СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 539.183.3:546.655

ФЕРРОГРАНАТ Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O₁₂: СИНТЕЗ, ИОННЫЙ И ФАЗОВЫЙ СОСТАВЫ

© 2023 г. Ю. А. Тетерин^{а, b}, М. Н. Смирнова^с, К. И. Маслаков^а, А. Ю. Тетерин^b,

Г. Е. Никифорова^с, Я. С. Глазкова^{*a*}, А. Н. Соболев^{*a*}, И. А. Пресняков^{*a*}, В. А. Кецко^{с, *}

^а Московский государственный университет им. М.В. Ломоносова, Химический факультет, Ленинские горы, 1, Москва, 119991 Россия

^bНИЦ "Курчатовский институт", пл. Академика Курчатова, 1, Москва, 123182 Россия

^сИнститут общей и неорганической химии им. Н.С. Курнакова РАН,

Ленинский пр-т, 31, Москва, 119991 Россия

*e-mail: ketsko@igic.ras.ru

Поступила в редакцию 25.01.2023 г. После доработки 14.03.2023 г. Принята к публикации 14.03.2023 г.

Методами рентгенофазового анализа (**РФА**), рентгеновской фотоэлектронной (**РФЭС**) и мессбауэровской спектроскопии исследованы ионный и фазовый составы образцов порошкообразного феррограната $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$, полученного методом сжигания геля с последующей кристаллизацией в вакууме и дополнительным отжигом в атмосфере воздуха при 750°С. По данным РФЭС и мессбауэровской спектроскопии, катионы железа и церия в структуре гомогенного феррограната стабилизированы в формальной степени окисления Fe^{3+} . В то же время на поверхности частиц $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$ наряду с Ce^{3+} содержатся ионы Ce^{4+} . Полученные результаты могут быть использованы при создании функциональных материалов для магнитооптических устройств нового поколения.

Ключевые слова: феррогранат Се-ЖИГ, РФА, РФЭС, мессбауэровская спектроскопия **DOI:** 10.31857/S0044457X23600135, **EDN:** RIJBOI

введение

Проблема создания замещенных гранатов на основе феррита иттрия ($Y_3Fe_5O_{12}$, **ЖИГ**) на протяжении многих лет привлекает внимание исследователей. Интерес к решению этой задачи во многом связан с наличием в кристаллической решетке ЖИГ трех катионных позиций разных размеров: додекаэдрической, тетраэдрической и октаэдрической. Это дает возможность, применяя различные варианты замещения ионов металлов в структуре $Y_3Fe_5O_{12}$, изменять функциональные характеристики феррит-граната в широком интервале температур [1–6].

Известно, что замещение катиона Y^{3+} на Ce^{3+} в $Y_3Fe_5O_{12}$ позволяет усилить магнитооптическую активность в видимом и ближнем инфракрасном диапазонах [7–10], снижает потери оптической мощности (затухание светового сигнала) [10] и способствует понижению температуры кристаллизации граната. Эти факторы расширяют возможную область применения материалов на основе ЖИГ для создания магнитооптических устройств нового поколения [3, 6, 7].

Однако практическое использование данного подхода ограничивается трудностями получения твердых растворов $Y_{3-x}Ce_xFe_5O_{12}$. Связано это с тем, что эффективный ионный радиус церия Ce^{3+} (1.14 Å) больше, чем радиус иттрия Y^{3+} (1.02 Å) [11], и при увеличении концентрации Ce^{3+} происходит увеличение внутренних напряжений и структурных искажений кристаллической решетки [9, 10]. Эта проблема может быть частично решена путем введения в состав ЖИГ вместе с Ce^{3+} , ионов с малым радиусом, например Al^{3+} или Ga^{3+} , что позволяет компенсировать структурные ограничения и способствует формированию граната заданного состава [12–14].

Отметим, что отдельную проблему представляет собой склонность к окислению катионов Ce³⁺ в феррогранатах в процессе синтеза и последующей кристаллизации, что приводит к появлению в конечном продукте примеси CeO₂, не обладающей магнитным упорядочением, и ухудшает магнитные и магнитооптические свойства ЖИГ [7].

