_____ КООРДИНАЦИОННЫЕ ___ СОЕДИНЕНИЯ

УЛК 547.979.733

СПЕКТРАЛЬНЫЕ ИССЛЕДОВАНИЯ ПРОЦЕССА КООРДИНАЦИИ 1-МЕТИЛ-2-(ПИРИДИН-4-ИЛ)-3,4-ФУЛЛЕРО[60]ПИРРОЛИДИНА ВЫСОКОЗАМЕЩЕННЫМ ПОРФИРИНОМ КОБАЛЬТА(II)

© 2023 г. Н. Г. Бичан^{а, *}, В. А. Мозгова^а, Е. Н. Овченкова^а, М. С. Груздев^а, Т. Н. Ломова^а

а Институт химии растворов им. Г.А. Крестова РАН, Иваново, 153045 Россия

*e-mail: bng@isc-ras.ru

Поступила в редакцию 19.01.2023 г. После доработки 20.03.2023 г. Принята к публикации 20.03.2023 г.

При взаимодействии (5,15-6uc[3,5-6uc(mpem-6утил)фенил]-10,20-6uc[4,6-6uc[3,5-6uc(3,6- α -mpem-6утилкарбазол-9-ил)фенокси]пиримидин-5-ил}порфина с $Co(AcO)_2 \cdot 4H_2O$ получен новый дендримерный комплекс кобальта(II) CoP. Процесс двухступенчатой двухсторонней координации 1-метил-2-(пиридин-4'-ил)-3,4-фуллеро[60]пирролидина (PyC_{60}) кобальт(II)порфирином, полное кинетическое описание которого получено с помощью методов УФ-видимой и флуоресцентной спектроскопии, заканчивается образованием устойчивого комплекса 1:2, триады состава (PyC_{60})2CoP. Константа устойчивости (K) координационного комплекса равна (9.9 ± 2.4) $\times 10^8$ π^2 моль π^{-2} ($10 \pm 8 \pm 9.0$). Химическое строение триады установлена методами УФ-, видимой, $1 \pm 10 \pm 10 \pm 10$ и ИК-спектроскопии. Обнаружен и изучен эффект тушения флуоресценции $10 \pm 10 \pm 10$ в составе триады и обоснован статический механизм процесса тушения. Результат может быть использован в оптоэлектронике при оптимизации структур донорно-акцепторных систем со свойством фотоиндуцированного переноса электрона.

DOI: 10.31857/S0044457X23600081, EDN: RIICFS

ВВЕДЕНИЕ

Металлопорфирины, координированные фуллерен-содержащими молекулярными лигандами, представляют собой идеальные химические структуры при разработке систем для передачи и обработки солнечной энергии [1-7]. В качестве перспективных светособирающих комплексов рассматривают дендримеры, содержащие порфирины [8-10]. В работе [11] исследовали карбазолфенилазометиновый дендример четвертого поколения с порфириновым ядром и ветвлением, содержащим карбазольные заместители, в качестве "хозяина" для фуллеренов (C_{60} , C_{70} и C_{84}). Этот дендример имеет значительно более высокую константу ассоциации с фуллеренами по сравнению с дендримерами более низкого поколения, а инкапсуляции $C_{60}/C_{70}/C_{84}$ достигали за счет взаимодействия дендрона и ядра. Актуальность введения заместителей на периферию макроциклов, содержащих карбазольные фрагменты, связана с повышением квантового выхода флуоресценции порфиринов, расширением области поглощения в электронных спектрах [8, 12], а также с относительной легкостью и разнообразием модификации молекулы карбазола [13–20].

При получении фотоактивных систем на основе порфиринов используется также подход дендримерного ветвления по аксиальной оси [21–23]. Модификация порфирина фосфора(V) была проведена по аксиальной оси с использованием карбазол-содержащих дендронов [21–23]. Получено три новых комплекса, у которых отсутствует флуоресценция из-за эффективного переноса электрона (photoinduced electron transfer, **PET**) в пределах сложной молекулы. По данным исследования эффективности преобразования падающего фотона в ток (IPCE), молекулярная структура дендримеров может значительно влиять на их фотоэлектрические свойства [21].

Этот же подход был использован при получении систем на основе фталоцианина кремния (IV) и аксиальных фуллеродендримеров различных генераций (nC_{60} , n = 2, 4 или 8) [22]. Время жизни образующихся благодаря PET ион-радикальных пар увеличивается в ряду SiPc-8 C_{60} > SiPc-4 C_{60} > > SiPc-2 C_{60} , что может быть связано с миграцией электронов среди субъединиц C_{60} . В работе [23]

Рис. 1. Структурные формулы и электронные спектры поглощения в толуоле дендримерных порфириновых комплексов кобальта(II) первой (1) и второй (2) генерации.

получено несколько периферически и аксиально замещенных морфолинилдендримерных фталоцианинов цинка(II) и кремния(IV). Интенсивность, квантовый выход и время жизни флуоресценции были выше для фталоцианина кремния(IV) с дендримерным ветвлением аксиальной оси. В то же время квантовый выход синглетного кислорода был значительно ниже, чем у фталоцианина цинка(II) с дендримерным ветвлением на периферии. Это в основном связано с эффективным внутримолекулярным РЕТ от донорного морфолинила к акцептору – фталоцианину. Отмечено, что этот ряд дендримерных фталоцианинов может быть хорошим кандидатом для фотодинамической терапии рака.

