— КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ ——

УДК 547.56+546.185+546.47+543.554.4

КОМПЛЕКС ЦИНКА(II) С 2-ОКСИ-5-ЭТИЛФЕНИЛФОСФОНОВОЙ КИСЛОТОЙ: СИНТЕЗ, СТРОЕНИЕ, ТОКСИЧНОСТЬ И НАКОПЛЕНИЕ В КЛЕТКАХ НЕLA

© 2023 г. И. С. Иванова^{*a*}, Г. С. Цебрикова^{*b*, *}, А. Б. Илюхин^{*a*}, В. П. Соловьев^{*b*}, М. А. Лапшина^{*c*}, Ю. И. Рогачева^{*c*}, Е. Н. Пятова^{*a*}, В. Е. Баулин^{*c*}, А. Ю. Цивадзе^{*b*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия

^bИнститут физической химии и электрохимии им. А.Н. Фрумкина РАН,

Ленинский пр-т, 31, корп. 4, Москва, 119071 Россия

^сИнститут физиологически активных веществ ФГБУН Федерального исследовательского центра проблем химической физики и медицинской химии РАН, Ленинский пр-т, 1, Черноголовка, Московская обл., 142432 Россия

**e-mail: tsebrikova@yandex.ru* Поступила в редакцию 11.04.2023 г. После доработки 03.05.2023 г. Принята к публикации 05.05.2023 г.

Синтезирован комплекс цинка(II) с 2-окси-5-этилфенилфосфоновой кислотой (H_3L) состава $[Zn(H_2L)_2(H_2O)_2][Zn(HL)(H_2O)] \cdot H_2O$ (I), структура которого установлена на основании совокупности данных рентгеноструктурного и элементного анализа, квантово-химических расчетов, ИК- и электронной спектроскопии. Потенциометрическим титрованием определены константы устойчивости комплексов кислоты H_3L с перхлоратом цинка(II) в воде. Впервые изучены цитотоксические свойства кислоты H_3L и комплекса I на клетках HeLa (аденокарцинома шейки матки человека). Методом лазерной конфокальной микроскопии получены результаты по накоплению комплекса I в клетках HeLa.

Ключевые слова: цинк(II), фосфоновая кислота, РСА, константа устойчивости комплекса металл-лиганд, цитотоксичность

DOI: 10.31857/S0044457X23600597, EDN: MYBLVM

введение

Синтез и исследование физико-химических и биологических свойств комплексов биоактивных органических лигандов с катионами различных металлов позволяют существенно расширить возможности структурного дизайна лекарственных средств [1–6].

В нормальном протекании процессов в живых организмах важную роль играют такие *d*-элементы, как железо, медь и цинк. Дисбаланс этих металлов запускает процессы старения, способствует развитию атеросклероза, мутагенеза, нейродегенерации, иммунологических нарушений и др. [7–12]. Механизм возникновения таких заболеваний связывают с генерацией активных форм кислорода, вызывающих окислительный стресс с участием ионов железа и меди [13, 14].

Производные 2-оксибензойной (салициловой) кислоты (H_2 Sal) широко применяются в клинической практике как жаропонижающие, анальгетические и противовоспалительные средства. Они могут оказывать терапевтическое влияние на опухоли, такие как рак молочной [15], поджелудочной [16], предстательной железы, яичников [17], рак легких [18]. Известно, что комплексы цинка(II) с производными салициловой кислоты также обладают противоопухолевой активностью [19].

2-Оксифенилфосфоновые кислоты являются малоизученными фосфорильными аналогами салициловой кислоты, в которых карбоксильная группа заменена фосфоновым фрагментом (рис. 1). Такая замена приводит к появлению других физико-химических и биологических свойств этих кислот по сравнению с салициловой кислотой, что обусловливает наш интерес к изучению как свободных 2-оксифенилфосфоновых кислот, так и их комплексов с биологически активными металлами [20–23].

В настоящей работе синтезирован комплекс цинка(II) с 2-окси-5-этилфенилфосфоновой кислотой (H_3L) состава [$Zn(H_2L)_2(H_2O)_2$][$Zn(HL)(H_2O)$] · H_2O (I), структура которого установлена на основании данных рентгеноструктурного и элементного анализа, квантово-химических расчетов и ИК-спектроскопии. Методом потенциометрического титрования определены константы устойчивости ком-

Рис. 1. Структурные формулы салициловой (H_2 Sal) и 2-окси-5-этилфенилфосфоновой кислоты (H_3L).

плексов кислоты H_3L с перхлоратом цинка(II) в воде. Впервые изучены цитотоксические свойства кислоты H_3L и комплекса I на клетках HeLa (аденокарцинома шейки матки человека) с использованием МТТ-теста. Кроме того, оценка накопления комплекса I в клетках HeLa проведена методом лазерной конфокальной микроскопии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ³¹Р записывали на спектрометре Bruker CXP-200; стандарты – ТМС (внутренний) и 85% H_3PO_4 (внешний). Температуры плавления измеряли на приборе Boetius PHMK 05. Анализ содержания С и Н проводили на С,Н,Nанализаторе Carlo Erba (Strumentazione, Italy). Содержание фосфора и цинка определяли методом атомной эмиссии с индуктивно связанной плазмой на приборе iCAP-6500 Duo (Thermo Scientific, США). ИК-спектры регистрировали на спектрометре Bruker Vertex 70 в диапазоне 4000– 400 см⁻¹ (суспензия в вазелиновом масле) и методом НПВО на спектрометре Nexsus, Nicolete.