В ряде работ предпринимали попытки получения феррогранатов путем замещения части ионов

иттрия на Ce^{3+} [3–7]. В то же время содержание церия в гранате в этих работах, по данным РФА, не превышало 8%, например Ce_{0.25}Y_{2.75}Fe₅O₁₂ [3], Се_{0.122}Y_{2.878}Fe₅O₁₂ [5]. Рекордное же содержание Ce³⁺ в гомогенном Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O₁₂ удалось достичь путем синтеза и последующей кристаллизации граната при пониженном парциальном давлении кислорода и замене части ионов железа Fe³⁺ на Ga³⁺ [15, 16]. Отметим, что в работах по синтезу и исследованию церийзамещенных гранатов представлен, как правило, лишь фазовый состав кристаллитов, основанный на данных РФА [4-6]. Известно, что на поверхности церийсодержащих материалов из-за склонности Се³⁺ к окислению может образовываться аморфная примесь $CeO_2[3]$, не фиксируемая методом РФА. Это будет приводить к понижению функциональных характеристик магнитооптических устройств на основе $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$ [16]. Кроме того, введение в кристаллическую решетку феррограната ионов Ce³⁺ может приводить к частичному восстановлению железа и, как следствие, к ухудшению магнитооптических свойств.

Цель работы — анализ ионного и фазового состояния $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$, полученного методом сжигания геля, исходя из данных РФА, РФЭС и мессбауэровской спектроскопии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез образцов проводили методом сжигания геля [17, 18]. Для этого смесь стехиометрических количеств трехводного карбоната иттрия (х. ч.), нитрата церия (ч.), металлического железа (ос. ч.), металлического галлия (х. ч.) растворяли в разбавленной азотной кислоте. Затем в полученный раствор добавляли поливиниловый спирт [–CH₂CH(OH)–]_n (ПВС), исходя из расчета 0.12/*n* моль ПВС на 0.01 моль феррита, а также нитрат аммония (NH₄NO₃ квалификации "ч. д. а.") в количестве 0.12 моль на 0.01 моль феррита. Реакционные смеси упаривали в реакторе при температуре 90°С с постоянным перемешиванием до состояния гелей.

При увеличении температуры выше 100°С гели горели и превращались в мелкодисперсные порошки желто-бежевого цвета. После охлаждения порошки диспергировали с помощью шаровой мельницы и отжигали при 750°С в печи в течение 5 ч при давлении ~1 × 10⁻² Па [15, 16]. Такой режим термической обработки обусловлен необходимостью исключения вероятности окисления катионов Ce³⁺.

РФА полученных порошков выполняли на дифрактометре Bruker Advance D8 (Си K_{α} -излучение) в интервале углов 2 $\theta = 10^{\circ} - 70^{\circ}$ с шагом сканирования 0.0133°. Обработку результатов проводили с помощью программного пакета для анализа рентгеновских данных DIFFRAC.EVA.

Спектры РФЭС образцов Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O₁₂ получены на электростатическом спектрометре Axis Ultra DLD (Kratos Analytical UK) с использованием монохроматического Al K_{α} (1486.7 эB) возбуждающего рентгеновского излучения в вакууме $(5 \times 10^{-7} \, \Pi a)$ при комнатной температуре. Образцы были приготовлены в виде порошков на непроводящем скотче. Спектры получены при I == 12 мкА, U = 15 кВ и P = 180 Вт на рентгеновской трубке. Шкала энергии связи спектрометра была предварительно откалибрована по положению основных уровней Au4f_{7/2} (83.96 эВ) и Cu2p_{3/2} (932.62 эВ). Разрешение прибора, рассчитанное как полная ширина на полувысоте линии Au4 $f_{7/2}$ электронов, составляло 0.7 эВ. Спектры были получены в режиме постоянной энергии анализатора с использованием энергии прохождения 20 эВ с шагом 0.05 эВ. Количество сканирований для каждого спектрального пика было различным в зависимости от интенсивности этого пика в обзорном спектре (рис. 1). Погрешность определения энергии связи Е_ь и ширины линий не превышала ± 0.05 эВ, а ошибка относительной интенсивности пика $\pm 5\%$. Фон. связанный с вторично рассеянными электронами. вычитали по метолу Ширли [19]. Деление спектров на отдельные компоненты выполнено с использованием стандартной программы SPRO-3/0 [20].

