УДК 547.341;47.725

СИНТЕЗ, ОСОБЕННОСТИ СТРОЕНИЯ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ЭФИРОВ (2Z)-2-[(2,4-ДИНИТРОФЕНИЛ)ГИДРАЗОНО]БУТАНДИОВОЙ КИСЛОТЫ

© 2019 г. П. П. Муковоз^{*a*, *</sub>, Е. С. Данковцева^{*a*}, В. П. Муковоз^{*a*}, П. А. Слепухин^{*b,c*}, И. Н. Ганебных^{*b,c*}, А. Н. Сизенцов^{*d*}, Е. А. Данилова^{*e*}}

^а Всероссийский научно-исследовательский институт фитопатологии, ул. Институт 5, Большие Вяземы, Московская обл., 143050 Россия *e-mail: mpp27@mail.ru

^b Институт органического синтеза имени И. Я. Постовского Уральского отделения Российской академии наук, Екатеринбург, Россия

^с Уральский федеральный университет имени первого Президента Б. Н. Ельцина, Екатеринбург, Россия

^d Оренбургский государственный университет, Оренбург, Россия

^е Ивановский государственный химико-технологический университет, Иваново, Россия

Поступило в Редакцию 17 мая 2018 г. После доработки 17 мая 2018 г. Принято к печати 24 мая 2018 г.

Взаимодействием эфиров (2*Z*)-2-гидроксибут-2-ендиовой кислоты с 2,4-динитрофенилгидразином получены эфиры (2*Z*)-2-[(2,4-динитрофенил)гидразоно]бутандиовой кислоты. Обсуждаются особенности строения синтезированных соединений на основании данных ИК, ЯМР ¹Н спектроскопии, масс-спектрометрии и рентгеноструктурного анализа.

Ключевые слова: эфиры (2Z)-2-гидроксибут-2-ендиовой кислоты, эфиры (2Z)-2-[(2,4-динитрофенил) гидразоно]бутандиовой кислоты, 1,2,4-трикарбонильные соединения **DOI:** 10.1134/S0044460X19010013

Известно, что 1,2,4-трикарбонильные соединения (ацилпировиноградные кислоты, их эфиры или амиды) взаимодействуют с гидразинами или арилгидразинами с образованием биологически активных веществ [1]. Реакция может протекать по различным направлениям и в зависимости от условий и реакционной способности субстратов приводит либо к эфирам пиразол-3-карбоновых кислот, либо к пиразол-3-карбоновым кислотам, либо к гидразидам этих кислот. Однако первоначальная нуклеофильная атака гидразина по наиболее активной карбонильной группе C²=O во всех случаях заканчивается гетероциклизацией 1,2,4-трикарбонильных соединений с участием ацильной карбонильной группы C⁴=O, что приводит к образованию производных пиразола [1, 2]. Сведения о реакциях таких 1,2,4-трикарбонильных соединений. как эфиры 2-оксобутандиовой (щавелевоуксусной) кислоты [3–5] с арилгидразинами отсутствуют.

Нами изучена реакция эфиров (2*Z*)-2-гидроксибут-2-ендиовой (2-оксобутандиовой) кислоты 1a-e(преобладающий енольный таутомер 1A и минорная оксоформа 1Б [5]) с 2,4-динитрофенилгидразином, в результате которой вместо ожидаемых производных пиразола были выделены эфиры (2*Z*)-2-[(2,4-динитрофенил)гидразоно]бутандиовой кислоты 2a-e (схема 1).

Соединения **2а**-е представляют собой желтые кристаллические вещества, не растворимые в воде и хорошо растворимые в большинстве органических растворителей. Строение соединений **2а**-е установлено на основании данных ИК, ЯМР ¹Н спектроскопии, масс-спектрометрии и рентгеноструктурного анализа.

Alk = Me (a), Et ($\mathbf{\delta}$), Pr (\mathbf{B}), *i*-Pr ($\mathbf{\Gamma}$), Bu (\mathbf{A}), *t*-Bu (\mathbf{e}).

В ИК спектрах соединений 2а-е присутствует сравнительно низкочастотная полоса поглощения вторичной аминогруппы (3281–3228 см⁻¹), две полосы поглощения сложноэфирных карбонильных групп C⁴=O (1732-1702 см⁻¹) и C¹=O (1703-1681 см⁻¹), а также полосы поглощения кратных связей ароматического кольца (1620-1594, 1593-1576, 1523–1509, 1457–1436 см⁻¹). Полосы поглошения при 1508–1495 (асимметричные колебания) и 1345–1326 см⁻¹ (симметричные колебания) подтверждают присутствие нитрогрупп в молекуле. Сравнительно низкая частота поглощения асимметричных колебаний нитрогрупп 1508–1495 см⁻¹ (стандартные значения в ароматических нитросоединениях 1550-1515 см⁻¹ [6]) свидетельствует об их участии в образовании прочных внутри- или межмолекулярных контактов. Поглощение при 1277-1187 см⁻¹ (эфирная полоса) подтверждает наличие в молекуле соединений 2а-е сложноэфирных звеньев. Более низкая частота поглощения оксогруппы $C^1=O$ (одной из двух сложноэфирных карбонильных групп) и сравнительно низкочастотная полоса поглощения NH-группы свидетельствуют об их участии в образовании водородных связей, характерных для формы **2A** (схема 2).