Авторы [11] использовали дендримеры, содержащие 4, 8 и 16 порфиринов цинка(II) в ветвлении, для создания мультифотосинтетических реакционных центров, способных посредством связи Zn—N присоединять PyC₆₀. Успешный дизайн таких донорно-акцепторных ансамблей позволил получить супрамолекулярные комплексы с большим временем жизни (0.25 мс) при комнатной температуре.

Ранее было показано, что порфирины кобальта(II) могут быть успешно использованы для синтеза донорно-акцепторных систем со свойством фотоиндуцированного переноса электрона [24–26]. В наших работах [24, 26–33] получены донорно-акцепторные (1:2) комплексы порфиринов кобальта(II) с фуллеро[60]пирролидинами. В работе [24] представлен {5,15-бис[3,5-бис(трет-бутил)фенил]-10,20-*бис*[4,6-(4-(3,6-ди-*трет*-бутил-9H-карбазол-9-ил)фенокси)пиримидин-5-ил]порфинато}кобальт(II) (рис. 1, формула 1) и его донорно-акцепторные комплексы с PyC_{60} и 2,5-ди(пиридин-2ил)-3,4-фуллеро[70]пирролидином Пирролидино[60]фуллерен, несмотря на наличие объемных заместителей, образует триаду с константой устойчивости K, равной (9.2 \pm 2.9) \times $\times 10^9$ л² моль⁻² (lg K = 10.0), тогда как реакция с Py_2C_{70} заканчивается образованием диады ($K=(8.3\pm1.6)\times10^4$ л² моль⁻², $\lg K=4.9$) из-за стерических затруднений. Для определения влияния ветвления более высокого порядка на состав образующихся координационных комплексов с PyC_{60} в настоящей работе получен дендримерный порфириновый комплекс кобальта(II) второй генерации (рис. 1, формула 2). Исследованы его стехиометрия, химическое строение, кинетика и механизм образования, фотофизические свойства, а также место среди десяти известных аналогов в отношении устойчивости и вкладов в нее.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

(5,15-бис[3,5-бис(трет-бутил)фенил]-10,20бис{4,6-[3,5-бис-(3,6-ди-трет-бутилкарбазол-9ил)фенокси]пиримидин-5-ил}порфин (Н₂Р) был синтезирован по методике [24] с использованием в качестве исходных компонентов 3,5-бис-(3,6ди-*трет*-бутилкарбазол-9-ил)фенола $\mathit{бuc}[3,5-\mathit{бuc}(\mathit{mpem}-\mathit{бyтил})$ фенил]- $10,20-\mathit{бuc}(4,6$ дихлорпиримидин-5-ил)порфирина. Выход 60%. ЭСП в толуоле (λ_{max} , нм ($\lg \epsilon$)): 298 (5.15), 344 (2.63), 423 (5.43), 512 (4.12), 550 (3.85), 593 (3.71), 649 (3.60). ИК-спектр в KBr (ν , см⁻¹): 421, 470, 575, 614, 648, 661, 687, 716, 741, 764, 783, 798, 810, 839, 878, 901, 916, 971 δ (N–H); 1035, 1060, 1081, 1106, 1128, 1160, 1233, 1262, 1294, 1321, 1364, 1393, 1417, 1479, 1547, 1605, 2866, 2905, 2928, 2961, 3048, 3317 v(N-H). MS (MALDI-TOF), m/z: найдено 3432.07 $[M]^+$, для $C_{240}H_{260}N_{16}O_4$ рассчитано 3432.83.

(5,15-бис[3,5-бис(mpem-бутил)фенил]-10,20-бис $\{4,6$ -бис[3,5-бис(3,6-ди-mpem-бутилкарбазол-9-ил)фенокси]пиримидин-5-ил $\}$ порфинато]кобальт(II) (CoP) был получен взаимодействием H_2P (40 мг, 0.012 ммоль) с Co(AcO) $_2$ ·4 H_2O (15 мг, 0.06 ммоль) в кипящем диметилформамиде (ДМФА) в течение 20 мин. Завершение реакции контролировали по прекращению изменений в

электронном спектре поглощения (ЭСП) пробы реакционной смеси в СНСІ3. Реакционную смесь охлаждали и экстрагировали продукты в хлороформ после разбавления водой. Раствор в СНСІ, многократно промывали дистиллированной водой для удаления ДМФА. Продукты реакции хроматографировали на колонке с Al₂O₃ (II степень активности по Брокману) с использованием хлороформа. Выход СоР составил 80%. ЭСП в толуоле (λ_{max} , нм (lg ϵ)): 298 (5.19), 324 (4.69), 344 (4.62), 420 (5.26), 533 (4.09). ИК-спектр в КВг (v, см⁻¹): 422, 458 v(Co-N); 470, 576, 613, 652, 662, 687, 713, 731, 741, 763, 797, 810, 841, 851, 878, 901, 930, 1002, 1035, 1061, 1106, 1128, 1160, 1232, 1262, 1294, 1321 1364, 1393, 1417, 1479, 1549, 1605, 1693, 2866, 2905, 2927, 2960, 3047. Cπektp ¹H ЯMP в CDCl₃ (δ, м. д.): 16.57 (4H, уш. с, H_в), 15.20 (4H, уш. с, H_в), 12.51 (4H, уш. c, Ar–H), 11.15 (2H, c, Ar–H), 9.49 (2H, c, Ar-H), 8.08 (8H, M, Ar-H), 7.83 (24H, M, Carb-H), 6.64 (24H, м, Carb-H), 7.11 (4H, м, Ar-H), 2.40 $(36H, c, -CH_3), 1.52-1.16$ $(144 H, M, -CH_3).$ MS (MALDI-TOF) m/z: найдено 3491.66 [M+2H]⁺, для $C_{240}H_{258}N_{16}O_4Co$ рассчитано 3489.75.