Мессбауэровские спектры на ядрах ⁵⁷Fe измеряли на спектрометре MS-1104Em, работающем в режиме постоянных ускорений. В качестве источника гамма-квантов использовали ⁵⁷Co в родиевой матрице. Анализ и расшифровку экспериментальных спектров, в том числе с использованием методов реконструкции распределений сверхтонких параметров, осуществляли с помощью программного комплекса SpectrRelax [21]. Значения изомерных химических сдвигов приведены относительно α-Fe при 298 K.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В работе первоначально была исследована область гомогенности твердых растворов $Y_{3-x}Ce_xFe_{5-y}Ga_yO_{12}$ при замещении части Y^{3+} на Ce^{3+} и Fe³⁺ на Ga³⁺ (табл. 1).

Как следует из данных РФА, при соотношении Fe³⁺ и Ga³⁺, равном 1 : 1, предельное замещение Ce³⁺ на Y³⁺ в гомогенном Y_{3-x}Ce_xFe_{2.5}Ga_{2.5}O₁₂ составило величину 0.5 [15]. При повышении содержания Ce³⁺ в решетке феррограната наряду с основной фазой образуется примесь (Y_{1.6}Ce_{0.4})O_{3.2}. В то же время в феррогранате, не содержащем Ga³⁺, гомогенность нарушается при замещении Ce³⁺ на Y³⁺, составляющем величину 0.2. Этот

Рис. 1. Обзорный спектр РФЭС электронов образца Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O₁₂.

экспериментальный результат противоречит работе [3], в которой сообщается о гомогенности $Ce_{0.25}Y_{2.75}Fe_5O_{12}$. метода построения Вильямсона-Холла, основанного на соотношении:

$$\beta_{hkl}\cos\theta = k\lambda/D + 4\varepsilon\sin\theta$$
,

Образец $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$ остался однофазным и после дополнительной термической обработки на воздухе при температуре 750°C в течение 5 ч. Для $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$, полученного при кристаллизации в вакууме и затем отожженного при 750°C на воздухе, проведена оценка областей когерентного рассеяния (**ОКР**) и микронапряжений кристаллической решетки с использованием

где β — физическое уширение дифракционного максимума; k — коэффициент, для кубической структуры, равный 0.95; λ — длина волны рентгеновского излучения (λ = 0.15406 нм); D — размер ОКР; θ — брэгговский угол; ε — величина микроискажений кристаллической решетки.

Таблица 1. Области фазовой гомогенности и параметры образцов состава $Y_{3-x}Ce_xFe_{5-y}Ga_yO_{12}$, где x = 0.0-0.7; y = 0.0-5.0

N⁰	Состав образцов	a, Å	<i>V</i> , Å ³	Фазовая гомогенность	Примесь
1	Y _{2.8} Ce _{0.2} Fe ₅ O ₁₂	12.5100	1957.8	—	Y_2O_3 , Fe_2O_3 , CeO_2
2	$Y_{2.8}Ce_{0.2}Ga_5O_{12}$	12.3115	1855.1	+	
3	$Y_{3}Fe_{2.5}Ga_{2.5}O_{12}$	12.3525	1884.8	+	
4	$Y_{2.8}Ce_{0.2}Fe_{2.5}Ga_{2.5}O_{12}$	12.3592	1887.9	+	
5	$Y_{2.7}Ce_{0.3}Fe_{2.5}Ga_{2.5}O_{12}$	12.3657	1890.8	+	
6	$Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$	12.3645	1890.3	+	
7*	$Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$	12.3970	1905.2	+	
8	$Y_{2.4}Ce_{0.6}Fe_{2.5}Ga_{2.5}O_{12}$	12.3585	1887.6	—	$(Y_{0.6}Ce_{0.4})_2O_{3.4}$
9	$Y_{2.3}Ce_{0.7}Fe_{2.5}Ga_{2.5}O_{12}$	12.3980	1905.7	_	$(Y_{0.6}Ce_{0.4})_2O_{3.4}$

Примечание. Образцы 1-6 и 8, 9 отожжены в вакууме, а затем на воздухе; образец 7* отожжен только в вакууме.

Рис. 2. Спектр РФЭС валентных электронов образца $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$ после синтеза и отжига в вакууме [16].