В ИК спектрах соединений $2\mathbf{a}-\mathbf{e}$ не наблюдается уширенных низкочастотных полос поглощения енольных гидроксильных групп в области 3500– 2500 см⁻¹, что свидетельствует об отсутствии в кристаллическом состоянии в составе молекулы енольных фрагментов, характерных для формы **2Б**. Наличие в ИК спектрах соединений **2а**-е только одной полосы поглощения NH-группы свидетельствует об отсутствии в кристаллическом состоянии в составе молекулы енгидразиновых фрагментов, характерных для формы **2В**.

ЖУРНАЛ ОБЩЕЙ ХИМИИ ТОМ 89 № 1 2019

Рис. 1. Общий вид молекулы соединения 2а в кристалле.

Спектральные методы не позволяют однозначно установить строение соединений 2a-e в твердой фазе, поэтому для подтверждения их структуры были выращены кристаллы соединения 2a и изучены методом РСА. Общий вид молекулы представлен на рис. 1. По данным РСА, молекула соединения 2a существует в виде (2Z)-изомера 2A, азометиновая $C^2=N$ группа и сложноэфирная карбонильная группа $C^1=O$ расположены в *цис*положении по отношению друг к другу.

Заметного выравнивания одинарных и двойных связей указанных фрагментов не наблюдается, что свидетельствует как об их незначительном сопряжении, так и об отсутствии енолизации карбонильной группы сложноэфирного AlkOOC¹фрагмента. Так, длины двойных связей N²=C⁹ и $O^{5} = C^{10}$ равны 1.288(2) и 1.200(3) Å соответственно, а длины одинарных связей N¹–N², N¹–C¹ и C⁹–C¹⁰ составляют 1.348(2), 1.373(2) и 1.499(3) Å соответственно, что близко к классическим значениям (N=C 1.28 Å, C=O 1.21 Å, N-N 1.37 Å, N-C 1.36 Å и С-С 1.54 Å) [7]. Группа NH гидразона образует вилочковую внутримолекулярную водородную связь с 2-NO2-группой и карбонильной группой сложноэфирного AlkOOC¹-фрагмента (табл. 1). Данная связь, формируя 2 шестичленных цикла, фиксирует плоскую конфигурацию полиеновой части молекулы. Следует отметить, что вследствие стерических требований AlkOOC⁴-фрагмент в

Рис. 2. Фрагмент кристаллической упаковки соединения **2a**.

молекуле соединения **2а** выведен из плоскости гидразонного фрагмента. Плоскость сложноэфирного AlkOOC⁴-фрагмента почти перпендикулярна гидразоновому звену и составляет с ним угол 85°.

В кристалле молекулы соединения 2а образуют слоистую укладку (рис. 2), при которой кислород и азот 2-NO₂-групп соседних молекул формируют укороченный π -контакт с расстоянием $O^1 \cdots N^3 [1-x]$ 1-y, 1-z] 3.009 Å (на 0.06 Å меньше суммы радиусов Ван-дер-Ваальса). Среди других межмолекулярных контактов можно также отметить укороченный Т-образный полярный контакт между sp^2 -углеродом кислородом нитрогруппы И сложноэфирной группы, не включенной в систему сопряжения $C^7 \cdots O^4$ [-*x*, -*y*, 1-*z*] 3.043 Å, на 0.177 Å меньше суммы радиусов Ван-дер-Ваальса (рис. 3) и межмолекулярную водородную связь C⁵-H⁵···O² [x, y-1, z] с участием нитрогруппы и протона арильного заместителя (табл. 1). В результате обе нитрогруппы молекулы оказываются вовлечены в формирование значимых межмолекулярных контактов, определяя конфигурацию ближайшего окружения молекулы. Участие нитрогрупп в межмолекулярных контактах, а также наличие пространственной близости карбонильного акцептора к NH-протону хелатного фрагмента, вероятно, является причиной снижения частоты поглощения асимметричных колебаний v_{as}(NO₂) в ИК спектрах соединений 2а-е.

