе арагонита возможно помимо заместительного и интерстициальное легирование: на рентгенограммах образцов появляются характерные для структурных типов кальшита или ватерита дифракционные линии.

При введении в метаборат $La_{0.95}Eu_{0.05}(BO_2)_3$ ионов Sm³⁺ в таких же концентрациях, как и для ортобората $La_{0.95}Eu_{0.05}BO_3$, кристаллическая структура моноклинной модификации α -типа (рис. 1, кривые *3*, *4*) также сохраняется. Образование моноклинной модификации α -типа в допированных ионом-сенсибилизатором метаборатах начинается в ЭП-методе при температуре 700°С, а заканчивается при 800°С, как и для допированного ионом-активатором Eu³⁺ и ионами-сенсибилизаторами Tb³⁺ или Bi³⁺ метабората α -La(BO₂)₃ [21, 22].

Как было показано ранее в [21, 22], в допированых ионами Eu^{3+} или совместно ионами Eu^{3+} , Tb^{3+} или Bi^{3+} ортоборате $LaBO_3$ и метаборате

La(BO₂)₃ параметры элементарной ячейки при сохранении структуры уменьшаются. Это обусловлено тем, что допирующие ионы имеют меньшие по сравнению с ионом La³⁺ значения ионных радиусов (La³⁺ – 1.14 Å; Eu³⁺ – 1.066 Å; Тb³⁺ – 1.04 Å; Bi³⁺ – 1.03 Å) [8, 16]. Как видно из табл. 1, при замещении иона La³⁺ в ортоборате LaBO₃ или метаборате La(BO₂)₃ ионами Eu³⁺ объемы элементарной ячейки уменьшаются более значительно, чем при добавлении в состав ортобората La_{0.95}Eu_{0.05}BO₃ или метабората La_{0.95}Eu_{0.05}(BO₂)₃ иона Sm³⁺ с близким к иону Eu³⁺ ионным радиусом (Sm³⁺ – 1.079 Å [5]). При дальнейшем увеличении концентрации Sm³⁺ в пределах исследуемых концентраций происходит очень медленное, особенно в структуре ортобората, изменение параметров решетки.

При заместительном легировании боратов La_{0.95}Eu_{0.05}BO₃ и La_{0.95}Eu_{0.05}(BO₂)₃ ионами Sm³⁺ изменений в ИК-спектрах соединений не происходит (табл. 2). В ИК-спектрах допированных образцов ортоборатов La_{0.95}Eu_{0.05}BO₃ и La_{0.95-x}Eu_{0.05}Sm_xBO₃ наблюдается интенсивное поглощение в области 500–1500 см⁻¹, характерное для структурного типа арагонита [21-23, 25], а именно для колебаний планарных тригональных [ВО₃]³⁻-групп. Интенсивные полосы в области 1250-1400 см⁻¹ связаны с асимметричными v₃(B−O) и деформационными δ(B−O) колебаниями в [ВО₃]³⁻-группах, слабые полосы поглощения при ~592 и 613 см⁻¹ – с внутриплоскостными (v_4) , а интенсивная полоса при ~719 см⁻¹ – с внеплоскостными (у) колебаниями групп В-О. Поглощение в области ~941 см⁻¹ (v_1) обусловлено симметричными колебаниями В-О в [ВО₃]³⁻группах.

Кристаллическая структура моноклинной фазы метаборатов La_{0.95}Eu_{0.05}(BO₂)₃ и $La_{0.95-x}Eu_{0.05}Sm_x(BO_2)_3$ содержит тетраэдрические группы $[BO_4]^{5-}$ и тригональные группы $[BO_3]^{3-}$, полосы поглошения колебаний которых проявляются в ИК-спектрах образцов (табл. 2) [3, 25]. Полосы поглощения в области 1400-1150 (v₃), ~806 (v_2) и ~580 см⁻¹ (v_1) обусловлены колебаниями В-О тригональных [ВО3]³⁻-групп. Симметричные колебания $v_1(B-O)$ тригональных $[BO_3]^{3-}$ групп и v₂(B–O) тетраэдрических [BO₄]^{5–}-групп проявляются в виде двух интенсивных полос поглошения при ~964 и 895 см⁻¹. Полосы симметричных колебаний v₁(B–O) тетраэдрических [BO₄]⁵⁻-групп наблюдаются в области 1085-1045 см⁻¹. Асимметричные колебания v_3 и v_4 тетраэдрических [BO₄]⁵⁻-групп проявляются в виде полос при 675-610 и 580-500 см⁻¹ соответственно.