2-Оксифенил-5-этилфосфоновую кислоту синтезировали согласно [20]. Температура плавления и результаты элементного анализа и спектров ЯМР соответствовали литературным данным. Для изучения комплексообразования использовали гексагидрат перхлората цинка(II) марки "х. ч.".

Комплекс $[Zn(H_2L)_2(H_2O)_2][Zn(HL)(H_2O)] \cdot H_2O$ (I) был получен в виде бесцветного кристалли-

Таблица 1. Условия изучения комплексообразования 2-окси-5-этилфенилфосфоновой кислоты с $Zn(ClO_4)_2 \cdot 6H_2O$ в воде при 298 К: интервалы рН и начальных концентраций (ммоль/л) реагентов в растворе

№	pН	c_{Zn}^0	$c_{ m L}^0$	п
1	3.4-11.3	0.30-0.29	0.63-0.60	57
2	3.3-11.1	0.47-0.45	0.70-0.67	56
3	3.2-11.1	0.32-0.31	0.72-0.69	61
4	2.6-11.3	1.05-0.96	2.26-2.06	51

Примечание: *n* – число экспериментальных точек.

ческого осадка при смешивании водных растворов H_3L (0.3 г, 1.5 ммоль) и $Zn(ClO_4)_2 \cdot 6H_2O$ (0.3 г, 0.7 ммоль). Комплекс достаточно хорошо растворим в воде, поэтому для его полного осаждения реакционную смесь выдерживали не менее 12 ч при температуре +6°C, а затем фильтровали и промывали ледяной водой. Выход составил 0.5 г (88%).

	С	Н	Р	Zn
Найдено, %:	35.98,	4.04,	11.79,	16.34,
	36.15;	4.28;	11.62;	16.24.
Для C ₂₄ H ₃₇ O ₁₆ P ₃ Zn ₂				
вычислено, %:	35.76;	4.59;	11.57;	16.17.

Константы устойчивости комплексов 2-окси-5-этилфенилфосфоновой кислоты (H_3L) с перхлоратом цинка(II) определяли методом потенциометрического титрования с использованием потенциометра OP-300 (Radelkis) по методике [24].

Растворы кислоты H_3L и соли $Zn(ClO_4)_2 \cdot 6H_2O$ с начальным объемом 160 мл титровали стандартным 0.1 М раствором NaOH при температуре 298 ± 0.1 К и ионной силе I = 0.1 М КСІ. Выполнено четыре титрования в интервале pH от 2.6 до 11.3, которые включали от 51 до 61 точки. Исходные аналитические концентрации кислоты и соли варьировали в интервалах 0.29–1.05 и 0.60–2.26 мМ соответственно (табл. 1). При титровании отношение начальных концентраций реаген-

тов c_L^0/c_{Zn}^0 варьировалось от 1.5 до 2.2. В четвертом титровании в интервале рН 6.5–9.5 наблюдали образование осадка. Поэтому данные этого титрования в указанной области в расчетах констант комплексообразования не использовали.

Константы устойчивости комплексов 2-окси-5-этилфенилфосфоновой кислоты (H_3L) с перхлоратом цинка(II) рассчитывали с использованием программы CHEMEQUI [25, 26], предназначенной для моделирования равновесий в растворах. В нашем случае потенциометрического титрования неизвестные константы устойчивости комплексов $\beta_1,\beta_2...$ были искомыми и оптимизируемыми параметрами для минимизации квадратов остатков программой CHEMEQUI:

$$\boldsymbol{\Phi}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2...) = \sum_{i=1}^n \left(\mathbf{p} \mathbf{H}_{exp,i} - \mathbf{p} \mathbf{H}_i \right)^2, \qquad (1)$$

где n — число экспериментальных точек титрования, pH_{ехр} и pH — экспериментальное и расчетное значения pH при заданной начальной концентрации реагентов. В программе водородный показатель pH является функцией равновесной концентрации катиона водорода:

$$pH = a + blg[H^+], \qquad (2)$$

где a — возможная систематическая погрешность, b — коэффициент пропорциональности. Равновесная концентрация *j*-го комплекса C_j как функция его константы устойчивости β_j выражается в форме уравнения Бринкли [27]:

$$C_j = \exp\left(\ln\beta_j + \sum_{k=1}^m v_{jk} \ln C_k\right), \qquad (3)$$

где β_j — общая константа устойчивости *j*-го комплекса, образующегося из *m* реагентов, v_{jk} — стехиометрический коэффициент для данной равновесной реакции. Кроме того, в программе используются уравнения материального баланса:

$$\sum_{i=1}^{s} v_{ki} C_i = C_k^0, \ k = 1, 2, \dots, m,$$
(4)

где v_{ki} — стехиометрический коэффициент *k*-го реагента в реакции образования *i*-го вещества, C_k^0 начальная концентрация *k*-го реагента, *s* — число всех реагентов и комплексов. Уравнения (3) и (4) используются для последующего расчета [H⁺] и рН. Программа СНЕМЕQUI включает четыре независимых алгоритма: градиентный метод программы EQ, симплекс-алгоритм Нелдера и Мида, метод стохастического поиска и генетический алгоритм [25, 26]. Алгоритмы программы и ее применение для оценки констант устойчивости комплексов в растворах методами калориметрии, потенциометрии, спектрофотометрии (ИК, УФ, UV-vis), ЯМР-спектроскопии и кондуктометрии изложены в обзоре [25]. СНЕМЕQUI находится в свободном доступе на сервере [26].

