ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2023, том 68, № 8, с. 1077–1082

ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 546.02

НАЧАЛЬНЫЕ СТАДИИ ФОРМИРОВАНИЯ НАДМОЛЕКУЛЯРНОЙ СТРУКТУРЫ ОКСИДОВ Са И Мg

© 2023 г. Р. А. Сакович^{*a*}, А. Ю. Шаулов^{*a*}, *

^аФедеральный исследовательский центр химической физики им. Н.Н. Семенова РАН, ул. Косыгина, 4, Москва, 119334 Россия *e-mail: ajushaulov@yandex.ru

Поступила в редакцию 25.03.2023 г. После доработки 25.04.2023 г. Принята к публикации 27.04.2023 г.

С помощью квантово-химических расчетов методом DFT найдены оптимальные геометрии в вакууме кластеров (CaO)_n и (MgO)_n при n = 2-30 и определены энтальпии образования 1D-, 2D- и 3D-структур. Показано, что линейные цепи оксидов Ca и Mg практически не образуются, в то время как формирование двумерной (плиточной) и трехмерной (кубической) структур протекает с большим выделением энергии. Рассмотрен конкурирующий процесс образования молекулярных стержней, состоящих из плоских шестичленных циклов (MO)₃, и показано, что процесс протекает не через стадию предварительного образования шестичленных циклов, а непосредственно из мономерных звеньев.

Ключевые слова: оксиды кальция и магния, квантово-химические расчеты, молекулярные структуры **DOI:** 10.31857/S0044457X22601729, **EDN:** MKVATI

ВВЕДЕНИЕ

Оксиды кальция и магния и их производные — распространенные природные соединения, нашедшие широкое применение. Оксид кальция является компонентом производства силикатных стекол, служит основой для цементов, строительных материалов и т.д., тогда как оксид магния наряду с широким применением рассматривается для решения таких важных задач, как сокращение содержания CO_2 в атмосфере (геологическая секвестрация) [1], хранение водорода [2] и др. Широкое развитие получили исследования керамических композиций, содержащих CaO и MgO [3, 4].

Наряду с этим большое значение имеют наночастицы оксидов, размер и форма которых позволяют использовать их в качестве катализаторов, адсорбентов, химических агентов и т.д. [5–7].

Оксиды химических элементов в зависимости от природы связей являются соединениями с различным пространственным строением и энергией межмолекулярных взаимодействий, которые определяют их надмолекулярную структуру [8–13].

Одними из таких соединений являются оксиды магния и кальция, относящиеся к классу полиоксидов и обладающие близкой к ионной химической связью.

Существенным отличием неорганических полиоксидов от полиуглеводородов является высокая энергия химических и межмолекулярных связей, определяемая большой разницей в значениях электроотрицательности элементов. Наличие сильных полярных связей предопределяет и сильные межмолекулярные взаимодействия, оказывающие существенное влияние на свойства и надмолекулярную структуру твердого тела.

Изучению строения, стабильности и определению теплот образования катионных, анионных и нейтральных кластеров оксидов (CaO)_n и (MgO)_n с $n \le 40$, не определяющих еще термодинамические свойства твердого тела, посвящен ряд работ: n = 1-6 [14], 1-29 [15], 1-5 [16], 2-10 [17], 1-5 [18], 2-7 [19], 3-16 [20], 2-7 [21], 1-6 [22], 6-24 [23], 1-40 [24], 1-40 [25], 1-24 [26].

В настоящей работе рассмотрена возможность описания структуры оксидов кальция и магния на начальной стадии формирования $(MO)_n$ при n = 2-18 с использованием квантово-химических расчетов с целью определения длин связей, теплот образования линейных (1D-) и формирования 2D- и 3D-структур, а также энергии межмолекулярных взаимодействий.