D–H	<i>d</i> (D–H), Å	<i>d</i> (H···A), Å	∠DHA, град	<i>d</i> (D····A), Å	А
$N^1 - H^1$	0.91(3)	2.01(2)	124(2)	2.624(2)	O^1
$N^1 - H^1$	0.91(3)	1.95(2)	133(2)	2.660(2)	O^5
C^5-H^5	0.93(3)	2.38(2)	171(2)	3.305(2)	$O^{2}[x, y-1, z]$

Таблица 1. Длины водородных связей в кристалле соединения 2а

Рис. 3. Укороченный Т-образный полярный С…О контакт в кристалле соединения 2а.

В растворах неполярных растворителей, также как и в твердом состоянии, соединения 2а-е существуют в форме гидразонов 2A, что подтверждается данными ЯМР. В спектрах ЯМР ^{1}H (CDCl₃) соединений 2а-е присутствуют стандартные сигналы протонов алкильных групп двух сложноэфирных звеньев, причем сигналы протонов AlkOOC¹-фрагмента наблюдаются в более слабом поле (на 0.03-0.23 м. д.) по сравнению с сигналами протонов AlkOOC⁴-фрагмента. Смещение сигналов протонов алкоксизвена AlkOOC¹-фрагмента в слабое поле свидетельствует об участии сложноэфирной карбонильной группы С¹=О соединений **2а**-е в образовании водородных связей и хорошо согласуется с данными ИК спектров и РСА. Кроме отмеченных сигналов, в спектрах ЯМР ¹Н соединений 2а-е присутствуют реперный синглет двух протонов метиленовой группы C³H₂ (3.58–3.89 м. д.) и сигнал NH-протона (11.73-14.28 м. д.), соответствующие изомеру 2А. Следует отметить, что в спектрах ЯМР ¹Н структурно близких эфиров 3-[(2,4-динитрофенил)гидразоно]-4,6-диоксоалкановых кислот или эфиров

3-[2-(2,4-динитрофенил)гидразоно]-4-оксогексан-1.6-диовой кислоты сигналы протонов метиленовой группы C²H₂ и NH-протонов регистрируются в близких областях: 3.90-4.12 и 11.83-11.88 м. д. [8] или 3.84-3.87 и 11.86-11.90 м. д. Соответственно [9, 10]. Сигналы метиновых протонов, протонов енольных гидроксигрупп, а также NHпротонов енгидразиновых звеньев в спектрах ЯМР ^{1}H не зарегистрированы, что подтверждает отсутствие в растворах неполярных растворителей соединений 2а-е возможной енольной формы 2Б и енгидразиновой формы 2В.

Строение соединений 2а-е подтверждается данными масс-спектрометрии высокого разрешения. В масс-спектрах, снятых в режиме электрораспыления, из раствора в ацетонитриле, присутствуют характеристические сигналы протонированных молекул $[M + H]^+$.

Взаимодействие соединений 1 с динитрофенилгидразином, вероятно, начинается с нуклеофильного присоединения H₂N-группы реагента по наиболее реакционной карбонильной группе C²=O оксоформы 1Б и через стадию образования интермедиата Х заканчивается элиминированием молекулы воды с образованием соединений 2 (схема 3). Влияние неподеленных электронных пар кислорода алкоксильных звеньев на электрофильные центры C¹ и C⁴ исключает нуклеофильную атаку реагента по сложноэфирным карбонильным группам, а также способность соединений 2 к гетероциклизации с образованием пиразольного гетероцикла, как это имеет место при взаимодействии других 1,2,4-трикарбонильных соединений (ацилпировиноградных кислот, их эфиров или амидов) с арилгидразинами.

Нами изучена противомикробная активность соединений 2а-е по отношению к тест-штаммам

Соединение	МИК, мкг/мл							
	St. aureus P-209	B. licheniformis B 7038	S. typhimurium 14028S WT	E. coli M ₁₇	Fusarium sp.	Bipolaris soraciniana		
2a	125	250	250	_	31	250		
26	1000	1000	1000	_	16	125		
2в	250	1000	1000	_	125	_		
2Γ	63	1000	500	1000	63	500		
2д	500	250	_	_	125	—		
2e	63	500	250	_	31	500		
Этакридина лактат	500	1000	1000	2000				
Фурацилин	125	500	125	500				
Фитолавин					16	63		
Превикур					8	31		