Рис. 1. Дифрактограммы: $1 - La_{0.95}Eu_{0.05}BO_3$, $2 - La_{0.95-x}Eu_{0.05}Sm_xBO_3$, $3 - La_{0.95}Eu_{0.05}(BO_2)_3$, $4 - La_{0.95-x}Eu_{0.05}Sm_x(BO_2)_3$.

Спектры возбуждения люминесценции иона Eu^{3+} в ортоборатах $La_{1-x}Eu_xBO_3$ и метаборатах $La_{1-x}Eu_x(BO_2)_3$, полученных ЭП-методом, как было показано в [21], при длине волны возбуждения в максимуме люминесценции иона $Eu^{3+}\lambda_{em} = 615$ нм идентичны в области 230–320 нм. Допированные ионом Sm³⁺ образцы ортоборатов $La_{0.95-x}Eu_{0.05}Sm_xBO_3$ и метабора-

тов $La_{0.95-x}Eu_{0.05}Sm_x(BO_2)_3$, синтезированные при одинаковой температуре отжига прекурсоров, имеют схожие спектры возбуждения люминесценции в области 230–320 нм (рис. 2а). При возбуждении в максимуме люминесценции иона Eu^{3+} ($\lambda_{em} = 615$ нм) в спектрах возбуждения люминесценции La_{0.95-x}Eu_{0.05}Sm_xBO₃ и La_{0.95-x}Eu_{0.05}Sm_x(BO₂)₃

ЭКСТРАКЦИОННО-ПИРОЛИТИЧЕСКИЙ СИНТЕЗ

Фазовый состав	<i>a</i> , Å	b, Å	<i>c</i> , Å	α, град	β, град	ү, град	$wR_p, \%$	<i>V</i> , Å ³
LaBO ₃	5.872(2)	8.257(2)	5.107(1)	90	90	90	3.54	247.61
LaBO ₃ : Eu 5%	5.858(2)	8.229(2)	5.100(1)	90	90	90	3.98	245.85
LaBO ₃ : Eu 5% + 2.5% Sm	5.854(2)	8.215(2)	5.094(1)	90	90	90	5.71	244.98
LaBO ₃ : Eu 5% + 5% Sm	5.846(2)	8.206(2)	5.089(1)	90	90	90	4.12	244.16
LaBO ₃ : Eu 5% + 7.5% Sm	5.842(3)	8.197(3)	5.090(2)	90	90	90	7.84	243.77
LaBO ₃ : Eu 5% + 10% Sm	5.841(4)	8.197(6)	5.089(3)	90	90	90	6.52	243.66
$La(BO_2)_3$	7.956(3)	8.161(3)	6.499(2)	90	93.630(3)	90	8.36	421.13
La(BO ₂) ₃ : Eu 5%	7.942(3)	8.153(3)	6.480(2)	90	93.506(3)	90	4.35	418.87
La(BO ₂) ₃ : Eu 5% + 2.5% Sm	7.934(3)	8.144(3)	6.468(2)	90	93.555(3)	90	5.36	417.15
La(BO ₂) ₃ : Eu 5% + 5% Sm	7.924(2)	8.131(2)	6.454(2)	90	93.553(2)	90	2.23	415.06
La(BO ₂) ₃ : Eu 5% + 7.5% Sm	7.925(2)	8.133(2)	6.450(2)	90	93.549(2)	90	3.21	414.92
La(BO ₂) ₃ : Eu 5% + 10% Sm	7.918(2)	8.128(2)	6.443(1)	90	93.527(2)	90	2.84	413.83

Таблица 1. Параметры элементарной ячейки образцов ортоборатов и метаборатов лантана

Таблица 2. Важнейшие колебательные частоты (см⁻¹) в ИК-спектрах допированных ортоборатов и метаборатов лантана