Проведена оптимизация геометрии основных электронных состояний соединений, рассчитаны колебательные частоты и вычислены энтальпии реакции присоединения Са–О, Мg–О и межмолекулярных взаимодействий. При расчете использован метод теории функционала плотности DFT [27] с функционалом B3LYP [28] в базисе QZVP [29] при

Параметр	Ca(OH) ₂		Mg(OH) ₂	
	TZVP	QZVP	TZVP	QZVP
BHLYP	-112.7	-121.8	-98.8	-105.2
PBE0	-132.0	-137.2	-113.2	-118.5
M06-2X	-133.7	-138.9	-120.4	-124.2
PW6B95	-136.3	-142.1	-118.0	-122.3
B3LYP	-134.8	-141.3	-121.5	-125.7
Эксперимент [30]	-144.2 ± 9.0		-135.0 ± 8.0	

Таблица 1. Сравнение рассчитанных и экспериментальных стандартных энтальпий образования при 0 К для гидроксидов кальция и магния, ккал/моль

помощи квантово-химического пакета Turbomole [30].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Квантово-химическое моделирование

Оксиды кальция и магния являются соединениями двухвалентных металлов и имеют кубическую решетку с химической связью, близкой к ионной, и координационным числом ионов, равным 6 [31].

Нами рассмотрены молекулярные структуры образующихся в процессе взаимодействия мономерных звеньев оксидов кальция и магния. При расчетах выполняли оптимизацию геометрии основного электронного состояния до получения на поверхности потенциальной энергии глобального минимума и проводили расчеты колебательных частот. При наличии мнимых частот весь процесс оптимизации повторялся.

Таблица 2. Удельные энтальпии образования линейных цепей HO(-M-O-)_nH

п	$\Delta H_{\rm p}({\rm HO}(-{\rm MgO}-)_n{\rm H}),$	$\Delta H_{\rm p}({\rm HO}(-{\rm CaO}-)_n{\rm H}),$	
	KKdJI/ MOJIB	KKdJI/ MOJIB	
2	-0.2	12.9	
3	0.0	13.2	
4	0.1	13.4	
5	0.1	13.6	
6	0.2	13.7	
7	0.2	13.8	
8	0.2	13.8	
9	0.3	13.9	
10	0.3	13.9	
11	0.3	13.9	
12	0.3	13.9	
15	0.3	14.0	

С целью выбора основного метода расчета вычислены теплоты образования при 0 К гидроксидов кальция и магния в различных гибридных функционалах и тройном- (TZVP) и четверном (QZVP) ζ-базисах (табл. 1). Наибольшую близость к экспериментальным данным показал функционал B3LYP, при этом переход к QZVP существенно улучшал результаты, поэтому в качестве основного функционала был выбран B3LYP с базисом QZVP.

Для оценки энергетического эффекта реакций рассчитывали энтальпию реакции как разность сумм электронной и колебательной энергий нулевых колебаний продуктов и реагентов при 0 К в вакууме, отнесенную к числу атомов металла, участвующих в реакции:

$$A + B \to C + D, \tag{1}$$

$$\Delta H_{\rm p} = (E(C) + E(D) - E(A) - E(B))/n,$$
 (2)

где $E = E_{el} + E_{vib0}$ — сумма электронной и колебательной энергий нулевых колебаний, n — число атомов металла, участвующих в реакции.

Отрицательная энтальпия реакции соответствует энергетически выгодной реакции, протекающей с выделением тепла.

1D-линейная цепь

Образование оксидов рассматривали в соответствии с уравнением:

$$nM(OH)_2 \rightarrow HO(-MO-)_nH + (n-1)H_2O.$$
 (3)

Рассчитаны удельные энтальпии реакций образования линейных цепей $\Delta H_p(n)$ для HO(-MgO-)_nH и HO(-CaO-)_nH при n = 2-15 (табл. 2).