Таблица 2. Противомикробная и фунгицидная активность соединений 2а-е

грамположительных бактерий золотистого стафилококка (Staphylococcus aureus P-209) и Bacillus licheniformis BKIIM В 7038. грамотрицательных бактерий кишечной палочки (Escherichia coli M_{17}) сальмонеллы И (Salmonella typhimurium 14028S WT), а также фунгицидная (противогрибковая) активность по отношению к тест-культурам фитопатогенных грибов Fusarium sp., Alternarium sp. и Bipolaris soraciniana (табл. 2). Установлено, что в отношении тест-штамма Staphylococcus aureus соединения 2а, г, е обладают противомикробной активностью, превышающей или сопоставимой с активностью фурацилина, а соединения 2в, д обладают противомикробной активностью, превышающей или сопоставимой с активностью этакридина лактата. В отношении тест-штамма Bacillus licheniformis соединения 2a, д, е обладают противомикробной активностью, превышающей или сопоставимой с активностью фурацилина, а соединения 26, в, г обладают противомикробной активностью, сопоставимой с активностью этакридина лактата. В отношении тест-штамма Salmonella typhimurium активность соединений 2a, г, е сопоставима с активностью фурацилина и превышает активность этакридина лактата. Соединения 26 и 2в проявляют противомикробную активность, сопоставимой с активностью этакридина лактата. В отношении тест-штамма Escherichia coli умеренную противомикробную активность, превышающую активность этакридина лактата, проявило только соединение 2г, остальные синтезированные соединения активности не проявили. Установлено, что в отношении тесткультуры Fusarium sp. соединения 2a, б, е обладают фунгицидной активностью, сопоставимой с активностью фитолавина. В отношении тест-культуры Bipolaris soraciniana соединения 2a, б, г, е проявили умеренную фунгицидную активность, не превышающую активность препаратов сравнения фитолавина и превикура. В отношении тест-культуры Alternarium SD. соединения 2а-е фунгицидной активности не Наибольшую противомикробную проявили. активность в отношении грамположительных тестштаммов проявили соединения 2а, г-е, имеющие разветвленную алкильную группу в составе сложноэфирного фрагмента. Наибольшую фунгицидную активность в отношении тесткультуры фитопатогенных грибов Fusarium sp. проявили соединения 2а, б, е, имеющие этильную группу в составе сложноэфирного фрагмента. Сравнительно высокая биологическая активность исследованных соединений, вероятно, обусловлена наличием нитрогрупп в составе арилгидразонового фрагмента, способных восстанавливаться в клетках патогенов до ароматических аминов, токсичных для микроорганизмов. Следует отметить, что структурно близкие соединениям 2 эфиры 3-[2-(2,4динитрофенил)гидразоно]-4-оксогексан-1,6-диовой кислоты, имеющие в составе молекулы динитрофенилгидразоновый фрагмент, также проявили высокую противомикробную активность в отношении тест-штамма Staphylococcus aureus [11].

Таким образом, взаимодействие эфиров (2Z)-2гидроксибут-2-ендиовой кислоты с 2,4-динитрофенилгидразином, приводит не к производным пиразола, а к линейным структурам – эфирам (2Z)-2-[(2,4-динитрофенил)гидразоно]бутандиовой кислоты. Установлено, что изученные соединения в различной степени обладают противомикробной или фунгицидной активностью, что, вероятно, связано с наличием нитрогрупп в составе молекул синтезированных соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры кристаллов записаны на ИК Фурьеспектрометре Bruker Alpha, приставка НПВО внутреннее (нарушенное полное отражение. материал элемента НПВО – ZnSe, угол падения луча 45°). Спектры ЯМР ¹Н (CDCl₃, ДМСО-*d*₆) синтезированных соединений получены на ЯМР Φ урье-спектрометре Bruker AVANCE II (400 МГц), внутренний стандарт – ТМС. Масс-спектры записаны на квадрупольно-времяпролетном массспектрометре MaXis Impact HD (Bruker Daltonik GmbH) в режиме электрораспылительной ионизации для растворов в ацетонитриле при скорости подачи образца 240 мкл/ч с параметрами по умолчанию в методе инфузионного анализа малых молекул. Рентгеноструктурное исследование проведено с использованием оборудования Центра коллективного пользования CAOC Института органического синтеза Уральского отделения РАН. Эксперимент осуществлен на автоматическом 4-кружном дифрактометре с CCDдетектором Xcalibur 3 по стандартной процедуре (ю-сканирование с шагом 1° на монохроматизированном МоК_а-излучении). Дифракционные данные для соединения 2а получены при 295(2) К. Введена эмпирическая поправка на поглощение. Структуры определены прямым статистическим методом и уточнены полноматричным МНК по F^2 в анизотропном приближении для всех неводородных атомов. Атомы водорода С-Н связей геометрически рассчитанные помещены В положения и уточнены в изотропном приближении, позиции протонов ОН-групп уточняли независимо. Все расчеты проведены в программной оболочке Olex [12] с использованием программного пакета SHELX [13]. Основные кристаллографические параметры соединения 2а: кристалл триклинный, пространственная группа Р-1, a = 6.6752(5) Å, b = 8.0816(5) Å, c = 15.2864(12) Å, $\alpha = 82.164(6)^{\circ}, \beta = 81.802(6)^{\circ}, \gamma = 67.286(7)^{\circ}, \mu =$ 0.129 мм^{-1} . На углах $2.70^{\circ} < \theta < 30.50^{\circ}$ собрано 6588 отражений, из них независимых 4034 (R_{int} = 0.0180), в том числе 2684 с I > 2 $\sigma(I)$. Окончательные параметры уточнения: $R_1 = 0.0798, wR_2 =$ 0.1674 (по всем отражениям), $R_1 = 0.0506$, $wR_2 = 0.1409$ [по отражениям с $I > 2\sigma(I)$]. $\Delta \rho_e = 0.262/-0.213 \ e/Å^3$. Полный набор рентгеноструктурных данных соединения **2a** депонирован в Кембриджском банке структурных данных (ССDC 1441915).