Цинк(II) образует в воде устойчивые гидроксиды [28], поэтому оценка констант комплексообразования Zn²⁺ с кислотой H₃L была выполнена как с учетом реакций гидролиза цинка(II), так и без их учета. В расчетах использовали известные константы $\lg \beta_n$ для равновесий $Zn^{2+} + nH_2O =$ = Zn²⁺(OH⁻)_n + nH⁺ (n = 1, 2), составляющие в воде при 298 К и ионной силе I = 0.1 М (NaNO₃) соответственно –7.89 и –14.92 [28]. Для расчета констант комплексообразования Zn²⁺ с протонированными формами лиганда $H_n L^{(3-n)-}$ (n = 0, 1, 2) ранее были определены константы протонирования кислоты из данных ее титрования раствором NaOH, которые составили 11.58, 17.94 и 21.14 соответственно для равновесий $L^{3-} + nH^+ = H_n L^{(3-n)-}$ (n = 1, 2, 3) при 298 К и ионной силе I = 0.1 М (KCl) [21]. Независимое определение констант протонирования кислоты позволяет более надежно определить константы комплексообразования кислоты с катионом металла [29].

Нами было проанализировано девять моделей равновесий в растворе с образованием от одной до четырех химических форм: 1) ZnL; 2) ZnL, ZnOH, Zn(OH)₂; 3) ZnL, ZnL(OH); 4) ZnL, ZnL(OH), ZnL(OH)₂; 5) ZnL, ZnL(OH), ZnOH, Zn(OH)₂; 6) ZnL, ZnL₂; 7) ZnL, ZnL₂, ZnL₂(OH); 8) ZnL, ZnL₂, ZnL(OH), ZnL₂(OH); 9) ZnL, ZnL₂, ZnHL, ZnL₂(OH). Здесь для простоты заряды частиц, образованных ионами Zn²⁺, L³⁻, H⁺ и OH⁻, не указаны. В качестве критериев выбора модели равновесных реакций, вполне соответствующей эксперименту, использовали *R*-фактор Гамиль-

тона (*HRF*) и коэффициент детерминации (R_{det}^2):

$$HRF = 100 \left[\frac{\sum_{i=1}^{n} (pH_{exp,i} - pH_{i})^{2}}{\sum_{i=1}^{n} (pH_{exp,i})^{2}} \right]^{1/2},$$

$$R_{det}^{2} = 1 - \sum_{i=1}^{n} (pH_{exp,i} - pH_{i})^{2} / \sum_{i=1}^{n} (pH_{exp,i} - \langle pH_{exp} \rangle)^{2},$$

где $\langle pH_{exp} \rangle = \frac{1}{n} \sum_{i=1}^{n} pH_{exp,i}, n -$ число эксперимен-

тально измеренных значений pH, pH_{exp,i} и pH_i – экспериментальное и соответствующее рассчитанное по модели равновесий значение рН для данных начальных концентраций реагентов. Модель равновесия с образованием в растворе комплексов ZnL⁻ и ZnL(OH)²⁻ наилучшим образом согласуется с экспериментальными данными. В этой модели учитывались следующие равновесные реакции: $L^{3-} + nH^+ = H_n L^{(3-n)-}$ (n = 1, 2, 3); $H_2O = H^+ + OH^-$; $Zn^{2+} + L^{3-} = ZnL^-$; $Zn^{2+} + L^{3-} + L^{3-}$ $+ OH^{-} = ZnL(OH)^{2-}$. Для 12 оценок констант комплексов с использованием трех титрований и четырех расчетных алгоритмов программы CHEMEQUI фактор HRF изменялся в интервале от 1.668 до 1.843%, а коэффициент R_{det}^2 — от 0.9972 до 0.9979. Средние величины констант комплексообразования lg β были определены из их m = 12 оценок lg β^{i} с учетом весовых вкладов $\frac{1}{HRF_i}$, характеризующих степень согласия с экспериментальными данными:

$$\lg \beta = \frac{\sum_{i=1}^{m} \frac{1}{HRF_i} \lg \beta^i}{\sum_{i=1}^{m} \frac{1}{HRF_i}}.$$

Экспериментальные данные РСА для соединения I получены на дифрактометре Bruker AXS D8 Venture Photon III C14 IuS 3.0 (λ (Mo K_{α}), графитовый монохроматор) [30] (табл. 2). Поглощение учтено полуэмпирическим методом по эквивалентам (программа SADABS) [31]. Структура определена комбинацией прямого метода и Фурье-синте-

Параметр	Значение	
Формула	$C_{24}H_{37}O_{16}P_3Zn_2$	
M	805.18	
<i>Т</i> , К	100(2)	
Излучение, λ, Å	0.71073	
Сингония	Моноклинная	
Пр. гр.	Pc	
a, Å	20.103(4)	
b, Å	14.009(3)	
<i>c</i> , Å	7.6143(15)	
β, град	94.50(3)	
<i>V</i> , Å ³	2137.8(8)	
Ζ	2	
d_x , г/см ³	1.251	
μ, мм ⁻¹	1.288	
<i>F</i> (000)	828	
Размер образца, мм	$0.22 \times 0.20 \times 0.02$	
интервал θ, град	2.5-25.3	
Пределы h, k, l	$-23 \le h \le 24$	
	$-16 \le k \le 16$	
	—9≤ <i>l</i> ≤7	
Число измеренных отражений	11095	
Число независимых отражений, R_{int}	6141, 0.0903	
Полнота до $\theta = 25.242^{\circ}$, %	98.5	
Max, min пропускание	0.73, 0.20	
Число параметров	6141/38/197	
S	1.387	
$R_1, wR_2 [I > 2\sigma(I)]$	0.1481, 0.3480	
<i>R</i> ₁ , <i>wR</i> ₂ (все данные)	0.1805, 0.3710	
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}} e / \text{\AA}^3$	1.569-0.926	
Абсолютная конфигурация	0.52(8)	