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} La(BO_{2})_{3}\\ La_{0.95}Eu_{0.05}(BO_{2})_{3}\\ La_{0.95}Eu_{0.05}(BO_{2})_{3}:Sm \end{array}$	Отнесение
1462	1458	
1377	1375	$v_{3as}(B-O) + \delta(B-O) BO_3^-$
1296	1209	
1271	1171	
	1082	$v_{1s}(B-O) BO_4^-$
	1047	
941	964	$v_{1s}(B-O) BO_3^-$
	894	$+ v_2(B-O) BO_4^-$
719	806	v ₂ (B–O) BO ₃
	673	$v_{3as}(B-O) BO_4^-$
613	619	+ $v_4(B-O) BO_3^-$
592		
	581	$+ v_{1s}(B-O) BO_3^-$
	528	
462	494	$+ v_4(B-O) BO_4^-$

присутствуют полосы в диапазоне 230–450 нм (рис. 2а). Регистрируемая в спектре возбуждения образцов ортоборатов интенсивная широкая полоса с максимумом при 260 нм характерна для иона Eu^{3+} и является полосой переноса заряда $O^{2-}-Eu^{3+}$ (переход с заполненной 2*p*-обо-

лочки О^{2–} на частично заполненную 4*f*-оболочку Eu³⁺) [21, 22, 26].

Узкие полосы слабой интенсивности, наблюдаемые в спектрах возбуждения люминесценции образцов $La_{0.95-x}Eu_{0.05}Sm_xBO_3$ и $La_{0.95-x}Eu_{0.05}Sm_x(BO_2)_3$ в

Рис. 2. Спектры возбуждения люминесценции: а – $La_{0.95-x}Eu_{0.05}Sm_xBO_3$ (x = 0 (I), 0.025 (2), 0.05 (3), 0.075 (4), 0.100 (5)); б – $La_{0.95-x}Eu_{0.05}Sm_xBO_3$, в – $La_{0.95-x}Eu_{0.05}Sm_x(BO_2)_3$; б и в – увеличенные спектры в области 350–450 нм; $\lambda_{\rm em} = 615$ нм; 300 К.

области 310-420 нм, соответствуют переходам *f*-электронов с основного состояния иона Eu³⁺ на возбужденные уровни ${}^{5}D_{1}$, ${}^{5}D_{4}$, ${}^{5}L_{6}$, ${}^{5}G_{4,5}$ (рис. 2а) [4, 5, 23, 26]. Кроме того, в области 360-420 нм спектра возбуждения люминесценции образцов соединений, дополнительно допированных ионом Sm³⁺, при $\lambda_{em} = 615$ нм проявляются полосы возбуждения, характерные для иона Sm³⁺ и связанные с переходами из основного состояния ⁶Н_{5/2} на уровни ⁴D_{3/2}, ⁶Р_{7/2}, ⁶Р_{3/2}, ⁶Р_{5/2}, ⁴G_{5/2}, K_{11/2}, ⁶І_{13/2}, ⁶І_{11/2} [5, 10]. Широкая полоса средней интенсивности в этой области спектра возбуждения люминесценции с максимумом при 405 нм для La_{0.95-x}Eu_{0.05}Sm_xBO₃ и максимумом при 404 нм для $La_{0.95-x}Eu_{0.05}Sm_x(BO_2)_3$ при $\lambda_{em} = 615$ нм соответствует переходу ${}^6H_{5/2} - {}^6P_{5/2}$. Полоса именно этого перехода является, как правило, самой интенсивной в спектрах возбуждения люминесценции иона Sm³⁺ в неорганических люминофорах. Причем очевидно, что характер и распределение полос по их положению в спектре возбуждения люминесценции определяются составом соединений, а интенсивность, в частности этой полосы, зависит от длины волны возбуждающего света. Так, например, в спектре возбуждения люминесценции неорганического свинцово-фосфатного люминофора, легированного совместно ионами Sm³⁺ и Tb³⁺ $(\lambda_{em} = 596 \text{ нм})$ указанная полоса регистрируется при 402 нм [10]. В зависимости от концентрации Sm³⁺ в составе соединений наибольшие изменения наблюдаются именно в области 360-450 нм, где проявляются полосы переходов как иона Eu³⁺, так и иона Sm³⁺ (рис. 2б, 2в). При этом при введении в состав La_{0.95-x}Eu_{0.05}Sm_xBO₃ или $La_{0.95-x}Eu_{0.05}Sm_x(BO_2)_3$ не только меняется интенсивность полос в спектрах возбуждения люминесценции, но и происходит некоторый сдвиг максимумов полос возбуждения в длинноволновую область (рис. 26, 2в), что коррелирует с уменьшением параметров элементарной ячейки (табл. 2).