Противомикробную и фунгицидную активность соединений 2а-е определяли методом серийных разведений с использованием 3-кратной повторности. Противомикробную активность в отношении грамположительных тест-штаммов золотистого стафилококка (Staphylococcus aureus P-209) и Bacillus licheniformis ВКПМ В 7038, а также грамотрицательных тест-штаммов кишечной палочки (Escherichia coli M₁₇) и сальмонеллы (Salmonella tvphimurium 14028S WT) определяли в мясопептонном бульоне при бактериальной нагрузке 5×10⁹ микробных единиц в 1 мл раствора. ингибирующую концентрацию Минимальную (МИК) устанавливали по отсутствию признаков роста тест-культуры на питательном субстрате. Последняя пробирка с отсутствием признаков роста соответствовала МИК. Для подтверждения ингибирующего эффекта синтезированных соединений на тест-штаммы микроорганизмов проводился высев из каждой пробирки на плотные питательные среды. В качестве эталонных препаратов сравнения использовали фурацилин и этакридина лактат. Фунгицидную активность соединений 2а-е в отношении тест-культур грибов Fusauium sp., Alternarium sp., Bipolaris soraciniana определяли на плотной питательной среде Сабуро. Синтезированные соединения растворяли в ДМСО, разводя полученный раствор стерильным физиологическим раствором в концентрациях от 1000 мкг/мл до 8 мкг/мл. В пробирки с расплавленной и охлажденной до 56°С средой вносили исследуемые препараты, после чего их тщательно смешивали со средой. Среду засеивали смывом тест-культур Fusauium sp., Alternarium sp. и Bipolaris soraciniana в стерильном физиоло-Соответствующие гическом растворе. тесткультуры получали, внося на стерильную питательную среду Сабуро коллекционные образцы Fusauium sp., Alternarium sp., Bipolaris soraciniana и выращивали их в течение двух недель при температуре 18–22°C. Для контроля роста культуры использовали питательную среду без препаратов, учет результатов проводили через 48 ч. В качестве препаратов сравнения использовали фитолавин и превикур. Статистическую обработку данных проводили по критерию Стьюдента, используя программу XL 2012. Эффект считали достоверным при (p < 0.001).

Исходные соединения **1а**-е получены по методике [5].

Общая методика синтеза эфиров (2Z)-2гидроксибут-2-ендиовой кислоты (2а-е). К раствору 3.96 г (20 ммоль) 2,4-динитрофенилгидразина в смеси 40 мл уксусной кислоты и 60 мл этанола добавляли раствор 20 ммоль соединений 1а-е в 10 мл уксусной кислоты и доводили реакционную смесь до кипения. Растворитель упаривали, остаток сушили и перекристаллизовывали из этанола или этилацетата, получали соединения 2а-е.

Диметиловый эфир (2Z)-2-[(2,4-динитрофенил)гидразоно]бутандиовой кислоты (2а). Выход 2.18 г (32%), т. пл. 177–179°С. ИК спектр, v, см⁻¹: 3247 (NH), 3119, 3087 (CH_{Ar}), 2967 [v_{as}(CH₃)], 1732 (C⁴=O), 1696 (C¹=O), 1603, 1584, 1521 (C=C, Ar), 1508 [v_{as}(NO₂)], 1443 (C=C, Ar), 1339 [v_s(NO₂)], 1277 [v_{as}(=<u>C</u>-OCH₃, эфир)], 1213, 1112, 1096, 1052, 1003 [v_{скелетные}(C-C)], 933, 841 [$\delta_{непл}$ (CH, Ar)], 740 [$\delta_{маятн}$ (C³H₂)], 701 [v_{скелетные}(C-C)]. Спектр ЯМР ¹Н (CDCl₃), δ , м. д.: 3.79 с (3H, C⁴OOCH₃), 3.86 с (2H, C³H₂), 3.94 с (3H, C¹OOCH₃), 8.17–9.15 м (3H, C₆H₃), 11.73 с (1H, NH). Масс-спектр, *m/z*: 341.0729 [*M* + H]⁺ (вычислено для C₁₂H₁₃N₄O₈: 341.0728).