Таблица 2. Основные структурные данные и результаты уточнения структуры I

зов. Атомы водорода рассчитаны из геометрических соображений. Структуры уточнены полноматричным анизотропно-изотропным MHK. Все расчеты выполнены по программам SHELXS и SHELXL [32]. "Монокристаллы" I растут в виде тонких сросшихся пластин (как в слюде), разделить которые невозможно. Было проверено более 20 кристаллов, все они оказались сростками, но часть рефлексов для всех образцов индицировали в одной и той же ячейке. Лучший из кристаллов, с которого были получены экспериментальные данные, все равно был образован не менее чем восемью доменами (программа CellNow [33]). Для интегрирования был выбран наибольший домен (~35% индицированных при соотношении сигнал/фон ≥ 8 рефлексов), в процессе интегрирования матрицу ориентации фиксировали. Уточнение проводили с учетом центросимметричного двойникования, 37% рассеивающей мощности "кристалла" разупорядочено. Низкое качество эксперимента позволило перевести в анизотропию лишь атомы Zn и упорядоченные атомы P, что привело к ошибке типа A в checkcif (39 неводородных атомов уточняли в изотропном приближении). Две ошибки типа B (высокий wR_2 и низкая точность в связях C–C) обусловлены строением образца.

Структурные данные и результаты уточнения для соединения I депонированы в Кембриджском банке структурных данных (ССDC № 2244640); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk).

Эксперименты по определению цитотоксичности кислоты H₂L и комплекса I проводили на клетках HeLa (аденокарцинома шейки матки человека), полученных из коллекции клеточных культур позвоночных (Санкт-Петербург, Россия). Клетки HeLa были выращены в среде Игла МЕМ (ПанЭко, Россия), содержащей 10% эмбриональной сыворотки (HyClone, США), пенициллин (50 ед/мл), стрептомицин (50 мг/мл), в атмосфере 5% СО₂ при температуре 37°С. Клетки рассевали в 96-луночные планшеты в концентрации 5×10^4 клеток/мл. Через 24 ч тестируемые соединения. предварительно растворенные в диметилсульфоксиде (ДМСО), вносили в культуральную среду. Клетки инкубировали при 37°С в увлажненной атмосфере воздуха и 5% СО₂ в течение 48 ч. Затем в инкубационную среду вносили 3-(4,5-диметилтиазол-2-ил)-2,5-дифенил-2Н-тетразолиум бромид (MTT, Sigma-Aldrich) в концентрации 0.5 мг/мл. Окрашивание клеток проводили при 37°С в увлажненной атмосфере воздуха и 5% СО₂ в течение 2 ч. Далее инкубационную среду отбирали и кристаллы образованного МТТ-формазана растворяли в 100%-ном ДМСО. Интенсивность окраски определяли при длине волны 536 нм с помощью планшетного ридера Cytation 3 (BioTek, США). За 100% принимали интенсивность окраски контрольных клеток, не обработанных тестируемым соединением. Статистический анализ, построение графиков и определение концентрации, вызывающей 50%-ное ингибирование роста популяции клеток (IC₅₀), определяли на основе дозозависимых кривых с помошью программного обеспечения OriginPro 8.

Изучение клеточной аккумуляции комплекса I проводили на клетках HeLa. Клетки, выращенные на покровных стеклах размером 24×24 мм при плотности клеточной культуры $15 \times 10^4/2$ мл в шестилуночных планшетах, инкубировали в течение 24 ч с растворенным в ДМСО комплексом I, конечная концентрация которого в инкубационной среде составляла 100 мкМ. В качестве контроля использовали клетки без обработки комплексом. Далее клетки отмывали от остатков среды раствором PBS_{r1} (фосфатно-солевой буфер) и фиксировали раствором 4%-ного параформальдегида в течение 30 мин при комнатной температуре. Затем проводили пермеабилизацию в 0.5%-ном растворе Triton X-100 в PBS_{x1} в течение 10 мин при комнатной температуре. Далее образцы после промывания в деионизованной воде сушили при комнатной температуре в темноте. Заклеивали стекла по периметру лаком. Изучение накопления комплекса I в клетках проводили с помощью лазерного сканирующего микроскопа Zeiss LSM 880 (Carl Zeiss, Германия). Изображения получали в инвертированном конфокальном режиме с использованием объектива С Plan-Apochromat 63X/1.4 Oil DIC M27. Для возбуждения флуоресценции комплекса I использовали лазерное облучение с длиной волны 405 нм, сигнал детектировали в диапазоне длин волн 415-536 нм. Все полученные треки были сохранены в формате сzi-ном. Полученные изображения были обработаны с помощью программы для анализа изображений ImageJ.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Ранее нами был синтезирован комплекс $[Cu(H_2L)_2(H_2O)_2]$, состав и строение которого установлены на основании данных РСА, элементного анализа и ИК-спектроскопии [21]. В настоящей работе получен комплекс $[Zn(H_2L)_2(H_2O)_2][Zn(HL)(H_2O)] \cdot H_2O$ (I), который, в отличие от светло-голубых кристаллов комплекса меди, представляет собой прозрачные слоистые кристаллы.