1-Метил-2-(пиридин-4'-ил)-3,4-фуллеро[60]пир- ролидин (РуС₆₀) был синтезирован и выделен по методике [33]. Толуол марки "ЭКОС" осущали гидроксидом калия и перед использованием перегоняли ($t_{\text{кип}} = 110.6$ °C). Содержание воды определяли титрованием по Фишеру, оно не превышало 0.01%.

Кинетику двухсторонней реакции СоР с РуС₆₀ в толуоле изучали спектрофотометрически при 298 К в диапазоне концентраций PyC_{60} 1.9 × 10⁻⁵— 9.4×10^{-5} моль/л методом избыточных концентраций. Растворы CoP и PyC_{60} в свежеперегнанном толуоле готовили непосредственно перед использованием во избежание образования перекисей в среде растворителя. Измерения оптической плотности для серии растворов с постоянной концентрацией CoP (3.2×10^{-6} моль/л) и переменной концентрацией замещенного фуллерена проводили на рабочей длине волны 420 нм сразу после смешивания реагентов и во времени. ЭСП реагирующей системы регистрировали с использованием в качестве нулевой линии спектра РуС₆₀ той же концентрации, что и в рабочем растворе. Растворы термостатировали при (298 \pm 0.1) K в закрытых кварцевых кюветах в специальной ячейке спектрофотометра. Константы скорости реакции формально первого порядка рассчитывали по уравнению:

$$k_{9\Phi} = (1/\tau) \ln((A_0 - A_{\infty})/(A_{\tau} - A_{\infty})),$$

где $A_{\rm o},\,A_{\rm \tau},\,A_{\infty}$ — оптические плотности реакционной смеси в моменты времени $0,\,\tau$ и по окончании реакции.

Равновесие реакции CoP с PyC_{60} в толуоле исследовали при 298 K в диапазоне концентраций PyC_{60} 6.2 × 10^{-7} –9.4 × 10^{-5} моль/л с использованием времязависимого спектрофотометрического титрования методом молярных отношений. Константы равновесия (K) определяли по уравнению для трехкомпонентной системы с двумя окрашенными соединениями:

$$K = \frac{(A_i - A_0)/(A_{\infty} - A_0)}{1 - (A_i - A_0)/(A_{\infty} - A_0)} \times \frac{1}{\left(C_L^0 - C_{CoP}^0 (A_i - A_0)/(A_{\infty} - A_0)\right)},$$

где $C_{\rm L}^0$, $C_{\rm CoP}^0$ — начальные концентрации L (PyC₆₀) и CoP в толуоле соответственно; A_0 , A_i , A_{∞} — оптические плотности CoP, равновесной смеси при определенной концентрации L и продукта реакции. Относительная ошибка в определении K не превышала 25%. Стехиометрию реакции определяли как тангенс угла наклона прямой $\lg I - f(\lg C_{\rm L})$, где $I = (A_i - A_0)/(A_{\infty} - A_i)$ — индикаторное отношение.

Стационарная флуоресценция и флуоресценция с временным разрешением использованы для изучения фотофизических свойств комплексов. Для PyC_{60} и донорно-акцепторных комплексов с CoP спектры флуоресценции измеряли в толуоле в кварцевых кюветах (10×10 мм). Готовили серию растворов в толуоле с постоянной концентрацией PyC_{60} (6.1×10^{-5} моль/л) и различными концентрациями CoP ($(0-3.7) \times 10^{-5}$ моль/л). Интенсивность флуоресценции PyC_{60} контролировали на длине волны 709 нм. Константу Штерна—Фольмера (K_{sv}) определяли для оценки эффективности тушения флуоресценции PyC_{60} в составе комплекса с CoP по уравнению:

$$I_0/I = 1 + K_{SV}C_{C_{OP}}$$

где I_0 и I — интенсивность флуоресценции ${\rm PyC_{60}}$ в отсутствие и при добавлении порфирина кобальта(II) соответственно; $C_{\rm CoP}$ — концентрация CoP.

Константы связывания ($K_{\rm BH}$) были рассчитаны с использованием модифицированного уравнения Бенези—Хильдебранда:

$$(I_{\text{max}} - I_0)/(I_x - I_0) = 1 + (1/K_{\text{BH}})(1/C_L^n),$$

где I_0 , I_x , $I_{\rm max}$ — интенсивность флуоресценции при отсутствии, при определенной концентрации и при максимальной добавке CoP соответственно; n — число молекул CoP.

Кривые затухания флуоресценции и значения времени жизни флуоресценции PyC_{60} определены путем реконволюции кривых затухания с использованием пакета программ EasyTau 2 (Pico-Quant, Германия). Для PyC_{60} и систем PyC_{60} —CoP

Рис. 2. Изменение ЭСП СоР в толуоле при 298 К с добавкой PyC_{60} 9.36 × 10^{-5} моль/л в течение 20 мин (а) и зависимость $\lg k_{2 \to \Phi}$ [c⁻¹]- $\lg C_{PyC_{60}}$ [моль/л] ($\lg \alpha = 0.72$, $R^2 = 0.97$) (б).

в толуоле применена биэкспоненциальная модель затухания флуоресценции. Функцию отклика прибора (IRF) системы измеряли по сигналу рассеянного света разбавленной суспензии коллоидного кремнезема (LUDOX®). Время жизни флуоресценции (τ_F) было получено методом свертки отклика прибора.