Диэтиловый эфир (2Z)-2-[(2,4-динитрофенил)гидразоно]бутандиовой кислоты (26). Выход 3.46 г (47%), т. пл. 147-149°С. ИК спектр, v, см⁻¹: 3228 (NH), 3091, 3054 (CH, Ar), 2977 [v_{as}(CH₃)], 2953 $[v_{as}(CH_2)]$, 1718 (C⁴=O), 1701 (C¹=O), 1609, 1578, 1516 (C=C, Ar), 1503 $[v_{as}(NO_2)]$, 1465 $[\delta_{as}(CH_3)]$, 1449 (C=C, Ar), 1332 $[v_s(NO_2)]$, 1263 $[v_{as}(=C-OC_2H_5)]$ эфир)], 1225, 1137, 1110, 1062, 1028, 1013 [v_{скелетные}(С–С)], 920, 834 [$\delta_{\text{непл}}$ (СН, Ar)], 747 $[\delta_{\text{маятн}}(C^{3}H_{2})], 711 [v_{\text{скелетные}}(C-C)].$ Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 1.28 т (3Н, С⁴ООСН₂CH₃, J = 7.2 Гц), 1.33 т (3H, C¹OOCH₂CH₃, J = 7.5 Гц), 3.65 с (2H, $C^{3}H_{2}$), 4.22 κ (2H, $C^{4}OOCH_{2}CH_{3}$, $J = 7.2 \Gamma \mu$), 4.27 к (2H, C¹OOCH₂CH₃, J = 7.5 Гц), 8.11–9.15 м (3H, C₆H₃), 14.28 с (1H, NH). Масс-спектр, *m/z*: 369.1043 $[M + H]^+$ (вычислено для C₁₄H₁₇N₄O₈: 369.1041).

Дипропиловый эфир (2*Z*)-2-[(2,4-динитрофенил)гидразоно]бутандиовой кислоты (2в). Выход 4.28 г (54%), т. пл. 141–143°С. ИК спектр, v, см⁻¹: 3260 (NH), 3096, 3067 (CH, Ar), 2973 [v_{as}(CH₃)], 2968 [v_{as}(CH₂)], 2876 [v_s(CH₃)], 1709 (C⁴=O), 1689 (C¹=O), 1601, 1582, 1523 (C=C, Ar), 1506 [v_{as}(NO₂)], 1469 [δ_{as}(CH₃)], 1457 (C=C, Ar),

ЖУРНАЛ ОБЩЕЙ ХИМИИ ТОМ 89 № 1 2019

1345 [$v_s(NO_2)$], 1209 [$v_{as}(=\underline{C}-\underline{O}C_3H_7, эфир)$], 1144, 1169, 1032, 1008 [$v_{скелетные}(C-C)$], 927, 901, 848 [$\delta_{Hепл}(CH, Ar)$], 756 [$\delta_{Mаятн}(C^3H_2)$], 720 [$v_{скелетные}(C-C)$]. Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 0.95 т (3H, C⁴OOCH₂CH₂CH₂G, J = 7.4 Гц), 1.02 т (3H, C⁴OOCH₂CH₂CH₂G, J = 7.7 Гц), 1.63–1.75 м (4H, 2C¹⁽⁴⁾OOCH₂CH₂CH₃), 3.69 с (2H, C³H₂), 4.02 т (2H, C⁴OOCH₂CH₂CH₃, J = 7.4 Гц), 4.17 т (2H, C⁴OOCH₂CH₂CH₃, J = 7.7 Гц), 8.05–9.20 м (3H, C¹OOCH₂CH₂CH₂CH₃, J = 7.7 Гц), 8.05–9.20 м (3H, C⁴OOCH₂CH₂CH₂CH₃, J = 7.7 Гц), 8.05–9.20 м (3H, C⁴H), 13.82 с (1H, NH). Масс-спектр, *m/z*: 397.1355 [M + H]⁺ (вычислено для C₁₆H₂₁N₄O₈: 397.1354).