Спектры люминесценции совместно допированных ионами Eu³⁺ и Sm³⁺ ортобората и метабората лантана регистрировали как при длине волны возбуждения $\lambda_{ex} = 260$ нм (максимальная полоса в спектре возбуждения люминесценции Eu³⁺), так и при $\lambda_{ex} = 404$ нм (максимальная полоса в спектре возбуждения люминесценции Sm³⁺) (рис. 3). Необходимо отметить, что четыре типичные широкие полосы в спектрах люминесценции иона Sm³⁺ в неорганических соединениях (~565, ~606, ~653 и ~709 нм) охватывают ту же область длин волн от 580 до 720 нм, что и полосы люминесценции иона Eu³⁺ [5, 26]. Следует ожидать, что в спектрах люминесценции La_{0.95-x}Eu_{0.05}Sm_x(BO₂)₃ при разных длинах волн

Рис. 3. Спектры люминесценции: $a - La_{0.95-x}Eu_{0.05}Sm_xBO_3$, $\lambda_{ex} = 260$ нм, $6 - La_{0.95-x}Eu_{0.05}Sm_x(BO_2)_3$, $\lambda_{ex} = 260$ нм, $8 - La_{0.95-x}Eu_{0.05}Sm_xBO_3$, $\lambda_{ex} = 404$ нм; $r - La_{0.95-x}Eu_{0.05}Sm_x(BO_2)_3$, $\lambda_{ex} = 404$ нм, при x = 0 (1), 0.025 (2), 0.05 (3), 0.075 (4), 0.100 (5).

возбуждения могут регистрироваться серии полос, относящихся к переходам между мультиплетами ${}^{5}D_{0} \rightarrow {}^{7}F_{j}$ (j = 0, 1, 2, 3, 4) иона Eu $^{3+}$ и переходам ${}^{4}G_{5/2} - {}^{6}H_{j/2}$ (j = 5, 7, 9, 11) иона Sm $^{3+}$ [2, 4, 5, 10, 24, 26].

При длине волны возбуждения $\lambda_{ex} = 260$ нм, равной длине волны максимума полосы переноса заряда О²⁻-Еи³⁺ в спектрах возбуждения люминесценции образцов ортоборатов La_{0.95-x}Eu_{0.05}Sm_xBO₃ и метаборатов La_{0.95-x}Eu_{0.05}Sm_x(BO₂)₃ (рис. 3а), характер спектров люминесценции – положение полос переходов и распределение интенсивностей по полосам при добавлении иона Sm³⁺ или изменении его концентрации – не меняется и идентичен спектрам люминесценции ортобората La_{0.95}Eu_{0.05}BO₃ (рис. 3а, кривая 1) или метабората La_{0.95}Eu_{0.05}(BO₂)₃ соответственно (рис. 3б, кривая 1). Следовательно, проявляющиеся в спектре люминесценции полосы обусловлены переходами ${}^5D_0 - {}^7F_j$ иона Eu^{3+} , а симметрия ближайшего окружения иона Eu³⁺ в кристаллической структуре в рядах указанных соединений сохраняется [26].

Такая же закономерность была отмечена для допированных ионами Eu^{3+} , а также совместно до-пированных ионами Eu^{3+} , Tb^{3+} и Bi^{3+} ортобората и метабората лантана при изменении концентрации допирующих ионов [21, 22]. Как отмечалось нами ранее для ортобората La_{0.95}Eu_{0.05}BO₃ и метабората La_{0.95-x}Eu_{0.05}(BO₂)₃ [21], спектры люминесценции La_{0.95-x}Eu_{0.05}Sm_xBO₃ (рис. 3а) значительно отличаются от спектров La_{0 95-x}Eu_{0 05}Sm_x(BO₂)₃ (рис. 36), что естественно для различающихся кристаллических структур [26]. В спектрах люминесценции ортоборатов $La_{0.95-x}Eu_{0.05}Sm_xBO_3$ наиболее интенсивными являются полосы электродипольного ${}^{5}D_{0}-{}^{7}F_{2}$ ($\lambda \sim 616$ нм) и магнитодипольного ${}^{5}D_{0} {}^{7}F_{1}$ ($\lambda \sim 593$ нм) переходов. Наиболее интенсивные полосы в спектрах люминесценции La_{0.95-x}Eu_{0.05}Sm_x(BO₂)₃ связаны с магнитодипольным переходом ${}^{5}D_{0}-{}^{7}F_{1}$ (588–592 нм), а также с переходом иона Eu^{3+} с уровня ${}^{5}D_{0}$ на уровень ${}^{7}F_{4}$. Известно [26], что при возрастании степени искажения локального окружения ионов Eu³⁺ в структуре соединений наибольшую интенсив-