Структура I образована комплексами [Zn(H₂L)₂(H₂O)₂] (рис. 2а, рис. S1), 1D-цепочками [Zn(HL)(H₂O)] (рис. 26, рис. S1) и кристаллизационными молекулами H₂O. В октаэдрическом комплексе $[Zn(H_2L)_2(H_2O)_2]$ атомы О молекул H₂O находятся в цис-позиции друг к другу, аналогично расположены и атомы О оксифенильных фрагментов, в то время как фосфоновые атомы О – в транс-позиции друг к другу. В аналогичных комплексах меди(II) с H₃L [21], 2-оксифенилфосфоновой [23] и 2-окси-5-метоксифенилфосфоновой кислотой [22] атомы О молекул H₂O и атомы О оксифенильных фрагментов находятся в транс-позиции; комплексы центросимметричны. В 1D-цепочке [Zn(HL)(H₂O)] мостиковые атомы О оксифенильного фрагмента, молекулы H₂O и фосфонового фрагмента объединяют соседние атомы Zn. Следует отметить, что цепочка разупорядочена по двум позициям (рис. 3) в соотношении 0.54 : 0.46, а координированные молекулы H₂O в каждой цепочке разупорядочены по двум позициям с заселенностями O(15), O(16), O(15B) и O(16B) 0.27, 0.27, 0.26 и 0.20 соответственно. Низкое качество

экспериментальных данных позволяет обсуждать лишь топологию структурных единиц.

Отнесение колебательных частот донорных групп в ИК-спектре лиганда H₃L, позволяющих судить о его координации, а также комплекса меди [Cu(H₂L)₂(H₂O)₂] приведено в работе [21]. При сохранении общего характера ИК-спектр комплекса I несколько отличается от ИК-спектров H₃L и $[Cu(H_2L)_2(H_2O)_2]$. Основные отличия в ИК-спектрах комплексов наблюдаются в интервале частот 1285-1070 см⁻¹, где лежат полосы v(Ph-O), τ (CH₂), ν (P=O) и δ_{Ph} . В спектре комплекса цинка в этом спектральном диапазоне присутствуют: полоса средней интенсивности около 1271 см⁻¹, более интенсивная полоса около 1235 см⁻¹, менее интенсивная полоса при 1215 см⁻¹ и очень интенсивная широкая полоса с максимумами при 1139, 1103, 1074 см⁻¹. В спектре [Cu(H₂L)₂(H₂O)₂] в этом спектральном диапазоне наблюдаются две хорошо разрешенные полосы: дублетная полоса средней интенсивности при 1249, 1225 см⁻¹ и интенсивная дублетная полоса при 1115, 1086 см⁻¹. В диапазоне $900-420 \text{ см}^{-1}$ в основном меняется соотношение интенсивности полос.

Что касается фосфорильной группы, то к v(P=O) в спектре комплекса I можно отнести узкую полосу выше средней интенсивности при 1235 см⁻¹. Это несколько выше, чем положение полосы v(P=O) в спектре свободной $H_3L(1230 \text{ см}^{-1})$, и свидетельствует о присутствии не участвующего в координации с катионом цинка фосфорильного атома кислорода. В спектре комплекса меди, в котором фосфорильный кислород молекулы H₃L также не участвует в координации с катионом меди, частота v(P=O) незначительно (~6 см⁻¹) понижается. Полоса при 1271 см⁻¹ может быть связана с v(Ph–O) фенольной группы. Интенсивные полосы при 1024 и 937 см⁻¹ в спектре I обусловлены колебаниями δ(РОН) и ν(РО) фосфонового фрагмента $(1017 и 943 см^{-1} в ИК-спектре [Cu(H₂L)₂(H₂O)₂]).$

В диапазоне частот 4000–2000 см⁻¹ в ИК спектре I на фоне широкой интенсивной полосы с максимумом при ~3000 см⁻¹ фиксируются полосы валентных колебаний молекул воды v(H₂O), входящих в состав комплекса, а также v(C–H), v(OH)_{Ph} и v(OH)_P. Новую по сравнению со спектром H₃L полосу около 3381 см⁻¹ в ИК-спектре комплекса цинка можно отнести к валентным колебаниям координированных молекул воды (3314 см⁻¹ в спектре медного комплекса). Деформационным колебаниям $\delta(H_2O)$ соответствует полоса ниже средней интенсивности при 1672 см⁻¹ (широкая полоса при ~1695 см⁻¹ в спектре комплекса меди). Полоса около 3148 см⁻¹ может быть обусловлена v(OH)_{Ph} (3201 см⁻¹ в комплексе меди). Валентные колеба-

Рис. 2. Строение комплекса (а) и 1D-цепочки (б) в структуре I.

ния OH-групп фосфонового фрагмента ν (OH)_P имеют малую интенсивность (2570 и 2274 см⁻¹ в спектре [Cu(H₂L)₂(H₂O)₂]).

Принимая во внимание общий характер спектров комплексов цинка и меди с H_3L , можно сказать, что при одинаковом способе координации

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 8 2023

Рис. 3. Взаимное расположение двух позиций разупорядоченной 1D-цепочки в структуре I.

H₃L эти комплексы изоструктурными не являются, что согласуется с данными PCA.

Геометрия комплекса цинка(II) с H_3L также была определена по результатам DFT-расчетов с использованием программы Gaussian 06 (функционал B3LYP с базовым набором 6-31+G(d,p)). Согласно расчетам, координационное окружение атома цинка в изолированной части комплекса [Zn(H₂L)₂(H₂O)₂] в целом идентично окружению, определенному методом PCA (рис. 4). Различия в геометрии связаны, по-видимому, с тем, что расчеты проводили в газовой фазе, а в РСА использовали кристаллический образец. В изолированной части комплекса [Zn(H₂L)₂(H₂O)₂] длины связей Zn–OPPh составляют 1.922–1.925 Å, Zn–OPh – 2.229–2.307 Å, а Zn–OH₂ – 2.247–2.266 Å.