Из проведенных расчетов следует, что небольшой выигрыш в энергии получается только для линейного димера оксида магния (-0.2 ккал/моль), для всех остальных соединений магния энтальпия образования немного выше нуля, это свидетельствует о том, что формирование линейных цепей возможно, но протекает крайне медленно. Для оксида кальция энтальпии имеют большие поло-

Ν	т	$\Delta H_{\rm p}(({\rm HO}(-{\rm MgO}-)_n{\rm H})_m),$ ккал/моль	$\Delta H_{\rm p}(({\rm HO}(-{\rm CaO}-)_n{\rm H})_m),$ ккал/моль
2	2	-24.1	-19.0
3	2	-22.4	-15.8
4	2	-21.6	-14.1
5	2	-21.0	-12.9
6	2	-20.7	-12.2
7	2	-20.4	-11.6
8	2	-20.2	-11.1
9	2	-20.1	-10.9
10	2	-20.1	-10.8
2	3	-30.4	-26.5
3	3	-29.2	-24.6
4	3	-28.7	-24.0
5	3	-28.5	-23.5
6	3	-28.4	-23.0
7	3	-28.3	-22.6
8	3	-28.3	-22.2
9	3	-28.2	-22.0
10	3	-28.1	-21.9

Таблица 3. Энтальпии образования планарных структур (HO(-M-O-)_nH)_m

жительные значения, следовательно, линейные цепи в вакууме образовываться не могут.

2D-структуры

Рассмотрена возможность образования двумерных структур $(HO(-M-O-)_nH)_m$ с плоской ячейкой размером *nm* из исходных гидроксидов при n = 2-0 и m = 2-3:

$$nmM(OH)_2 \rightarrow$$

$$\rightarrow (HO(-MO-)_nH)_m + (n-1)mH_2O.$$
(4)

Рассчитанные удельные энтальпии реакций $\Delta H_{\rm p}(n, m)$ приведены в табл. 3 и на рис. 1.

При переходе от $m = 2 \kappa m = 3$ выигрыш в энергии возрастает, что объясняется образованием дополнительных поперечных связей M-O (рис. 2).

Представленные значения энтальпии показывают, что процесс образования 2D-структур может протекать достаточно эффективно.

Полученные структуры при m = 2 лежат полностью в одной плоскости, но при m = 3 изгибаются, при этом двугранный угол ABCD составляет 130° (рис. 36). Длины краевых связей отличаются от длин центральных на ≤ 0.01 нм, длины связей Mg–O лежат в диапазоне 0.195–2.02 нм, тогда как длины Ca–O равны 0.224–0.234 нм. Эти значения близки к литературным данным. Так, длина связи Ca–O при n = 1 равна 0.1818 нм, при n = 6–0.224 нм [26], а длина связи Mg–O составляет 0.175 нм [32, 33].

3D-структуры

Аналогично рассчитаны теплоты образования трехмерных структур с объемной ячейкой размером *nmk*, образующихся из планарных структур в соответствии с уравнением реакции:

$$nmkM(OH)_{2} \rightarrow ((HO(-MO-)_{n}H)_{m})_{k} + (n-1)mkH_{2}O.$$
(5)

Рис. 1. Зависимости удельных энтальпий образования планарных структур с квадратной ячейкой размера 2n и 3n, где n = 2-10. $1 - (HO(-CaO-)_nH)_2$, $2 - (HO(-MgO-)_nH)_2$, $3 - (HO(-CaO-)_nH)_3$, $4 - (HO(-MgO-)_nH)_3$.

Рис. 2. Двумерные структуры полиоксидов магния $(HO(-MgO-)_3H)_2$ (а) и кальция $(HO(-CaO-)_3H)_3$ (б).

Оптимизация геометрии таких структур затруднена из-за большого числа степеней свободы, поэтому расчеты были ограничены одним соединением 2 2 2 (рис. 3).

В результате получены высокие абсолютные значения удельной энтальпии, составившие для оксида магния –38.6 ккал/моль, для оксида кальция –31.2 ккал/моль. Эти значения по модулю выше энергий образований 2D-структур, что свидетельствует о большей эффективности образования трехмерных структур.

Молекулярные шестигранные стержни

При расчете удельной энтальпии образования метаструктуры шестичленного цикла (MO)₃ в соответствии с уравнением реакции

$$M(OH)_2 \to (MO)_3 + 3H_2O \tag{6}$$

получены положительные значения: для оксида магния 16.9 ккал/моль, для оксида кальция 18.1 ккал/моль, что свидетельствует о маловероятном образовании одиночных циклов в вакууме.