Рис. 4. Зависимости интегральной интенсивности люминесценции от концентрации иона Sm³⁺: $1 - La_{0.95-x}Eu_{0.05}Sm_xBO_3$, $\lambda_{ex} = 260$ нм; $2 - La_{0.95-x}Eu_{0.05}Sm_x(BO_2)_3$, $\lambda_{ex} = 260$ нм; $3 - La_{0.95-x}Eu_{0.05}Sm_xBO_3$, $\lambda_{ex} = 404$ нм; $4 - La_{0.95-x}Eu_{0.05}Sm_x(BO_2)_3$, $\lambda_{ex} = 404$ нм; 40

ность имеют полосы электродипольного перехода ${}^{5}D_{0}-{}^{7}F_{2}$.

Сушественные различия отмечают при сравнении спектров люминесценции ортобората La_{0.95}Eu_{0.05}BO₃ (рис. 3в, кривая 1) или метабората La_{0.95-x}Eu_{0.05}(BO₂)₃ (рис. 3г, кривая 1) и их допированных ионом самария образцов La_{0.95-x}Eu_{0.05}Sm_xBO₃ (рис. 3в, кривые 2–5) и La_{0.95-x}Eu_{0.05}Sm_x(BO₂)₃ (рис. 3г, кривые 2-5) при возбуждении светом $\lambda_{ex} = 404$ нм. В спектре люминесценции ортобората La_{0.95-x}Eu_{0.05}Sm_xBO₃ появляются дополнительные широкие полосы излучения с максимумами при 602 и 648 нм, соответствующие переходам ${}^4G_{5/2} {-}^6H_{7/2}$ и ${}^4G_{5/2} {-}^6H_{9/2}$ иона $Sm^{3+},$ а также полосы переходов ${}^5D_0 {-}^7F_4$ иона Eu^{3+} и ${}^4G_{5/2} {-}$ ⁶Н_{11/2} иона Sm³⁺ в области 703 нм (рис. 3в) [5, 10, 26]. Помимо этого, в спектре люминесценции регистрируются интенсивные полосы излучения, характерные для иона Eu³⁺ и относящиеся к переходам ${}^{5}D_{0}-{}^{7}F_{1}$ (λ = 593 нм) и ${}^{5}D_{0}-{}^{7}F_{2}$ (λ = 616 и 638 нм) [26]. Указанные полосы ${}^{5}D_{0} - {}^{7}F_{1}$ ($\lambda = 593, 589$ и 593 нм) и ${}^{5}D_{0}-{}^{7}F_{2}$ ($\lambda = 616$ и 637 нм) переходов иона Eu³⁺ присутствуют также в спектре люминесценции метабората La_{0.95-x}Eu_{0.05}Sm_x(BO₂)₃ (рис. 3г). Одновременно в спектре люминесценции наблюдаются полосы в области 563, 606 и 651 нм, соответствующие переходам ${}^4G_{5/2} - {}^6H_{5/2}$, ${}^4G_{5/2} - {}^6H_{7/2}$ и ${}^{4}\text{G}_{5/2}$ — ${}^{6}\text{H}_{9/2}$ иона Sm $^{3+}$. В области 696 нм в спектре люминесценции метабората находятся полосы переходов ${}^{5}D_{0}-{}^{7}F_{4}$ иона Eu^{3+} и ${}^{4}G_{5/2}-{}^{6}H_{11/2}$ иона

Sm³⁺ [5, 10, 26]. Среди наблюдаемых в спектрах люминесценции полос излучения иона Sm³⁺ переходы ${}^{4}G_{5/2} - {}^{6}H_{9/2}$ и ${}^{4}G_{5/2} - {}^{6}H_{11/2}$ относятся к электродипольным, а переходы ${}^{4}G_{5/2} - {}^{6}H_{5/2}$ и ${}^{4}G_{5/2} - {}^{6}H_{7/2}$ носят электродипольный и магнитодипольный характер соответственно [5].