Константы устойчивости комплексов цинка(II) с 2-окси-5-этилфенилфосфоновой кислотой H_3L (рис. 5, табл. 3) в воде при 298 К и ионной силе 0.1 М КСІ определены методом потенциометрического титрования с использованием четырех расчетных алгоритмов программы СНЕМЕQUI (см. Экспериментальную часть), предназначенной для определения констант устойчивости из экспериментальных данных различных физикохимических методов [25, 26]. В расчетах использовали известные константы протонирования $\lg \beta_m$ кислоты H_3L в воде при 298 К и ионной силе 0.1 М: 11.58, 17.94 и 21.14 соответственно для равновесий $L^{3-} + mH^+ = H_m L^{(3-m)-}$ (m = 1, 2 и 3) [21].

Ион Zn²⁺ с L³⁻ образует в воде простой комплекс ZnL⁻, который в щелочной среде с ростом pH до 10 практически полностью превращается в комплекс ZnL(OH)²⁻. Максимум связывания 33% иона Zn²⁺ в комплекс ZnL⁻ приходится на pH 8.2 при концентрации реагентов Zn²⁺ и H₃L около 0.3

Таблица 3. Константы устойчивости комплексов Zn^{2+} с 2-окси-5-этилфенилфосфоновой кислотой H_3L в воде при 298 К и ионной силе 0.1 М КС1

i	Равновесие	$\lg \beta_i \pm sd^a$
1	$Zn^{2+} + L^{3-} = ZnL^{-}$	6.63(13) ⁶
2	$Zn^{2+} + L^{3-} + OH^{-} = Zn(OH)L^{2-}$	12.68(36)
3	$ZnL^{-} + OH^{-} = Zn(OH)L^{2-}$	6.06(38)

^а $\lg\beta_i$ и *sd* – константа устойчивости комплекса и ее стандартное отклонение, вычисленное по результатам нескольких титрований и расчетов (см. Экспериментальную часть). ⁶ Величины в скобках – стандартные отклонения в последних знаках после запятой.

Рис. 5. Диаграмма распределения комплексов Zn^{2+} с 2-окси-5-этилфенилфосфоновой кислотой в зависимости от pH в воде при 298 K, ионной силе 0.1 M и начальных концентрациях реагентов Zn^{2+} и H₃L соответственно 0.31 и 0.71 мМ. α – Процентная доля равновесных концентраций ионов относительно общей концентрации Zn^{2+} .

8

pН

0

 Zn^{2+}

ZnL

7

плекса CuL⁻ приведенное уравнение дает для комплекса ZnL⁻ величину lg $K_{ZnL} = 6.47$, хорошо согласующуюся с экспериментальным значением 6.63 ± 0.13 (табл. 3). Ступенчатая константа присоединения иона OH⁻ к комплексу ZnL⁻ lg $K(ZnL^- + OH^-) = 6.06$ существенно выше, чем аналогичная константа lg $K(CuL^- + OH^-) = 4.48$ [21] для меди(II). Этот факт косвенно свидетельствует о том, что координационная сфера цинка(II) заполняется донорными центрами кислоты в значительно меньшей степени, чем в случае меди(II).

Наши недавние исследования *in vivo* показали, что 2-окси-5-этилфенилфосфоновая кислота (H₃L) обладает высокой анальгетической активностью и представляет интерес в качестве нестероидного противовоспалительного препарата, являясь при этом малотоксичным соединением (LD₅₀ = 2000 мг/кг) [20, 21]. Ее комплекс [Cu(H₂L)₂(H₂O)₂] при такой же малой токсичности проявляет анальгетический эффект значительно выше эффекта свободной кислоты и препарата сравнения — анальгина [21]. Кроме того, вскрытие лабораторных животных не показало ульцерогенного воздействия H₃L и ее комплекса [Cu(H₂L)₂(H₂O)₂] в дозах, соответствующих EД₅₀, на желудочно-кишечный тракт, в отличие от салициловой кислоты.

Известно, что всемирная организация здравоохранения и международное медико-биологическое общество рекомендуют использовать альтернативные методы и модели, такие как, например, применение перевиваемых клеточных культур взамен общепринятых тестов на лабораторных животных [36]. Это связано с вопросами этического и

Рис. 4. Пространственное строение изолированной части комплекса $[Zn(H_2L)_2(H_2O)_2]$ по результатам квантово-химических расчетов.

и 0.7 мМ соответственно (рис. 5). Кислота H₃L значительно слабее связывает цинк(II) в комплекс ZnL^- ($\lg K_{ZnL} = 6.63$, табл. 3), чем медь(II) в комплекс CuL⁻ (lg $K_{CuL} = 8.91$ [21]). Тем не менее константа устойчивости комплекса ZnL⁻ в случае 2-окси-5-этилфенилфосфоновой кислоты не является низкой: только для половины из 568 комплексов состава ZnLig самых различных органических лигандов характерны константы устойчивости >5.0 в воде в стандартных условиях при 298 К и ионной силе 0.1 М [34]. В работе [35] показано, что константы устойчивости ионов металлов М_і и М_i с органическим лигандом в воде в стандартных условиях связаны простой зависимостью: $\lg K_i =$ $= (r_i/r_j) \cdot \lg K_i$, где r_i и r_j – термодинамические радиусы ионов M_i и M_j . Поскольку $r_{Cu} = 0.826$ и $r_{Zn} = 1.138$ [35], исходя из значения $\lg K_{CuL} = 8.91$ для комZnL(OH)²⁻

10

11

Рис. 6. Цитотоксичность кислоты H_3L и комплекса I в отношении клеток HeLa. Результаты жизнеспособности клеток измерены с помощью анализа восстановления МТТ после 48 ч действия соединения.

