УДК 549.242;547.53.024;548.312.5

СИНТЕЗ И СТРОЕНИЕ µ2-ОКСОБИС(КАРБОКСИЛАТОТРИАРИЛСУРЬМЫ)

© 2019 г. В. В. Шарутин*, О. К. Шарутина, А. Н. Ефремов, Е. В. Артемьева

Национальный исследовательский Южно-Уральский государственный университет, пр. Ленина 76, Челябинск, 454080 Россия *e-mail: vvsharutin@rambler.ru

> Поступило в Редакцию 28 июня 2018 г. После доработки 28 июня 2018 г. Принято к печати 9 июля 2018 г.

Взаимодействием эквимолярных количеств триарилсурьмы, карбоновой кислоты и *трет*-бутилгидропероксида в эфире получены биядерные соединения сурьмы с мостиковым атомом кислорода: $[Ph_3SbOC(O)R]_2O$ (R = CF₂CF₃, CF₂CF₂CF₃), (4-MeC₆H₄)₃SbOC(O)CF₂CF₃]₂O, [(3-FC₆H₄)₃SbOC(O)R]₂O (R = C₆F₅, CF₂CF₃). В полученных соединениях атомы Sb имеют, по данным рентгеноструктурного анализа, координацию тригональной бипирамиды с карбоксилатными лигандами и мостиковым атомом кислорода в аксиальных положениях. Внутримолекулярные расстояния Sb···O с карбонильным атомом кислорода меньше суммы ван-дер-ваальсовых радиусов Sb и O на ~0.2–0.4 Å.

Ключевые слова: µ2-оксобис(карбоксилатотриарилсурьма), окислительный синтез, биядерные карбоксилаты триарилсурьмы

DOI: 10.1134/S0044460X19010141

Дикарбоксилаты триарилсурьмы – наиболее изученные сурьмаорганические соединения [1–7], многие из них обладают биологической активностью [7–9]. Значительно менее изучены биядерные карбоксилаты триарилсурьмы с мостиковым атомом кислорода, которые представлены в литературе всего несколькими примерами [10–14]. Расширение ряда сурьмаорганических соединений с гетероатомами как в арильных, так и в карбоксилатных лигандах – актуальная задача, поскольку даже небольшие изменения в структуре соединения могут привести к аномальному изменению их биологической активности.

Окисление триарилсурьмы *трет*-бутилгидропероксидом или пероксидом водорода в присутствии карбоновых кислот независимо от соотношения исходных реагентов (1:1:2 или 1:1:1) приводит, как правило, к синтезу дикарбоксилатов триарилсурьмы Ar₃Sb[OC(O)R]₂, в то время как с иными кислотами HX (фенолы, неорганические кислоты, сульфоновые кислоты, оксимы) при эквимолярном соотношении реагентов образуются мостиковые соединения сурьмы [Ar₃SbX]₂O [18].

Нами установлено, что взаимодействие триарилсурьмы (Ar₃Sb, Ar = Ph, 4-MeC₆H₄, 3-FC₆H₄) с фторзамещенными карбоновыми кислотами (пентафторпропионовой, гептафторбутановой и пентафторбензойной) в присутствии *трет*-бутилгидропероксида (мольное соотношение 1:1:1) протекает в эфире с образованием соединений µ₂-оксобис (карбоксилатотриарилсурьмы) **1–5**, выделяемых с выходом до 99%.

$$Ar_{3}Sb + HOC(O)R + t-BuOOH$$

$$\rightarrow [Ar_{3}SbOC(O)R]_{2}O + H_{2}O + t-BuOH,$$

$$1-5$$

Ar = Ph, R = CF₂CF₃ (1), CF₂CF₂CF₃ (2); Ar = 4-MeC₆H₄, R = CF₂CF₃ (3); Ar = 3-FC₆H₄, R = C₆F₅ (4), CF₂CF₃ (5).

По данным РСА (табл. 1, 2), атомы сурьмы в молекулах соединений 1–5 имеют мало искаженную тригонально-бипирамидальную координацию с карбоксилатными лигандами и мостиковым атомом кислорода в аксиальных положениях (рис. 1–3). Молекулы соединений 2–4 центросимметричны (центр инверсии – мостиковый атом кислорода). Аксиальные углы OSbO: 175.56(8)°, 176.77(8)° (1), 176.26(8)° (2), 177.66(8)° (3), 174.92(13)° (4), 176.95(18)°, 179.12(19)° (5). Суммы углов CSbC в экваториальных плоскостях: 357.0(1)°, 358.5(1)° (1), 359.2(1)° (2), 358.0(1)° (3), 359.6(3)° (4), 359.0(3)°,

ШАРУТИН и др.