Диизопропиловый эфир (2Z)-2-[(2,4-динитрофенил)гидразоно]бутандиовой кислоты (2г). Выход 3.01 г (38%), т. пл. 152–155°С. ИК спектр. v. см⁻¹: 3232 (NH), 3103, 3088 (CH, Ar), 2970 [v_{as}(CH₃)], 2932 [v_{as}(CH)], 2869 [v_s(CH₃)], 1702 $(C^4=O)$, 1681 $(C^1=O)$, 1610, 1586, 1512 (C=C, Ar), 1501 $[v_{as}(NO_2)]$, 1463 $[\delta_{as}(CH_3)]$, 1441 (C=C, Ar), 1386, 1364 [б_s(CH₃)₂CH, *гем*-диметил], 1329 [v_s(NO₂)], 1187 [v_{as}(=<u>С-О</u>СН(СН₃)₂, эфир)], 1166, 1139, 1068 [v_{скелетные}(С–С)], 909, 864 [δ_{непл}(СН, Аг)], 766 [$\delta_{\text{маятн}}$ (C³H₂)], 707 [$\nu_{\text{скелетные}}$ (С–С)]. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 1.29 т [6Н, С⁴ООСН(С<u>H₃</u>)₂, *J* = 7.1 Γ µ]. 1.32 т [6H. C¹OOCH(CH₃)₂, $J = 7.2 \Gamma$ µ]. 3.89 с (2H, C³H₂), 4.30 м [1H, C⁴OOCH(CH₃)₂], 4.53 м [1H, C¹OOCH(CH₃)₂], 8.10–9.25 м (3H, C₆H₃), 14.13 с (1H, NH). Масс-спектр, m/z: 397.1354 $[M + H]^+$ (вычислено для C₁₆H₂₁N₄O₈: 397.1354).

Дибутиловый эфир (2Z)-2-[(2,4-динитрофенил)гидразоно|бутандиовой кислоты (2л). Выход 2.46 г (29%). т. пл. 122–124°С. ИК спектр. v. см⁻¹: 3267 (NH), 3096, 3067 (CH, Ar), 2962 [v_{as}(CH₃)], 2954 [v_{as}(CH₂)], 2868 [v_s(CH₃)], 1705 $(C^4=O)$, 1697 $(C^1=O)$, 1594, 1576, 1513 (C=C, Ar), 1495 $[v_{as}(NO_2)]$, 1457 $[\delta_{as}(CH_3)]$, 1438 (C=C, Ar), 1326 [v_s(NO₂)], 1194 [v_{as}(=С-ОС₄H₉, эфир)], 1181, 1160, 1103, 1061, 1025, 1003 [Vскелетные(С-С)], 914 $[\delta_{\text{HeIII}}(\text{CH, Ar})], 777 [\delta_{\text{MARTH}}(\text{C}^{3}\text{H}_{2})], 695 [v_{\text{скелетные}}(\text{C}-\text{C})].$ Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 0.96 т (3Н, С⁴ОО $(CH_2)_3CH_3$, J = 7.5 Гц), 1.05 т [3H, C¹OO(CH₂)₃CH₃, $J = 7.5 \Gamma \mu$], 1.35–1.45 M [4H, 2C¹⁽⁴⁾OO(CH₂)₂CH₂CH₃], 1.60–1.70 м [4H. 2C¹⁽⁴⁾ООСН₂CH₂CH₂CH₂CH₃]. 3.64 с (2H, C³H₂), 4.00–4.25 м [4H, 2C¹⁽⁴⁾ООСH₂(CH₂)₂CH₃], 8.00-9.17 м (3H, C₆H₃), 13.95 с (1H, NH). Массспектр, *m/z*: 425.1668 [*M* + H]⁺ (вычислено для C₁₈H₂₅N₄O₈: 425.1667).

Ди-*трет*-бутиловый эфир (2Z)-2-[(2,4-динитрофенил)гидразоно]бутандиовой кислоты (2е). Выход 1.95 г (23%), т. пл. 172–177°С. ИК спектр, v, см⁻¹: 3281 (NH), 3105, 3099 (CH, Ar), 2975 [v_{as}(CH₃)], 2861 [v_s(CH₃)], 1724 (C⁴=O), 1703 (C¹=O), 1620, 1593, 1509 (C=C, Ar), 1497 [$\nu_{as}(NO_2)$], 1436 (C=C, Ar), 1327 [$\nu_s(NO_2)$], 1228 [$\nu_{as}(=\underline{C-O}C(CH_3)_3,$ эфир)], 1163, 1091, 1053 [$\nu_{скелетные}(C-C)$], 855 [$\delta_{Hепл}$ (CH, Ar)], 751 [$\delta_{MаятH}(C^3H_2)$], 719 [$\nu_{скелетные}(C-C)$]. Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 2.10 с [3H, C⁴OOC(CH₃)₃], 2.22 с [3H, C¹OOC(CH₃)₃], 3.58 с (2H, C³H₂), 8.00–9.05 м (3H, C₆H₃), 12.41 с (1H, NH). Масс-спектр, *m/z*: 425.1669 [*M* + H]⁺ (вычислено для C₁₈H₂₅N₄O₈: 425.1667).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Перевалов С.Г., Бургарт Я.В., Салоутин В.И., Чупахин О.Н. // Усп. хим. 2001. Т. 70. № 11. С. 1039; Perevalov S.G., Burgart Ya.V., Saloutin V.I., Chupakhin O.N. // Russ. Chem. Rev. 2001. Vol. 70. N 11. P. 921. doi 10.1070/RC2001v070n11ABEH000685
- Янборисов Т.Н., Жикина И.А., Андрейчиков Ю.С., Милютин А.В., Плаксина А.Н. // Хим.-фарм. ж. 1998. Т. 32. № 9. С. 26; Yanborisov T.N., Zhikina I.A., Andreichikov Yu.S., Milyutin A.V., Plaksina A.N. // Pharm. Chem. J. 1998. Vol. 32. N 9. P. 480. doi 10.1007/BF02539222
- Ямашкин С.А., Жукова Н.В. // ХГС. 2008. Т. 44. № 2. С. 163; Yamashkin S.A., Zhukova N.V. // Chem. Heterocycl. Compd. 2008. Vol. 44. N 2. P. 115. doi 10.1007/s10593-008-0038-0