Наряду с этим рассчитаны энтальпии образования кластеров молекулярных стержней (MC), состоящих из шестичленных циклов с n = 2-10 и образующихся непосредственно из мономерных звеньев (рис. 4) в соответствии с реакцией:

$$3n\mathrm{M(OH)}_2 \to ((\mathrm{MO})_3)_n + 3n\mathrm{H}_2\mathrm{O}.$$
 (7)

Полученные положительные значения энтальпии, достигающие 14.8 ккал/моль у оксида магния и 18.7 ккал/моль у оксида кальция, позволяют эффективно рассматривать образование молекулярных стержней. (табл. 4). Аналогичный вывод о высокой эффективности образования гексагональной тубулярной структуры MgO представлен в работе [22].

Рис. 3. Трехмерная структура полиоксида магния $((HO(-MgO-)_2H)_2)_2$.

Рис. 4. Молекулярный стержень кальция ((СаО)₃)₆.

В данном случае, аналогично планарным структурам, наблюдается резкий скачок энергии при переходе от n = 2 к n = 3 из-за образования дополнительных связей М—О, направленных вдоль стержня.

Для сравнения эффективности протекания рассмотренных процессов на оксидах магния и кальция приведены тепловые эффекты образования различных структур на базе димеров (табл. 5).

ЗАКЛЮЧЕНИЕ

Обобщая полученные данные и сравнивая энтальпии образования 1D-, 2D- и 3D-структур, можно определить следующие тенденции в процессе формирования базовых структур:

п	$\Delta H_{\rm p}((({\rm MgO})_3)_n)$	$\Delta H_{\rm p}((({\rm CaO})_3)_n)$	
11	ккал/моль		
2	-9.3	-7.2	
3	-21.1	-17.3	
4	-22.2	-18.4	
5	-22.9	-19.2	
7	-23.3	-19.6	
8	-23.6	-19.7	
9	-23.8	-19.9	
10	-23.9	-20.0	

Таблица 4. Удельные энтальпии образования молекулярных стержней ((MO)₃)_{*n*}

Таблица 5. Удельные энтальпии образования 1D-, 2Dи 3D-структур на базе димеров, ккал/моль

Структура	MgO	CaO
1D	-0.2	12.9
2D	-24.1	-19.0
3D-кубическая ячейка	-38.6	-31.2
Молекулярный стержень ($n = 3$)	-21.1	-17.3

 – образование 1D-структуры и шестичленных циклов сильно затруднено из-за отрицательного энергетического эффекта реакции,

 эффективное образование из мономерных звеньев коротких 2D-структур с большим выделением энергии,

 эффективное образование трехмерных структур за счет межмолекулярных взаимодействий мономерных звеньев и 2D-структур,

 эффективное образование молекулярных шестигранных стержней.

Из полученных данных следует, что для CaO и MgO с высокой вероятностью характерно образование плиточной 2D- и кубической 3D-структур и с меньшей вероятностью параллельное формирование молекулярных шестигранных стержней.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках госзадания Министерства науки и образования России (тема FFZE-2022-0010. ГЗ № 122040400099-5, АААА-А20-120030590042-8).

КОНФЛИКТ ИНТЕРЕСОВ

Конфликт интересов отсутствует.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Edmonds J.A., Freund P., Dooley J.J.* // Greenhouse Gas Control Technologies. 2001. P. 46.
- Juan Pablo Mojica-Sánchez, Tania Isabel Zarate-López, José Manuel Flores-Álvarez et al. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 23102. https://doi.org/10.1039/c9cp05075b
- 3. Гаркушин И.К., Лаврентьева О.В., Штеренберг А.М. // Физика и химия стекла. 2023. Т. 49. № 2. С. 148. https://doi.org/10.31857/S0132665122100109
- Gu Guoxuan, Li Sheng, Liu Xin et al. // Ceramics-Silikáty. 2022. V. 66. P. 480. https://doi.org/10.13168/cs.2022.0044480
- 5. Utamapanya S., Klabunde K.J., Schlup J.R. // Chem. Materials. 1991. V. 3. P. 175.