ЭСП-, ИК-, ¹Н ЯМР- и масс-спектры регистрировали соответственно на спектрофотометре Agilent 8453, спектрометрах VERTEX 80v, Bruker Avance III-500 и масс-спектрометре Shimadzu Confidence. Измерения стационарной флуоресценции и флуоресценции с временным разрешением проводили на спектрофлуориметре Fluo-Time 300 PicoQuant с лазером LDH-P-C-450 в качестве источника возбуждения.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Наличие в структуре карбазол-содержащих порфириновых комплексов, включая СоР и дендример первой генерации [24], карбазольных фрагментов проявляется в специфике их ЭСП (рис. 1). Как и в спектрах (5,10,15,20-тетрафенилпорфинато)кобальта(II) (СоТРР), полоса Соре $(1a_{1g} \rightarrow 2e_{u})$ и Q-полоса $(1a_{1g} \rightarrow 1e_{u})$ наблюдаются в спектрах при 420 и 530 нм соответственно. Дополнительно в спектрах появляются полосы в области 200—400 нм, отвечающие за поглощение карбазольных фрагментов. В случае комплекса кобальта(II) с дендримером второй генерации (СоР) поглощение в этой области, как и следовало ожидать [8], гораздо интенсивнее.

С целью получения новой донорно-акцепторной системы, способной к фотоиндуцированному переносу электрона, и установления влияния степени ветвления периферийных заместителей на свойства упомянутой системы была изучена реакция координации между новым дендримерным порфириновым комплексом CoP и молеку-

лярным лигандом РуС₆₀, способными выступать соответственно как донор и акцептор электрона в составе образующегося координационного комплекса при его фотовозбуждении. По изменению ЭСП СоР при изменяющейся концентрации РуС₆₀ и в ходе реакции в реакционных смесях всех взятых составов (см. Экспериментальную часть) идентифицированы два равновесия в ходе реакции, первое из которых устанавливается сразу после сливания растворов реагентов, а второе во времени с измеримой скоростью. Первое равновесие ($\tau = 0$) характеризуется постепенным уменьшением интенсивности поглощения в полосе Соре при всех составах реакционных смесей $CoP-PyC_{60}$, второе ($\tau = \infty$) — смещением полосы Соре от 420 до 438 нм. На рис. 2а представлена спектральная картина для реакции во времени в реакционной смеси одного конкретного состава, характерная и для всех других взятых составов. Несмотря на введение объемных заместителей на периферию макроцикла, динамика спектров повторяет картину при взаимодействии с ${
m PyC}_{60}$ производных СоТРР [26, 33], в том числе {5,15- $\delta uc[3.5-\delta uc(mpem-\delta vтил) \Phi e H uл]-10.20-\delta uc[4.6-(4-6)]$ (3,6-ди-трет-бутил-9Н-карбазол-9-ил)фенокси)пиримидин-5-ил|порфинато}кобальта(II) (рис. 1, формула 1) [24].

Количественно описать оба равновесия и скорость второй стадии реакции удается благодаря зарекомендовавшему себя подходу, основанному на спектрофотометрическом времязависимом титровании (обработка данных по спектрофотометрическому титрованию при $\tau=0$ и ∞ после прохождения медленной реакции в смесях всех составах) [34].

Состав образующихся координационных комплексов (донорно-акцепторных систем) СоР с PyC_{60} , участвующих в быстром и медленном равновесиях, определяли из линейных зависимостей

 $\lg I - \lg C_{\rm РуС_{60}}$. Тангенс угла наклона ($tg\alpha$) прямых равен соответственно 0.9 и 1.02 (рис. 3), что означает участие по одной молекуле $\rm PyC_{60}$ и образование комплексов состава 1 : 1 в обоих равновесиях. Численные значения констант устойчивости равны: $K_1 = (6.8 \pm 1.5) \times 10^4$ ($\lg K_1 = 4.8$) и $K_2 = (1.5 \pm 0.2) \times 10^4$ ($\lg K_2 = 4.2$) л/моль. Константа устойчивости ($\rm PyC_{60}$)₂CoP K ($K_1 \times K_2$) = (9.9 ± 2.4) × × 10^8 π^2 /моль² ($\lg K = 9.0$).

При изучении кинетики медленной реакции, идущей после установления быстрого равновесия до второго равновесия, определен первый порядок по (PyC₆₀)CoP, а значит и по CoP (квазиравновесие). Эффективные константы скорости ($k_{29\phi}$) представлены в табл. 1.

Линейные зависимости $\lg k_{2 ext{ эф}} \ [\mathrm{c}^{-1}] - f(\lg C_{\mathrm{PyC}_{60}})$ [моль/л]) с тангенсом угла наклона, близким к 1 $(tg\alpha = 0.72)$ (рис. 26), свидетельствуют о первом порядке реакции по PyC_{60} . Численное значение константы скорости $k_2 = 7.7 \pm 0.5$ моль⁻¹ л с⁻¹. Константа скорости k_{-2} (k_2/K_2) = 5.3 × 10⁻⁴ c⁻¹ $(7.7 \text{ моль}^{-1} \text{ л c}^{-1}/1.5 \times 10^{4} \text{ л моль}^{-1})$. Значения скоростей прямой и обратной реакций медленного равновесия подтверждают возможность пренебрежения обратной реакцией при изучении кинетики медленного двухстороннего процесса в реакции СоР с РуС₆₀. По представленным данным, образование гексакоординационного порфиринового (1 : 2) комплекса кобальта(II), структура которого подтверждена физико-химическими методами (см. далее), проходит через промежуточный пентакоординационный (1:1) комплекс:

$$CoP + PyC_{60} \xleftarrow{K_1} (PyC_{60})CoP$$
, мгновенно, (1)
 $(PyC_{60})CoP +$
 $+ PyC_{60} \xleftarrow{K_2,k_2} (PyC_{60})_2CoP$, во времени. (2)