- *Губен И.* Методы органической химии. М.: ОНТИ, 1935. Т. 3. Вып. 2. С. 532.
- 5. *Муковоз П.П.* Автореф. дис. ... канд. хим. наук. Ярославль, 2010. 23 с.
- 6. *Беллами Л.* Инфракрасные спектры сложных молекул. М.: ИЛ, 1963. С. 590.
- International Tables for Crystallography. 2006. Vol. C. Ch. 9.5. P. 790.
- Муковоз П.П., Горбунова А.В., Слепухин П.А., Ельцов О.С., Ганебных И.Н. // ЖОрХ. 2017. Т. 53.
 Вып. 7. С. 1006; Mukovoz P.P., Gorbunova A.V., Slepukhin P.A., El'tsov O.S., Ganebnykh I.N. // Russ. J. Org. Chem. 2017. Vol. 53. N 7. P. 1017. doi 10.1134/ S1070428017070090
- Муковоз П.П., Козьминых В.О., Слепухин П.А., Ганебных И.Н., Ельцов О.С., Горбунова А.В., Козьминых Е.Н. // ЖОрХ. 2016. Т. 52. Вып. 5. С. 652; Mukovoz P.P., Koz'minykh V.O., Slepukhin P.A., Ganebnykh I.N., El'tsov O.S., Gorbunova A.V., Koz'minykh E.N. // Russ. J. Org. Chem. 2016. Vol. 52. N 5. P. 636. doi 10.1134/S1070428016050043
- 10. *Муковоз П.П., Козьминых В.О. //* Вестн. Южно-Уральск. гос. унив. 2009. Вып. 23(156). С. 4.
- 11. Муковоз П.П., Козьминых В.О., Коробова И.В., Сизенцов А.Н. // Приволжск. хим.-технол. вестн. 2016. Вып. 1. С. 1.
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Cryst. (A). 2009. Vol. 42. P. 339. doi 10.1107/S0021889808042726
- Sheldrick G.M. // J. Acta Crystallogr. (A). 2008. Vol. 64. P. 112. doi 10.1107/S0108767307043930

Synthesis, Structure, and Biological Activity of (2Z)-2-[(2,4-Dinitrophenyl)hydrazono]butanedioic Acids Esters

P. P. Mukovoz^a*, E. S. Dankovtseva^a, V. P. Mukovoz^a, P. A. Slepukhin^{b,c}, I. N. Ganebnykh^{b,c}, A. N. Sizentsov^d, and E. A. Danilova^e

^a All-Russian Research Institute of Phytopathology, ul. Institute 5, Bol'shiye Vyazemy, Moscow oblast, 143050 Russia *e-mail: mpp27@mail.ru

^b I.Ya. Postovskii Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia ^c Ural Federal University, Yekaterinburg, Russia

^d Orenburg State University, Orenburg, Russia

^e Ivanovo State University of Chemical Technology, Ivanovo, Russia

Received May 17, 2018 Revised May 17, 2018 Accepted May 24, 2018

Reaction of (2Z)-2-hydroxybut-2-enoic acid esters with 2,4-dinitrophenylhydrazine yielded (2Z)-2-[(2,4-dinitrophenyl)hydrazono]butanedioic acid esters. The structural features of the synthesized compounds were discussed on the basis of IR, ¹H NMR spectroscopy, mass spectrometry and X-ray diffraction analysis data.

Keywords: (2*Z*)-2-hydroxybut-2-enoic acid esters, (2*Z*)-2-[(2,4-dinitrophenyl)hydrazono]butanedioic acids esters, 1,2,4-tricarbonyl compounds