экономического использования лабораторных животных, а также с тем, что эксперименты с использованием животных трудоемки, длительны и не всегда воспроизводимы, поэтому дальнейшее изучение биологических свойств производных 2-оксифенилфосфоновой кислоты проводили на клетках аденокарциномы шейки матки человека HeLa. В работе изучены цитотоксические свойства кислоты H_3L и комплекса I в отношении клеток HeLa (рис. 6). Установлено, что H_3L является малотоксичным соединением: в концентрации до 150 мкмоль/л она не оказывает существенного влияния на выживаемость клеток HeLa, что согласуется с результатами исследования острой токсичности этой кислоты, полученными на лабораторных животных [20, 21].

Показано, что кислота H_3L и комплекс I обладают схожей цитотоксической активностью при малых концентрациях. Однако, в отличие от цитотоксического действия кислоты H_3L , влияние комплекса I на клетки HeLa значительно снижало их жизнеспособность при концентрациях >150 мкмоль/л. Данный результат подтверждается вычисленными значениями количественного критерия цитотоксической активности IC₅₀ (концентрация исследуемого соединения, вызывающая 50%-ное ингибирование роста клеточной популяции). Для комплекса I доза IC₅₀ составила 205.4 ± 5.9 мкмоль/л, для кислоты H_3L доза IC₅₀ не определена, так как находится выше пределов ее растворимости (>300 мкмоль/л).

Результаты исследования внутриклеточного проникновения комплекса I на клеточной линии HeLa показаны на рис. 7. Инкубацию клеток с комплексом проводили в течение 24 ч, добавляя в питательную среду растворенный в ДМСО ком-

Рис. 7. Конфокальные изображения клеток HeLa при совместной инкубации в течение 24 ч с комплексом I (100 мкМ, панель 2). На панели 1 представлены контрольные клетки, не обработанные соединением. а – фазовый контраст; б – локализация комплекса в клетках; в – совмещение изображений. Шкала – 20 мкм.

плекс I с конечной концентрацией 100 мкмоль/л. Проведение этого исследования стало возможным благодаря спектральным характеристикам комплекса: в спектре флуоресценции ($\lambda_{ex} = 288$ нм) раствора комплекса I в ДМСО присутствуют полосы при 364 и 700 нм. По данным флуоресцентной микроскопии (лазерная линия с длиной волны 405 нм) можно сделать вывод, что исследуемый комплекс проникает через клеточную мембрану клеток HeLa (рис. 7, панель 2), в то время как в контрольных образцах (рис. 7, панель 1) при возбуждении лазерной линией при 310–460 нм флуоресценция отсутствует.

Накопление соединений биомедицинского назначения в живых клетках может происходить различными путями и приводить к изменению физиологии и биохимии клеток, вследствие чего могут наблюдаться такие явления, как нарушение окислительно-восстановительного баланса клетки, образование активных форм кислорода, апоптоз. В работе на данном этапе не представилось возможности определить количество и внутриклеточную локализацию комплекса I. Однако понимание механизмов биоаккумуляции данного комплекса важно для изучения его регуляции на клеточном уровне.

ЗАКЛЮЧЕНИЕ

Определено строение комплекса цинка(II) с 2-окси-5-этилфенилфосфоновой кислотой (H₃L), которое существенным образом отличается от строения комплексов меди(II) с производными 2-оксифенилфосфоновой кислоты [21–23]. Методом потенциометрического титрования впервые определены константы устойчивости комплексов H₃L с перхлоратом цинка в воде. Ион Zn²⁺ с L³⁻ образует простой комплекс ZnL⁻ и комплекс ZnL(OH)²⁻, в то время как для Cu²⁺ обнаружено существование комплексов CuL⁻, CuL⁴⁻, [Cu(OH)L]²⁻ и [Cu(OH)L₂]⁵⁻ как для H₃L, так и для ее аналогов [21–23].

Установлено, что кислота H_3L является малотоксичным соединением *in vitro*, что согласуется с результатами исследования острой токсичности *in vivo* [20, 21]. Низкая токсичность комплекса цинка и его способность к биоаккумуляции являются важным критерием для дальнейшего изучения его биологической активности.

БЛАГОДАРНОСТЬ

Рентгеноструктурный анализ проводили на оборудовании Центра коллективного пользования Института общей и неорганической химии им. Н.С. Курнакова РАН, биологические исследования выполнены на оборудовании Центра коллективного пользования Института физиологически активных веществ ФГБУН Федерального исследовательского центра проблем химической физики и медицинской химии РАН.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания Института общей и неорганической химии им. Н.С. Курнакова РАН, Института физической химии и электрохимии им. А.Н. Фрумкина РАН и Института физиологически активных веществ РАН ФГБУН Федерального исследовательского центра проблем химической физики и медицинской химии РАН. Синтез целевых соединений осуществлен при финансовой поддержке Российского научного фонда (проект № 21-43-00020, который реализуется совместно с Государственным фондом естественных наук Китая (NSFC), грант партнера № 52061135204). Физико-химические и биологические исследования выполнены при поддержке Российского научного фонда (проект № 22-13-00051).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Zhang C.X., Lippard S.J.* // Curr. Opin. Chem. Biol. 2003. V. 7. № 4. P. 481. https://doi.org/10.1016/s1367-5931(03)00081-4
- 2. *Hambley T.W.* // Science. 2007. V. 318. № 5855. P. 1392. https://doi.org/10.1126/science.1150504
- Barry N.P., Sadler P.J. // ACS Nano. 2013. V. 7. № 7. P. 5654. https://doi.org/10.1021/nn403220e
- Patra M., Gasser G. // ChemBioChem. 2012. V. 13. № 9. P. 1232. https://doi.org/10.1002/cbic.201200159
- Yu G., Jiang M., Huang F., Chen X. // Curr. Opin. Chem. Biol. 2021. V. 61. P. 19. https://doi.org/10.1016/j.cbpa.2020.08.007
- Pöthig A., Casini A. // Theranostics. 2019. V. 9. № 11. P. 3150. https://doi.org/10.7150/thno.31828
- Prasad A.S., Kucuk O. // Cancer Metastasis Rev. 2002.
 V. 21. № 3–4. P. 291. https://doi.org/10.1023/A:1021215111729
- Dhawan D.K., Chadha V.D. // Indian J. Med. Res. 2010. V. 132. № 6. P. 676.
- 9. Chasapis C.T., Ntoupa P.-S.A., Spiliopoulou C.A., Stefanidou M.E. // Arch. Toxicol. 2020. V. 94. № 5. P. 1443. https://doi.org/10.1007/s00204-020-02702-9
- 10. *Budimir A*. // Acta Pharm. 2011. V. 61. № 1. P. 1. https://doi.org/10.2478/v10007-011-0006-6
- 11. Crichton R.R., Dexter D.T., Ward R.J. // Coord. Chem. Rev. 2008. V. 252. № 10–11. P. 1189. https://doi.org/10.1016/j.ccr.2007.10.019
- 12. Crichton R.R., Dexter D.T., Ward R.J. // J. Neural Transm. 2011. V. 118. № 3. P. 301. https://doi.org/10.1007/s00702-010-0470-z