Проведенные исследования показали, что комплексы кобальта(II) с замещенными по мезои β-положениям порфиринами координируют две молекулы РуС₆₀ по однотипному механизму, описанному выше. Информация о стабильности донорно-акцепторных диад и триад на основе порфириновых комплексов кобальта(II) и РуС₆₀ представлена в табл. 2. Значения констант устойчивости K изученных донорно-акцепторных систем находятся в диапазоне $10^8 - 10^{10}$ π^2 /моль². Введение различных заместителей на периферию макроцикла порфириновых комплексов кобальта(II) влияет как на величину общей константы устойчивости, так и на вклады величин K_1 и K_2 в ее значение. Несмотря на достаточно высокое значение общей константы устойчивости для новой триады (PyC_{60})₂CoP, видно, что K_2 для данного комплекса имеет самое низкое значение, кото-

Рис. 3. Зависимости $\lg I$ от $\lg C_{\mathrm{PyC_{60}}}$ для реакции CoP с $\mathrm{PyC_{60}}$ при 298 К при $\tau=0$ ($\mathrm{tg}\alpha=0.89,\ R^2=0.99$) (I) и $\tau=\infty$ ($\mathrm{tg}\alpha=1.02,\ R^2=0.98$) (2).

рое в 80 раз меньше, чем для донорно-акцепторного комплекса на основе PyC_{60} и CoTBPP, имеющего донорные заместители в napa-положениях фенильных колец порфиринового макроцикла, и в 10 раз меньше, чем для триады, образованной карбазол-содержащим порфирином кобальта(II) первой генерации. Таким образом, введение объемных заместителей уменьшает значение K_2 триады, но увеличивает сродство к PyC_{60} при образовании диады (табл. 2).

Константа устойчивости новой донорно-акцепторной триады $(PyC_{60})_2CoP$ была определена также методом флуоресцентного титрования. Поскольку порфирины кобальта(II) не флуоресцируют, т. к. ион Со имеет частично заполненную открытую d-оболочку и сопряженная π -система изменяется за счет перекрывания $d\pi$ -орбиталей металла и π^* -орбиталей порфирина [35], была изучена флуоресценция PyC_{60} при различных добавках CoP. Известно, что фуллерены C_{60} , C_{70} [36] и их производные [37, 38] обладают способностью флуоресцировать с низким квантовым выходом. Для растворов C_{60} и C_{70} в толуоле это значение составляет 2.6×10^{-4} и 5.7×10^{-4} соответственно.

Таблица 1. Эффективные константы скорости ($k_{2 \ 9 \varphi}$) реакции (PyC₆₀)CoP с PyC₆₀ в толуоле при 298 K

$C_{\rm PyC_{60}} \times 10^5$, моль/л	$(k_{2 \text{ s} \phi} \pm \delta k_{2 \text{ s} \phi}) \times 10^3, \text{c}^{-1}$
1.9	2.8 ± 0.2
2.5	3.4 ± 0.2
3.1	4.3 ± 0.2
4.4	6.0 ± 0.4
5.6	6.6 ± 0.5
6.9	7.2 ± 0.4
8.1	7.6 ± 0.3
9.4	9.6 ± 0.3

 $K = K_1 \times K_2$, $\pi^2 / \text{моль}^2$ Комплекс K_1 , л/моль K_2 , л/моль (PyC₆₀)₂CoTPP $(5.4 \pm 1.2) \times 10^4$ $(8.7 \pm 1.4) \times 10^4$ $(4.7 \pm 1.2) \times 10^9$ $(1.6 \pm 0.4) \times 10^4$ $(2.0 \pm 0.4) \times 10^5$ $(3.2 \pm 0.9) \times 10^9$ (PyC₆₀)₂CoTIPP¹ $(6.1 \pm 1.73) \times 10^4$ $(1.5 \pm 0.4) \times 10^5$ $(9.2 \pm 2.9) \times 10^9$ (PyC₆₀)₂CoDTBCP² $(6.8 \pm 1.5) \times 10^4$ $(1.5 \pm 0.2) \times 10^4$ $(9.9 \pm 2.4) \times 10^8$ $(PyC_{60})_2CoP$ $(1.0 \pm 0.1) \times 10^{10}$ $(1.8 \pm 0.3) \times 10^4$ $(5.8 \pm 0.6) \times 10^5$ $(PyC_{60})_2CoP(2-Py)^3$ (PyC₆₀)₂CoTBPP⁴ $(1.0 \pm 0.1) \times 10^4$ $(1.2 \pm 0.3) \times 10^6$ $(1.3 \pm 0.1) \times 10^{10}$ $(2.3 \pm 0.2) \times 10^4$ $(6.4 \pm 0.3) \times 10^5$ $(1.5 \pm 0.9) \times 10^{10}$ $(PyC_{60})_2CoTTP^5$ $(4.3 \pm 1.0) \times 10^4$ $(9.6 \pm 2.2) \times 10^5$ $(4.1 \pm 1.1) \times 10^{10}$ $(PyC_{60})_2CoOEP^6$ $(5.9 \pm 1.5) \times 10^4$ $(7.4 \pm 1.7) \times 10^5$ $(4.4 \pm 1.3) \times 10^{10}$ $(PyC_{60})_2CoT(CF_3P)P^7$ $(PyC_{60})_2CoTPP(OC_8H_{17})^8$ $(1.1 \pm 0.3) \times 10^5$ $(4.0 \pm 0.9) \times 10^5$ $(4.5 \pm 1.0) \times 10^{10}$

Таблица 2. Константы устойчивости донорно-акцепторных систем порфириновых комплексов кобальта(II) с PyC_{60}

Квантовый выход для PyC_{60} равен 5.3×10^{-4} [33]. При взаимодействии PyC_{60} с CoP происходит тушение его флуоресценции (рис. 4a).