- 6. Сергеев Г.Б. Нанохимия. М.: Изд-во МГУ, 2003. 288 с.
- Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов М.: КомКнига, 2006. 592 с.
- Ray N.H. // Inorganic Polymers. London: Acad. Press, 1978. 172 p.
- 9. Сандитов Д.С., Бартенев Г.М. Физические свойства неупорядоченных структур. Новосибирск: Наука, 1982. 256 с.
- 10. *Фельц А*. Аморфные и стеклообразные неорганические твердые тела. М.: Мир, 1986. 326 с.
- 11. *Ropp R.C.* Inorganic Polymer Glasses. Amsterdam: Elsevier, 1992. 201 p.
- 12. Сироткин О.С. Безуглеродные полимерные элементооксаны, Дис. ... докт. техн. наук. Казань, 1992. 364 с.
- Шаулов А.Ю., Владимиров Л.В., Грачев А.В. и др. // Химическая физика. 2020. Т. 14. С. 183. https://doi.org/10.1134/S1990793120010157
- Malliavin M.-J., Coudray C. // J. Chem. Phys. 1997. V. 106. P. 2323.
- Aguado A., López-Gejo F., López J.M. // J. Chem. Phys. 1999. V. 110. P. 4788.
- Gutowski M., Skurski P., Li X. et al. // Phys. Rev. Lett. 2000. V. 85. P. 3145.
- Dong R., Chen X., Wang X. et al. // J. Chem. Phys. 2008.
 V. 129. P. 044705.
- Vasili M.L.S., Felle D. et al. // J. Phys. Chem. A. 2010. V. 114. P. 9349.
- 19. *Kwapien K., Sierka M., Döbler J. et al.* // Angew. Chem., Int. Ed. 2011. V. 50. P. 1716.

- 20. *Haertelt M., Fielicke A., Meijer G. et al.* // Phys. Chem. Phys. 2012. V. 14. P. 2849.
- Hong L., Wang H., Cheng J. et al. // Comput. Theor. Chem. 2012. V. 980. P. 62.
- Priynka Batra, Ritu Gaba, Upasana Issar et al. // J. Theor. Chem. 2013. P. 720794. https://doi.org/10.1155/2013/720794
- Zhang Y., Chen H.S., Yin Y.H. et al. // J. Phys. B: At., Mol. Opt. Phys. 2014. V. 47. P. 025102.
- 24. Chen Mingyang, Felmy A.R., Dixon D.A. // J. Phys. Chem. A. 2014. V. 118. P. 3136. https://doi.org/10.1021/jp412820z
- Mingyang Chen, Kanchana Sahan Thanthiriwatte, David A. // J. Phys. Chem. C. 2017. V. 121. P. 23025. https://doi.org/10.1021/acs.jpcc.7b09062
- Motoyoshi Nakano, Daiki Hebiguchi, Shohei Azuma et al. // J. Phys. Chem. A. 2020. V. 124. P. 101.
- 27. *Gross E.K.U., Kohn W.* // Adv. Quantum Chem. 1990. V. 21. P. 255.
- 28. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
- 29. Schafer A., Horn H., Ahlrichs R. // J. Chem. Phys. 1992. V. 97. P. 2571.
- Furche F., Ahlrichs R., Hattig C. et al. // Comput. Mol. Sci. 2014. V. 4. P. 91.
- 31. *Уэллс А.Ф.* Строение неорганических веществ. М.: Изд-во иностр. литер., 1948. 690 с.
- 32. Vasiliu M., Feller D., Gole J.L., Dixon D.A. // J. Phys. Chem. A. 2010. V. 114. P. 9349.
- Bawa F., Panas I. // Phys. Chem. Chem. Phys. 2002.
 V. 4. P. 103.