Сравнение интенсивности люминесценции соединений проводили путем сопоставления интегральных интенсивностей полос в спектрах люминесценции, регистрируемых при разных длинах волн возбуждения люминесценции. Как видно на рис. 4, при $\lambda_{ex} = 260$ нм введение 2.5 мол. % иона Sm³⁺ в состав La_{0.95}Eu_{0.05}BO₃ (рис. 4, кривая 1) или метабората La_{0.95}Eu_{0.05}(BO₂)₃ (рис. 4, кривая 2) приводит к уменьшению интенсивности люминесценции. Последующее увеличение концентрации иона Sm³⁺ также снижает интенсивность люминесценции допированных боратов. При возбуждении люминесценции в полосе максимального поглощения иона Sm^{3+} ($\lambda_{ex} = 404$ нм) интенсивность люминесценции совместно допированных ионами 5 мол. % Eu³⁺ и 2.5 мол. % Sm³⁺ ортоборатов и метаборатов лантана существенно возрастает (рис. 4, кривые 3, 4). Следует отметить, что ион Sm^{3+} , в отличие от иона Eu^{3+} , эффективно поглощает при ~404 нм, при этом в спектре люминесценции соединений при $\lambda_{ex} = 404$ присутствуют, как показано выше, полосы переходов иона Eu³⁺. Учитывая данный факт, такое увеличение интенсивности люминесценции совместно допированных ионами Eu³⁺ и Sm³⁺ соединений можно объяснить возможностью передачи поглощенной энергии ионом Sm³⁺ иону Eu³⁺. Разница в энергиях между уровнем ⁴G_{5/2} иона-сенсибилизатора Sm^{3+} и уровнем 5D_0 иона Eu^{3+} невелика и составляет ~5.8 см⁻¹, что делает такую передачу энергии вполне возможной [5]. Дальнейшее добавление в состав соединений иона Sm³⁺ приводит к снижению интенсивности люминесценции, что, по-видимому, происходит из-за безызлучательного переноса энергии между редкоземельными ионами Eu^{3+} и Sm^{3+} – так называемого концентрационного тушения [23, 26].

ЗАКЛЮЧЕНИЕ

Совместное допирование ионами Eu^{3+} и Sm^{3+} ортобората $LaBO_3$ и метабората $La(BO_2)_3$ и получение $La_{0.95-x}Eu_{0.05}Sm_xBO_3$ и $La_{0.95-x}Eu_{0.05}Sm_x(BO_2)_3$ (x = 0.025, 0.05, 0.075, 0.1) проведено низкотемпературным экстракционно-пиролитическим методом при меньших температуре и времени процесса, чем при твердофазном синтезе.

При заместительном легировании образцы ортоборатов $La_{0.95-x}Eu_{0.05}Sm_xBO_3$ и метаборатов $La_{0.95-x}Eu_{0.05}Sm_x(BO_2)_3$ кристаллизуются без изме-

нения кристаллической структуры с сохранением фаз структурного типа арагонита или моноклинной модификации α-типа соответственно. При этом увеличение концентрации иона Sm³⁺ приводит к медленному уменьшению объема элементарной ячейки.