Из анализа зависимостей $\beta_{hkl}\cos\theta = k\lambda/D + 4\varepsilon\sin\theta$ следует, что для образца 6 величина *D* составляет 65.8 нм и $\varepsilon \times 10^{-3} - 2.1$, а для образца 7 – 90.5 нм и 0.4 соответственно.

Из данных расчета следует, что при дополнительном отжиге на воздухе в $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$ происходит увеличение размеров отдельных кристаллитов и уплотнение кристаллической решетки за счет уменьшения количества микродеформаций.

Обзорный спектр РФЭС электронов образца 6 кроме основных линий элементов содержит линию С1*s*-электронов и Оже-спектры элементов, адсорбированных на поверхности (рис. 1).

В спектрах валентных электронов (рис. 2, 3) в диапазоне энергий связи электронов ($E_{\rm b}$) от 0 до ~15 эВ наблюдается структура, связанная с электронами внешних валентных молекулярных орбиталей **(BMO)**, а в диапазоне $E_{\rm b}$ от ~15 до ~50 эВ – внутренних валентных молекулярных орбиталей (ВВМО). В спектре вблизи уровня Ферми наблюдается линия Ce4f-электронов малой интенсивности, не участвующая в химической связи, что свидетельствует о том, что на поверхности кристаллитов Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O₁₂ присутствуют катионы Ce³⁺ (рис. 2). Линии Ce5s- и Ce5p-электронов имеют слабую интенсивность. Однако из-за образования ВВМО спин-орбитальное расщепление дублетов Ce5p-, Ga3d- и Y4p-электронов обнаружить не удалось. В то же время при анализе спектров (рис. 2) установлено, ЧТО в $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$ не содержится примесных ионов и его элементный состав качественно согласуется с заданным. После травления поверхности ионами Ar⁺ в спектре при энергии связи 1.1 эВ наблюдается более интенсивная линия, связанная с не участвующими в химической связи Ce4*f*-электронами ионов Ce³⁺ (рис. 3). При интенсивностей этом отношение линий ВМО/Ү4s уменьшилось с 3.4 до 2.3, что можно качественно объяснить уменьшением количества кислорода на поверхности образца и образованием дополнительных катионов Ce³⁺. Структура спектров других валентных электронов при травлении ионами Ar⁺ существенно не изменилась.

Анализируя данные рис. 2 и 3 можно отметить когерентное совпадение линий галлия обоих образцов Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O₁₂, что может свидетельствовать о том, что равномерное распределение катионов галлия в решетке задается на стадии синтеза твердого раствора, что предопределяет при кристаллизации в структуре граната заданное пропорциональное заполнение тетраэдрических и октаэдрических пор. Безусловно, разбавление подрешетки железа галлием, с одной стороны, приводит к уменьшению магнитных и магнитооптических свойств граната. Однако, с другой стороны, пропорциональное заполнение позиций приводит к увеличению размеров додекаэдрических пор с последующим их частичным заполнением более крупными катионами церия по сравнению с катионами иттрия. Эти два фактора

Рис. 3. Спектр РФЭС валентных электронов образца $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$ после отжига в вакууме и травления поверхности ионами Ar⁺.

(степень совершенства кристаллической структуры и уровень замещения иттрия магнитооптическими катионами церия) задают стабильность и повышенные значения оптических и магнитооптических свойств феррит-гранатов.

Отметим, что структура спектров валентных электронов позволяет получить важную, но только качественную информацию о составе поверхности образца. Более корректная количественная информация об элементном составе поверхности образцов, в частности, об относительном ионном составе Ce³⁺ и Ce⁴⁺ может быть получена на основании структуры спектров осто́вных электронов церия.

Для определения относительного ионного состава (Ce^{3+} и Ce^{4+}) смесей ионов церия в работе использована методика, основанная на анализе параметров структуры спектров Ce^{3d} -электронов [22, 23].