Анализ линейной части зависимости относительной интенсивности флуоресценции от концентрации тушителя позволяет определить константу Штерна—Фольмера $K_{\rm sv}$. Значение константы $K_{\rm sv}$ 5.8 \times 10⁴ л/моль. Оценка стабильности полученной системы была проведена с помощью анализа уравнения Бенези—Хильдебранда. Кон-

станта $K_{\rm BH}=3.8\times10^9~{\rm n^2/monb^2}$. Это значение хорошо согласуется с данными, полученными из спектрофотометрического титрования. Для определения возможного механизма тушения флуоресценции при связывании ${\rm PyC_{60}}$ с ${\rm CoP}$ были получены значения времени жизни флуоресценции ${\rm PyC_{60}}$ для растворов ${\rm PyC_{60}}$ — ${\rm CoP}$ в толуоле при различных добавках ${\rm CoP}$ (рис. 46). Установлено, что время жизни флуоресценции ${\rm PyC_{60}}$ остается неизменным в смесях ${\rm PyC_{60}}$ — ${\rm CoP}$ и соответствует

Рис. 4. Тушение флуоресценции ${\rm PyC_{60}}$ при его взаимодействии с ${\rm CoP}$ (a). Кинетика затухания флуоресценции ${\rm PyC_{60}}$ в толуоле с добавкой ${\rm CoP}$ ($C_{{\rm CoP}}$ = 4.62 × 10⁶ моль/л) (б).

 $^{^{1}}$ ТІРР — дианион 5,10,15,20-тетра(4-изопропилфенил)порфина.

²Формула **1** на рис. 1.

 $^{^{3}}$ P(2-Py) — дианион 2,3,7,8,12,18-гексаметил-13,17-диэтил-5-(2-пиридил)порфина.

⁴ТВРР — дианион 5,10,15,20-тетра(*трет*-бутилфенилфенил)порфина.

⁵TTP — дианион 5,10,15,20-тетра(4-толилфенил)порфина.

 $^{^6}$ OEP — дианион 2,3,7,8,12,13,17,18-октаэтилпорфина.

 $^{^{7}}$ T(CF $_{3}$ P)P — дианион 5,10,15,20-тетра(4-трифторметилфенил)порфина.

 $^{^8}$ TPP(OC $_8$ H $_{17}$) — дианион 5,10,15,20-тетра(4-октилоксифенил)порфина.

Рис. 5. 1 Н ЯМР-спектры CoP (*a*) и донорно-акцепторного комплекса (PyC₆₀) $_{2}$ CoP (*б*) в CDCl₃.

значению 1.6 нс. Некоординированный PyC_{60} демонстрирует биэкспоненциальное затухание с временем жизни флуоресценции (τ_0) \sim 1.6 нс [33]. Такое поведение связано со статическим механизмом тушения флуоресценции PyC_{60} при координации его с CoP.

Значения $K_{\rm sv}$ и времени жизни флуоресценции ${\rm PyC_{60}}$ позволяют вычислить бимолекулярную константу скорости тушения $k_{\rm q}=K_{\rm sv}/\tau_0=3.6\times 10^{13}\,{\rm л/моль}\,{\rm c}$. Большое значение константы указывает на эффективное тушение ${\rm PyC_{60}}$ порфирином кобальта(II).

Образование новой донорно-акцепторной триады было дополнительно подтверждено данными ¹Н ЯМР- и ИК-спектроскопии. ¹Н ЯМРисследования (рис. 5) выявили связывание пиридиновой группы PyC_{60} с ионом металла CoP. При координации РуС₆₀ сигналы протонов пиррольных фрагментов (Нв) порфиринового макроцикла при 16.57 и 15.20 м.д., проявляющиеся в виде двух уширенных синглетов, претерпевают смещение в сильное поле на 0.39 и 0.26 м.д. соответственно. Такое смещение объясняется уменьшением дезэкранирующего эффекта кольцевого тока в порфириновом макроцикле вследствие образования донорно-акцепторных связей Со- $N_{PvC_{60}}$. Действительно, результаты DFT расчета (B3LYP + D3BJ/6-31G) для родственных структур демонстрируют существенную дестабилизацию ВЗМО при образовании триады [39]. В случае дендримерного порфирина кобальта(II) первой генерации (рис. 1, формула 1) образование триады с РуС₆₀ сопровождается также сильнопольным сдвигом Н_в-сигналов и их проявлением в виде уширенного мультиплета [24]. В случае СоТРР и $(PyC_{60})_2$ СоТРР сигналы β -протонов проявляются в виде одного уширенного синглета при 15.94 и 13.50 м.д. соответственно [28]. Таким образом, периферийные заместители порфиринового макроцикла оказывают влияние не только на положение сигнала, но и на величину его сдвига при образовании порфирин-фуллереновых триад.