Ортобораты La_{0.95-x}Eu_{0.05}Sm_xBO₃ и метабораты $La_{0.95-x}Eu_{0.05}Sm_x(BO_2)_3$ при возбуждении в максимуме люминесценции иона Eu^{3+} ($\lambda_{em} = 615$ нм) имеют схожие спектры возбуждения люминесценции в области 230-320 нм и состоят из полосы переноса заряда О²⁻-Еи³⁺ при 260 нм. В области 360-420 нм спектра возбуждения люминесценции образцов соединений, дополнительно допированных ионом Sm³⁺ при $\lambda_{em} = 615$ нм, проявляются полосы переходов *f*-электронов с основного состояния иона Eu³⁺ на возбужденные уровни ${}^{5}D_{1}$, ${}^{5}D_{4}$, ${}^{5}L_{6}$, ${}^{5}G_{4,5}$ и дополнительные полосы, характерные для иона Sm³⁺ и связанные с переходами из основного состояния ${}^{6}\text{H}_{5/2}$ на уровни ${}^{4}\text{D}_{3/2}$, ${}^{6}P_{7/2}, {}^{6}P_{3/2}, {}^{6}P_{5/2}, {}^{4}G_{5/2}, K_{11/2}, {}^{6}I_{13/2}, {}^{6}I_{11/2}.$ Именно в области 360-450 нм, где проявляются полосы переходов как иона Eu³⁺, так и иона Sm³⁺, отмечены наибольшие изменения в перераспределении интенсивностей полос и их положении в зависимости от концентрации Sm³⁺ в составе соединений.

спектрах люминесценции ортоборатов R La_{0.95-x}Eu_{0.05}Sm_xBO₃ при длине волны возбуждения $\lambda_{ex} = 260$ нм наиболее интенсивными являются полосы электродипольного ⁵D₀-⁷F₂ и магнитодипольного ${}^{5}D_{0}-{}^{7}F_{1}$ переходов, а в спектрах люминесценции La_{0.95-x}Eu_{0.05}Sm_x(BO₂)₃ – полосы магнитодипольного ${}^{5}D_{0}-{}^{7}F_{1}$ и ${}^{5}D_{0}-{}^{7}F_{4}$ переходов иона Eu³⁺. При возбуждения светом $(\lambda_{ex} = 404 \text{ нм})$ в спектре люминесценции ортоборатов La_{0.95-x}Eu_{0.05}Sm_xBO₃ и метаборатов $La_{0.95-x}Eu_{0.05}Sm_{x}(BO_{2})_{3}$ регистрируются как полосы излучения, характерные для иона Eu³⁺ и относящиеся к переходам ⁵D₀-⁷F₁, ⁵D₀-⁷F₂ и ⁵D₀-⁷F₄, так и дополнительные полосы излучения, соответствующие переходам ${}^{4}G_{5/2} - {}^{6}H_{7/2}$, ${}^{4}G_{5/2} - {}^{6}H_{9/2}$ и ⁴G_{5/2}—⁶H_{11/2} иона Sm³⁺.

При $\lambda_{ex} = 260$ нм в полосе переноса заряда иона Eu³⁺ введение 2.5 мол. % иона Sm³⁺ в состав La_{0.95}Eu_{0.05}BO₃ или метабората La_{0.95}Eu_{0.05}(BO₂)₃ и дальнейшее увеличение его концентрации приводит к падению интегральной интенсивности люминесценции. При возбуждении люминесценции в полосе максимального поглощения иона Sm³⁺ $\lambda_{ex} = 404$ нм интенсивность люминесценции совместно допированных La_{0.925}Eu_{0.05}Sm_{0.025}(BO₂)₃ и La_{0.925}Eu_{0.05}Sm_{0.025}BO₃ возрастает. Следует отметить, что ион Sm³⁺, в отличие от иона Eu³⁺, эффективно поглощает при ~404 нм, при этом в спектре люминесценции соединений присутствуют интенсивные полосы переходов иона Eu^{3+} . Учитывая, что при возбуждении светом ($\lambda_{ex} = 615$ нм) не происходит увеличения интенсивности люминесценции совместно допированных ионами Eu^{3+} и Sm³⁺ соединений, рост интенсивности люминесценции при возбуждении в полосе максимального поглощения иона Sm³⁺ можно объяснить возможностью эффективной передачи поглощенной энергии ионом Sm³⁺ иону Eu^{3+} . Дальнейшее увеличение концентрации иона Sm³⁺ снижает интенсивность люминесценции, что, по-видимому, происходит из-за безызлучательного переноса энергии между редкоземельными ионами.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Wei H.W., Shao L.M., Jiao H. // Opt. Mater. 2018. V. 75. P. 442. https://doi.org/10.1016/j.optmat.2017.10.011
- 2. Шмурак С.З., Кедров В.В., Киселев А.П. и др. // Физика тв. тела. 2022. Т. 64. № 1. С. 105. https://doi.org/10.21883/FTT.2022.01.51839.217
- 3. *Halefoglu Y.Z.* // Appl. Radiat. Isotopes. 2019. V. 148. № 1. P. 40. https://doi.org/10.1016/j.apradiso.2019.03.011
- Yang R., Sun X., Jiang P. et al. // J. Solid State Chem. 2018. V. 258. P. 212. https://doi.org/10.1016/j.jssc.2017.10.022
- Beihoucif R., Velazquez M., Platevin O. et al. // Opt. Mater. 2017. V. 73. P. 658. https://doi.org/10.1016/j.optmat.2017.09.026
- Xu Y.W., Chen J., Zhang H. et al. // J. Mater. Chem. 2020. V. 8. P. 247. https://doi.org/10.1039/c9tc05311e
- Ma C., Li X., Zhang M. et al. // Ceram. Int. 2018. V. 44. № 15. P. 18462. https://doi.org/10.1016/j.ceramint.2018.07.064
- Omanwar S.K., Sawala. N.S. // Appl. Phys. A. 2017. V. 123. № 11. P. 673. https://doi.org/10.1007/s00339-017-1268-8
- Yang R., Qi Y., Gao Y. et al. // J. Lumin. 2020. V. 219. P. 116880. https://doi.org/10.1016/j.jlumin.2019.116880
- Górny A., Sołtys M., Pisarska J. et al. // J. Rare Earths. 2019. V. 37. № 11. P. 1145. https://doi.org/10.1016/j.jre.2019.02.005
- Gopi S., Jose S.K., Sreeja E. et al. // J. Lumin. 2017. V. 192. P. 1288. https://doi.org/10.1016/j.jlumin.2017.09.009
- Steudel F, Ahrens B., Schweizer S. // J. Lumin. 2017. V. 181. P. 31. https://doi.org/10.1016/j.jlumin.2016.08.066