Доли ионов $v_1(Ce^{3+})$ и $v_2(Ce^{4+})$ определены исходя из нижеприведенных формул [23, 24]:

$$v_1(Ce^{3+}) =$$

$$= [1 - a_0(3/2)(I_0/I)] / [1 + (3/2)(I_0/I)],$$
(1)

$$v_2(Ce^{4+}) = 1 - v_1(Ce^{3+}),$$
 (2)

где a_0 — эталонный калибровочный коэффициент, I_0 , I — интенсивности сателлита (6) и структуры линий (1-2) соответственно (рис. 4). Структура спектра РФЭС Се3*d*-электронов ионов Се⁴⁺ состоит из шести пиков (1–6), соответствующих различным конечным состояниям после фотоэмиссии Се3*d*-электронов (рис. 4). Спектр Се3*d*-электронов иона Се³⁺ состоит из четырех пиков [16], расположенных вблизи пиков (1, 4) и (2, 5). Отдельно наблюдаемая одиночная линия I_0 (6) возникает при ~916 эВ в спектрах иона Се⁴⁺ и смеси ионов (Се³⁺ и Се⁴⁺) (рис. 4). Линии (1, 4) (рис. 4) представляют собой спин-орбитальный дублет Се3*d* с ΔE_{sl} (Се3*d*) = 18.6 эВ, а сателлиты (4, 6) сдвинуты примерно на 16.0 эВ в сторону бо́льших энергий связи относительно спин-орбитального дублета (1, 4) основного состояния.

Травление ионами аргона образца ведет к увеличению ионов Ce^{3+} , что связано с удалением ионов кислорода с поверхности (рис. 5а; табл. 2, образцы а, б). Это приводит к появлению дублета при 881.1 и 885.0 эВ, характерного для катионов Ce^{3+} [13].

На рис. 5б приведен спектр Ce3*d*-электронов, который получен в первые 6 мин (три сканирования) после введения образца в спектрометр для того, чтобы изучить влияние рентгеновского излучения на состав ионов (Ce³⁺ и Ce⁴⁺) на поверхности образца (табл. 2, образцы в, и, е). Из табл. 2 следует, что при воздействии на образец рентгеновского излучения происходит увеличение Ce⁴⁺ относительно Ce³⁺.

Рис. 4. Спектр РФЭС Ce3*d*-электронов образца $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$ после отжига в вакууме [16].

С увеличением времени нахождения образца в спектрометре содержание ионов Ce^{4+} на поверхности образца относительно Ce^{3+} возрастает (табл. 2, образцы г, д, ж, з).

Анализ спектров образцов, полученных после отжига образца в вакууме и подвергнутых рентгеновскому излучению, свидетельствует о том, что ионы церия находятся не только в разновалентных состояниях, но и в положениях, не связанных с додекаэдрическими позициями в гранате. Из рис. 56 можно заключить, что поверхностный слой $Y_{2.5}Ce_{0.5}(Fe_{0.5}Ga_{0.5})_5O_{12}$ является сильно нарушенным с измененным составом.

Из полученных данных также следует, что в начальный момент после отжига на поверхности образцов образуется смесь ионов Ce³⁺ и Ce⁴⁺. Под влиянием окружающей атмосферы происходит окисление ионов Ce³⁺ до Ce⁴⁺. При травлении ионами аргона с поверхности образцов удаляется кислород, что приводит к восстановлению ионов Ce⁴⁺ до Ce³⁺. Из данных табл. 2 следует, что отжиг на воздухе приводит к образованию устойчивой фазы с меньшим содержанием катионов Ce³⁺, чем при отжиге в вакууме. Окружение ионов Ce⁴⁺ имеет симметрию D_{4h} (решетка CaF₂), а окружение ионов Ce³⁺ менее симметрично. Поэтому в объеме образцов катионов Ce³⁺ может быть боль-

Таблица 2. Ионный состав Ce³⁺ и Ce⁴⁺ (%) поверхностного слоя образца 7* (табл. 1) после травления Ar⁺ и воздействия рентгеновского излучения

N⁰	$Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$		Ce ⁴⁺
а	Отжиг в вакууме (750°С) + травление Ar ⁺	50	50
б	Отжиг в вакууме, затем на воздухе (750°С) + травление Ar ⁺	44	56
В	Отжиг в вакууме (750°C) + рентгеновское излучение 6 мин	48	52
Г	Отжиг в вакууме (750°C) + рентгеновское излучение 12 мин	44	56
Д	Отжиг в вакууме (750°C) + рентгеновское излучение 100 мин	6	94
e	Отжиг в вакууме, затем на воздухе (750°С) + рентгеновское излучение 6 мин		69
Ж	Отжиг в вакууме затем на воздухе (750°С) + рентгеновское излучение 12 мин	30	70
3	Отжиг в вакууме, затем на воздухе (750°С) + рентгеновское излучение 100 мин	5	95

Рис. 5. Спектр РФЭС Се3*d*-электронов образца $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$ после отжига в вакууме: после травления поверхности ионами Ar⁺ (a); после воздействия рентгеновским излучением в течение 6 мин (б).