- Tougu V., Palumaa P. // Coord. Chem. Rev. 2012. V. 256. № 19–20. P. 2219. https://doi.org/10.1016/j.ccr.2011.12.008
- Haas K.L., Franz K.J. // Chem. Rev. 2009. V. 109. № 10. P. 4921. https://doi.org/10.1021/cr900134a
- Karalis T.T., Chatzopoulos A., Kodyli A. et al. // Matrix Biol. Plus. 2020. V. 6–7. P. 100031. https://doi.org/10.1016/j.mbplus.2020.100031
- Tran P.O.T., Gleason C.E., Robertson R.P. // Diabetes. 2002. V. 51. № 6. P. 1772. https://doi.org/10.2337/diabetes.51.6.1772
- Gnanaprakasam J.N.R., Lopez-Banuelos L., Vega L. // Toxicol. Appl. Pharmacol. 2021. V. 410. P. 115359. https://doi.org/0.1016/j.taap.2020.115359
- O'Brien A.J., Villani L.A., Broadfield L.A. et al. // Biochem. J. 2015. V. 469. № 2. P. 177. https://doi.org/10.1042/BJ20150122
- Chen H., Wang D., Fan L. et al. // Sci. Rep. 2022. V. 12. P. 4545.
 - https://doi.org/10.1038/s41598-022-08704-0
- Баулин В.Е., Калашникова И.П., Вихарев Ю.Б. и др. // Журн. общ. химии. 2018. Т. 88. № 9. С. 1438. https://doi.org/10.1134/S0044460X18090044
- Иванова И.С., Цебрикова Г.С., Рогачева Ю.И. и др. // Журн. неорган. химии. 2021. Т. 66. № 12. С. 1723. https://doi.org/10.31857/S0044457X21120060
- 22. Цебрикова Г.С., Рогачева Ю.И., Иванова И.С. и др. // Журн. общ. химии. 2021. Т. 91. № 11. С. 1704. https://doi.org/10.31857/S0044460X2111007X
- 23. Иванова И.С., Цебрикова Г.С., Лапшина М.А. и др. // Изв. АН. Сер. хим. 2022. № 11. С. 2365.
- Цебрикова Г.С., Барсамян Р.Т., Соловьев В.П. и др. // Изв. АН. Сер. хим. 2018. № 12. С. 2184.

- 25. *Solov'ev V.P., Tsivadze A.Y.* // Prot. Met. Phys. Chem. Surfaces. 2015. V. 51. № 1. P. 1. https://doi.org/10.1134/S2070205115010153
- 26. Соловьев В.П. Программа СhemEqui для расчета констант химических равновесий и сопутствующих параметров исходя из экспериментальных результатов физико-химических методов, таких как УФ-, ИК- и ЯМР-спектроскопия, калориметрия, потенциометрия и кондуктометрия. http://vpsolovev.ru/programs/ (Дата обращения 1 марта 2022).
- 27. Brinkley S.R. // J. Chem. Phys. 1947. V. 15. № 2. P. 107. https://doi.org/10.1063/1.1746420
- Bandyopadhyay S., Das A., Mukherjee G.N. et al. // Inorg. Chim. Acta. 2004. V. 357. P. 3563. https://doi.org/10.1016/j.ica.2004.05.010
- 29. Бек М., Надыпал И. Исследование комплексообразования новейшими методами. М.: Мир, 1989. С. 225.
- 30. APEX III and SAINT. Madison (W, USA): Bruker AXS Inc., 2016.
- 31. Sheldrick G.M. SADABS. Göttingen, Germany, 1997.
- 32. Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- 33. *Sheldrick G.M.* CellNow. University of Göttingen, Germany, 2005.
- 34. Solov'ev V., Tsivadze A., Marcou G., Varnek A. // Mol. Inf. 2019. V. 38. № 6. P. 1900002. https://doi.org/10.1002/minf.201900002
- 35. *Solov'ev V., Tsivadze A.* // Comments Inorg. Chem. 2023. V. 43. № 1. P. 16. https://doi.org/10.1080/02603594.2022.2087637
- 36. Руководство по лабораторным животным и альтернативным моделям в биомедицинских технологиях / Под ред. Каркищенко Н.Н., Грачева С.В. М., 2010. 344 с.