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 7 2023

- Soltys M., Pisarska J., Leśniak M. et al. // J. Mol. Struct. 2018. V. 1163. P. 418. https://doi.org/10.1016/j.molstruc.2018.03.021
- 14. GaoY., Jiang P., Gao W. et al. // J. Solid State Chem. 2019. V. 278. P. 120915. https://doi.org/10.1016/j.jssc.2019.120915
- *Zhu Q., Fan Z., Li S. et al.* // J. Asian Ceram. Soc. 2020.
 V. 8. № 2. P. 542. https://doi.org/10.1080/21870764.2020.1761084
- Abaci O.G.H., Esenturk O., Yılmaz A. et al. // Opt. Mater. 2019. V. 98. P. 109487. https://doi.org/10.1016/j.optmat.2019.109487
- 17. *Zhang J., Yang M., Jin H. et al.* // Mater. Res. Bull. 2012. V. 47. № 2. P. 247. https://doi.org/10.1016/j.materresbull.2011.11.015
- Шмурак С.З., Кедров В.В., Киселев А.П. и др. // Физика тв. тела. 2019. Т. 61. № 1. С. 123. https://doi.org/10.21883/FTT.2019.01.46903.192
- 19. Холькин А.И., Патрушева Т.Н. // Хим. технология. 2015. Т. 16. № 10. С. 576.

- 20. Стеблевская Н.И., Медков М.А., Ярусова С.Б. Получение и свойства функциональных материалов на основе оксидов редкоземельных и редких металлов. Владивосток: ВГУЭС, 2021. 348 с.
- Стеблевская Н.И., Белобелецая М.В., Медков М.А. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 440. https://doi.org/10.31857/S0044457X21040218
- Стеблевская Н.И., Белобелецкая М.В., Медков М.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 8. С. 1134.
- Szczeszak A., Kubasiewicz K., Lis S. // Opt. Mater. 2013. V. 35. № 6. P. 1297. https://doi.org/10.1016/j.optmat.2013.02.001
- 24. Sohn Y. // Ceram. Int. 2014. V. 40. № 1. Part B. P. 2467.
- 25. *Nakamoto K*. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A. Theory and Applications in Inorganic Chemistry. N.Y.: John Wiley and Sons, 2009.
- 26. *Blasse G, Grabmaier B.C.* Luminescent materials. Berlin–Heidelberg: Springer-Verlag., 1994. 233 p.