Анализ ИК-спектра $(PyC_{60})_2CoP$ по сравнению со спектрами отдельных ее компонентов подтверждает, что в образовании триады участвует пиридильная группа фуллеро[60] пирролидина. Проявление новой связи в виде сигнала при 450 см⁻¹ свидетельствует об образовании именно связи $Co-N_{PyC_{60}}$ (рис. 6) [40]. ИК-спектр триады состоит из сигналов колебаний порфиринового макроцикла, находящихся в высокочастотной области 1600-800 см $^{-1}$, и колебаний фуллеро[60]пирролидина, лежащих в низкочастотной области 800-400 см-1. Полосы фуллеренового каркаса C_{60} проявляются при 574 и 527 см $^{-1}$ [41] и не меняют своего положения при образовании триады, тогда как колебательные частоты пиридинового и пирролидинового колец фуллерена смещаются примерно на 1-12 см $^{-1}$ по сравнению с частотами колебаний связей исходного РуС₆₀. Отсутствие смещения скелетных колебаний пиррольных колец СоР в спектре триады указывает на то, что Со остается в плоскости макроцикла при координации двух молекул РуС₆₀, это подтверждается теоретическими расчетами, сделанными на примере изоструктурного дендримерного комплекса первой генерации [24].

Рис. 6. ИК-спектры CoP (*a*) и (PyC₆₀)₂CoP (*б*) в KBr.

ЗАКЛЮЧЕНИЕ

Получен и исследован физико-химическими методами новый дендримерный порфириновый комплекс кобальта(II), содержащий 3,5бис(трет-бутил)фенил- и 3,5-бис-(3.6-ди-третбутилкарбазол-9-ил) феноксигруппы (СоР). Реакция образования донорно-акцепторной системы (триады) на его основе с РуС₆₀ изучена методами УФ-вилимой и флуоресцентной спектроскопии. Константы устойчивости, полученные этими методами ((9.9 \pm 2.4) \times 10⁸ и 3.8 \times 10⁹ л² моль⁻² соответственно), близки. Представлена корреляция констант устойчивости донорно-акцепторных систем на основе порфиринов кобальта с их химическим строением. Методом времяразрешенной флуоресцентной спектроскопии определены минимальные изменения времени жизни флуоресценции РуС₆₀ с возрастающими добавками СоР и его среднее значение, равное 1.6 нс. Структура новой супрамолекулярной триады (РуС₆₀)₂СоР дополнительно подтверждена методами ИК- и ¹Н ЯМР-спектроскопии.

БЛАГОДАРНОСТЬ

Работа выполнена на оборудовании Центра коллективного пользования научным оборудованием "Верхневолжский региональный центр физико-химических исследований".

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 21-73-20090).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Sutton L.R., Scheloske M., Pirner K.S. et al.* // J. Am. Chem. Soc. 2004. V. 126. № 33. P. 10370. https://doi.org/10.1021/ja048983d
- D'Souza F, Ito O. // Coord. Chem. Rev. 2005. V. 249.
 № 13. P. 1410. https://doi.org/10.1016/j.ccr.2005.01.002
- Миронов А.Ф. // Макрогетероциклы. 2011. Т. 4. № 3. С. 186.
- 4. *Nikolaou V., Charisiadis A., Stangel C. et al.* // J. Carbon Res. 2019. V. 5. № 3. P. 57. https://doi.org/10.3390/c5030057
- 5. Лебедева В.С., Миронова Н.А., Рузиев Р.Д. и др. // Макрогетероциклы. 2018. Т. 11. № 4. С. 339. https://doi.org/10.6060/mhc1806901
- 6. *Моторина Е.В., Климова И.А., Бичан Н.Г. и др. //* Журн. неорган. химии. 2022. Т. 67. № 12. С. 1779. https://doi.org/10.31857/S0044457X22600712