ше, чем на поверхности. При использовании таких твердых растворов, содержащих Се³⁺, поверхность образцов следует защищать от контакта с кислородом.

Как следует из рис. 6, мессбауэровские спектры 57 Fe образцов феррогранатов $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$, полученных после отжига в вакууме при 750°C (а) и после отжига в вакууме, а затем в атмосфере воздуха при 750°C (б), практически не отличаются друг от друга и представляют собой сложную суперпозицию двух асимметричных уширенных

квадрупольных дублетов. Их структура аналогична спектрам незамещенных гранатов [24, 25], в которых заметное различие параметров выделенных дублетов является следствием неэквивалентного кислородного окружения (тетраэдрического/октаэдрического) катионов железа в кристаллической решетке. В то же время замещение части катионов железа катионами галлия, а катионов иттрия — катионами церия приводит к существенному уширению резонансных линий. Поэтому предложенная нами математическая обработка включала реконструкцию распределений

Рис. 6. Мессбауэровские спектры ядер ⁵⁷ Fe образцов $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$, полученных после синтеза и отжига: в вакууме (a); в вакууме, а затем в атмосфере воздуха (б). На вставках слева изображены соответствующие распределения $p\Delta$ квадрупольных расщеплений Δ .

квадрупольных дублетов с учетом линейных корреляций изомерных сдвигов δ и квадрупольных расщеплений Δ (рис. 6, вставки). Полученные значения сверхтонких параметров спектров (табл. 3) показывают, что катионы железа в обоих гранатах стабилизированы только в

формальной степени окисления "3+". Такой экспериментальный факт косвенно свидетельствует, что в структуре $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$ в результате замещения части атомов иттрия на церий не происходит окисления церия. Необходи-

мо отметить, что полученное соотношение катионов железа в тетраэдрических ($Fe^{(Td)}$) и октаэдрических ($Fe^{(Oh)}$) позициях отклоняется от навязанного структурой соотношения 3 : 2 соответственно (табл. 3), что указывает на предпочтение атомов галлия к тетраэдрическому кислородному окружению в структуре этих гранатов.

Таким образом, в работе методами РФА, РФ-ЭС и мессбауэровской спектроскопии исследованы ионный и фазовый составы образцов порошкообразного феррограната Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O₁₂,

Таблица 3. Сверхтонкие параметры мессбауэровских спектров ядер ⁵⁷Fe в образцах феррогранатов $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$ при T = 298 K ($\langle \delta \rangle$ и $\langle \Delta \rangle$ – средние значения изомерного химического сдвига и квадрупольного расщепления в распределениях $p\Delta$)

Условия получения	Парциальный спектр	$\langle \delta \rangle$, мм/с	$\langle \Delta \rangle$, мм/с	I, %
Вакуум	Fe ^(Td)	0.18(1)	1.02(1)	42(2)
	Fe ^(Oh)	0.37(1)	0.37(1)	58(2)
Вакуум + воздух	Fe ^(Td)	0.17(1)	1.00(1)	41(2)
	Fe ^(Oh)	0.38(1)	0.39(1)	59(2)

полученного методом сжигания геля с последующим отжигом в вакууме и в атмосфере воздуха при 750°С. Установлено, что катионы железа и церия в структуре гомогенного феррограната стабилизированы в формальной степени окисления "3+". В то же время на поверхности частиц $Y_{2.5}Ce_{0.5}Fe_{2.5}Ga_{2.5}O_{12}$ наряду с Ce^{3+} содержатся ионы Ce^{4+} .