- 7. *Цивадзе А.Ю.*, *Чернядьев А.Ю.* // Журн. неорган. химии. 2020. Т. 65. № 11. С. 1469. https://doi.org/10.31857/S0044457X20110197
- 8. *Loiseau F., Campagna S., Hameurlaine A. et al.* // J. Am. Chem. Soc. 2005. V. 127. № 32. P. 11352. https://doi.org/10.1021/ja0514444
- 9. Organista-Mateos U., Martínez-Klimov M.E., Pedro-Hernández L.D. et al. // J. Photochem. Photobiol. A: Chemistry. 2017. V. 343. P. 58. https://doi.org/10.1016/j.jphotochem.2017.04.020
- Maes W., Dehaen W. // Eur. J. Org. Chem. 2009.
 V. 2009. № 28. P. 4719.
 https://doi.org/10.1002/ejoc.200900512
- 11. *Albrecht K., Kasai Y., Kuramoto Y. et al.* // Chem. Commun. 2013. V. 49. № 9. P. 865. https://doi.org/10.1039/c2cc36451d
- Bichan N.G., Ovchenkova E.N., Ksenofontov A.A. et al. // Dyes Pigm. 2022. V. 204. P. 110470. https://doi.org/10.1016/j.dyepig.2022.110470
- Gruzdev M.S., Chervonova U.V., Ksenofontov A.A. et al. // Opt. Mater. 2021. V. 122. P. 111661. https://doi.org/10.1016/j.optmat.2021.111661
- 14. *Сюткин Р.В., Абашев Г.Г., Шкляева Е.В. и др. //* Журн. орг. химии. 2011. Т. 47. № 4. С. 532.
- 15. *Груздев М.С.*, *Червонова У.В.*, *Венедиктов Е.А. и др.* // Журн. общ. химии. 2015. Т. 85. № 6. С. 964.
- Staderini M., Vanni S., Baldeschi A.C. et al. // Eur. J. Med. Chem. 2023. V. 245. P. 114923. https://doi.org/10.1016/j.ejmech.2022.114923
- 17. *Banerjee A., Kundu S., Bhattacharyya A. et al.* // Org. Chem. Frontiers. 2021. V. 8. № 11. P. 2710. https://doi.org/10.1039/d1qo00092f
- 18. *Çelik F., Aydın A., Bektaş K.İ. et al.* // Russ. J. Gen. Chem. 2022. V. 92. № 10. P. 2145. https://doi.org/10.1134/s1070363222100279
- 19. Скрылькова А.С., Егоров Д.М., Тарабанов Р.В. // Журн. общ. химии. 2021. Т. 91. № 91. С. 1627. https://doi.org/10.31857/S0044460X21100206
- 20. Devi E.R., Sreenivasulu R., Rao M.V.B. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 6. P. 1105. https://doi.org/10.1134/s1070363221060189
- 21. *Xu T., Lu R., Liu X. et al.* // Org. Lett. 2007. V. 9. № 5. P. 797. https://doi.org/10.1021/ol062979k
- 22. *El-Khouly M.E.*, *Kang E.S.*, *Kay K.-Y. et al.* // Chem. Eur. J. 2007. V. 13. № 10. P. 2854. https://doi.org/10.1002/chem.200601254
- 23. *Guo Q.*, *Chen L.*, *Pan S. et al.* // Dalton Trans. 2018. V. 47. № 37. P. 13164. https://doi.org/10.1039/c8dt02275e
- 24. Ovchenkova E.N., Bichan N.G., Gruzdev M.S. et al. // New J. Chem. 2021. V. 45. № 20. P. 9053. https://doi.org/10.1039/d1nj00980j
- 25. *Subedi D.R., Jang Y., Ganesan A. et al.* // J. Porphyrins Phthalocyanines. 2021. V. 25. № 05–06. P. 533. https://doi.org/10.1142/s1088424621500449
- Ovchenkova E.N., Motorina E.V., Bichan N.G. et al. // J. Organomet. Chem. 2022. V. 977. P. 122458. https://doi.org/10.1016/j.jorganchem.2022.122458

- 27. *Бичан Н.Г., Овченкова Е.Н., Груздев М.С. и др.* // Журн. структур. химии. 2018. Т. 59. № 3. С. 734. https://doi.org/10.26902/JSC20180332
- 28. Бичан Н.Г., Овченкова Е.Н., Мозгова В.А. и др. // Журн. неорган. химии. 2019. Т. 64. № 5. С. 490. https://doi.org/10.1134/S0044457X19050027
- 29. *Бичан Н.Г., Овченкова Е.Н., Мозгова В.А. и др. //* Журн. физ. химии. 2020. Т. 94. № 6. С. 873.
- 30. Bichan N.G., Ovchenkova E.N., Kudryakova N.O. et al. // J. Coord. Chem. 2017. V. 70. № 14. P. 2371. https://doi.org/10.1080/00958972.2017.1335867
- Bichan N.G., Ovchenkova E.N., Ksenofontov A.A. et al. // J. Mol. Liq. 2021. V. 326. P. 115306. https://doi.org/10.1016/j.molliq.2021.115306
- 32. Bichan N.G., Ovchenkova E.N., Mozgova V.A. et al. // Polyhedron. 2021. V. 203. P. 115223. https://doi.org/10.1016/j.poly.2021.115223
- Bichan N.G., Ovchenkova E.N., Mozgova V.A. et al. // Molecules. 2022. V. 27. P. 8900. https://doi.org/10.3390/molecules27248900
- 34. *Lomova T.N., Motorina E.V., Klyuev M.V.* // Macroheterocycles. 2013. V. 6. № 4. P. 327. https://doi.org/10.6060/mhc1306441

- 35. *Liu Y., Bian Y., Zhang Y. et al.* // J. Phys. Chem. Lett. 2021. V. 12. № 22. P. 5349. https://doi.org/10.1021/acs.jpclett.1c01123
- 36. *Ma B., Sun Y.-P.* // J. Chem. Soc., Perkin Trans. 2. 1996. № 10. P. 2157. https://doi.org/10.1039/p29960002157
- 37. Brites M.J., Santos C., Nascimento S. et al. // New J. Chem. 2006. V. 30. № 7. P. 1036. https://doi.org/10.1039/b601649a
- 38. *Luo C., Fujitsuka M., Watanabe A. et al.* // J. Chem. Soc., Faraday Trans. 1998. V. 94. № 4. P. 527. https://doi.org/10.1039/a706672d
- 39. Ovchenkova E.N., Bichan N.G., Tsaturyan A.A. et al. // J. Phys. Chem. C. 2020. V. 124. P. 4010. https://doi.org/10.1021/acs.jpcc.9b11661
- 40. *Thornton D.A.*, *Verhoeven P.F.M.* // Spectrosc. Lett. 1995. V. 28. № 4. P. 587. https://doi.org/10.1080/00387019508009902
- 41. *Martin M.C.*, *Du X.*, *Kwon J. et al.* // Phys. Rev. B. 1994. V. 50. № 1. P. 173. https://doi.org/10.1103/PhysRevB.50.173