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено за счет гранта Российского научного фонда № 23-43-10004. Исследования проводили с помощью оборудования ЦКП ФМИ ИОНХ РАН и оборудования, приобретенного за счет средств Программы развития МГУ им. М.В. Ломоносова.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Garskaite E., Gibson K., Leleckaite A. et al. // Chem. Phys. 2006. V. 323. P. 204. https://doi.org/10.1016/j.chemphys.2005.08.055
- Park M.B., Cho N.H. // J. Magn. Magn. Mater. 2001. V. 231. P. 253.

https://doi.org/10.1016/S0304-8853(01)00068-3

- Onbasli M.C., Goto T., Sun X. et al. // Opt. Express. 2014. V. 22. P. 25183. https://doi.org/10.1364/OE.22.025183
- 4. *Рандошкин В.В., Червоненкис А.Я.* Прикладная магнитооптика. М.: Энергоатомиздат, 1990. 320 с.
- Shen T., Dai H., Song M. // J. Supercond. Nov. Magn. 2017. V. 30. P. 937. https://doi.org/10.1007/s10948-016-3880-9
- Huang M., Zhang S. // Appl. Phys. A. 2022. V. 74. P. 177. https://doi.org/10.1007/s003390100883
- Ibrahim N.B., Edwards C., Palmer S.B. // J. Magn. Magn. Mater. 2000. V. 220. P. 183. https://doi.org/10.1016/S0304-8853(00)00331-0
- Dastjerdi O.D., Shokrollahi H., Yang H. // Ceramics Int. 2020. V. 46 (315). P. 2709. https://doi.org/10.1016/j.ceramint.2019.09.261

- 9. Xu H., Yang H. // J. Mater Sci: Mater Electron. 2008. V. 19. P. 589. https://doi.org/10.1007/s10854-007-9394-2
- Shannon R.D. // Acta Crystallogr. Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- Gilleo M.A., Geller S. // Phys. Rev. 1958. V. 110. Issue 1. P. 73. https://doi.org/10.1103/PhysRev.110.73
- Lisnevskaya I.V., Bobrova I.A., Lupeiko T.G. // J. Magn. Magn. Mater. 2016. V. 397. P. 86. https://doi.org/10.1016/j.jmmm.2015.08.084
- Smirnova M.N., Nikiforova G.E., Goeva L.V. // Ceramics Int. 2018. V. 45 (4). P. 4509. https://doi.org/10.1016/j.ceramint.2018.11.133
- 14. Smirnova M.N., Glazkova I.S., Nikiforova G.E. et al. // Nanosystems: Phys. Chem. Mathem. 2021. V. 12. P. 210.

https://doi.org/10.17586/2220-8054-2021-12-2-210-217

- Teterin Yu.A., Smirnova M.N., Maslakov K.I. et al. // Dokl. Phys. Chem. 2022. V. 503. Part 2. P. 45. https://doi.org/10.1134/S0012501622040029
- Смирнова М.Н., Гоева Л.В., Симоненко Н.П. и др. // Журн. неорган. химии. 2016. Т. 61. С. 1354. https://doi.org/10.1134/S0036023616100193
- Смирнова М.Н., Копьева М.А., Береснев Э.Н. и др. // Журн. неорган. химии. 2018. Т. 63. С. 411. https://doi.org/10.1134/S0036023618040198
- Shirley D. // Phys. Rev. B. 1972. V. 5. P. 4709. https://doi.org/10.1103/PhysRevB.5.4709
- 19. Панов А.Д. Пакет программ обработки спектров SPRO и язык программирования. М.: Ин-т атом. энергии, 1997. 31 с.
- 20. *Matsnev M.E., Rusakov V.S.* // AIP Conf. Proc. 2012. V. 1489. P. 178.
- Maslakov K.I., Teterin Yu.A., Popel A.J. et al. // Appl. Surf. Sci. 2018. V. 448. P. 154. https://doi.org/10.1016/j.apsusc.2018.04.077
- Maslakov K.I., Teterin Yu.A., Ryzhkov M.V. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 16167. https://doi.org/10.1134/S0036024421060212
- *Teterin Yu.A., Teterin A.Yu.* // Russ. Chem. Rev. 2002. V. 717. № 5. P. 347. https://doi.org/10.1070/RC2002v071n05ABEH00071
- 24. Sawatzky G.A., van der Woude F., Morrish A.H. // Phys. Rev. 1969. V. 183. P. 383.
- 25. Belogurov V.N., Bilinkin V. // Phys. Status Solid. (A). 1981. V. 63. P. 45.