Параметр	1 2		3	4	5	
М	1048.16	1148.18	1132.37	1252.19	1156.11	
Сингония	Триклинная	Триклинная	Триклинная	Триклинная	Моноклинная	
Пространственная группа	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	C2/c	
a, Å	11.406(15)	10.045(10)	10.501(7)	9.952(8)	24.92(2)	
b, Å	12.010(16)	10.219(8)	11.188(8)	10.671(11)	10.948(9)	
<i>c</i> , Å	15.83(2)	12.210(10)	11.482(10)	11.953(10)	33.09(3)	
α, град	90.18(5)	92.02(4)	87.85(4)	87.33(4)	90.00	
β, град	102.08(6)	106.31(3)	67.70(2)	71.73(3)	97.19(7)	
ү, град	95.66(4)	105.53(4)	86.325(17)	80.06(3)	90.00	
<i>V</i> , Å ³	2110(5)	1150.6(17)	1245.3(16)	1187.3(18)	8957(13)	
Ζ	2	1	1	1	8	
$d_{\rm Bbiy}, r/cm^3$	1.650	1.657	1.5098	1.751	1.715	
μ, мм ⁻¹	1.367	1.273	1.164	1.248	1.315	
<i>F</i> (000)	1028.0	562.0	561.1	610.0	4496.0	
Размер кристалла, мм	0.37×0.17×0.15	0.54×0.44×0.34	0.39×0.34×0.13	0.32×0.22×0.07	0.51×0.32×0.18	
20, град	5.76-62.58	5.72-82.64	5.7-55.9	5.64-47.24	6.18-50.7	
Интервалы индексов отражений	$-16 \le h \le 16$ $-17 \le k \le 17$ $-22 \le l \le 23$	$-18 \le h \le 18$ $-18 \le k \le 18$ $-22 \le l \le 22$	$-13 \le h \le 13$ $-14 \le k \le 14$ $-15 \le l \le 15$	$-11 \le h \le 8$ $-8 \le k \le 11$ $-13 \le l \le 13$	$-30 \le h \le 29,$ $-12 \le k \le 13,$ $-39 \le l \le 39$	
Всего отражений	140188	105370	36758	3329	71779	
Независимых отражений	13413	15335	5918	2494	8032	
Число отражений с $F^2 > 2\sigma(F^2)$	9742	9556	5015	2197	7645	
Число уточняемых параметров	532	296	299	331	586	
GOOF	1.024	1.079	1.076	1.067	1.065	
R-Факторы по $F^2 > 2\sigma(F^2)$	$R_1 = 0.0369$ $wR_2 = 0.0793$	$R_1 = 0.0635$ $wR_2 = 0.1499$	$R_1 = 0.0361$ $wR_2 = 0.0965$	$R_1 = 0.0390$ $wR_2 = 0.1017$	$R_1 = 0.0520$ $wR_2 = 0.1427$	
<i>R</i> -Факторы по всем отражениям	$R_1 = 0.0669$ $wR_2 = 0.0908$	$R_1 = 0.1094$ $wR_2 = 0.1823$	$R_1 = 0.0469$ $wR_2 = 0.1127$	$R_1 = 0.0455$ $wR_2 = 0.1068$	$R_1 = 0.0601$ $wR_2 = 0.1510$	
Остаточная электронная плотность (min/max), <i>e</i> /Å ³	-0.60/0.82	-1.37/3.62	-0.69/0.85	-0.43/0.69	-1.12/2.77	

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структуры соединений 1-5

358.5(3)° (5). Длины связи Sb–С изменяются в интервалах 2.091(4)–2.124(4), 2.103(4)–2.135(4) (1), 2.100(4)–2.101(4) (2), 2.085(4)–2.100(4) (3), 2.095(8)–2.107(6) (4), 2.109(7)–2.129(7), 2.110(6)–2.118(7) Å (5). Связи Sb–О_{терм} длиннее, чем связи Sb–О_{мост} (табл. 2).

Известно, что карбоксилатные лиганды в производных сурьмы проявляют анизобидентатный характер координации. В молекулах соединений 1– 5 также наблюдается асимметрия координации лигандов. Внутримолекулярные расстояния Sb…O с карбонильным атомом кислорода меньше суммы ван-дер-ваальсовых радиусов Sb и O на ~0.2–0.4 Å.

Фрагмент SbOSb в молекулах соединений 1 и 5 изогнут [соответствующие углы составляют 146.69(12)° и 145.2(2)°]; в центросимметричных молекулах соединений 2–4 (центр инверсии – мостиковый атом кислорода) этот фрагмент имеет линейное строение. Арильные кольца при двух атомах сурьмы находятся в заторможенной конформации.

Основное различие в геометрии молекул соединений [Ar₃SbX]₂O заключается в строении

Связь	<i>d</i> , Å	Угол	ω, град	Связь	<i>d</i> , Å	Угол	ω, град				
1											
Sb^1-O^2	2.241(3)	$O^1Sb^1O^2$	175.56(8)	Sb^2-C^{41}	2.110(3)	$O^1Sb^2O^4$	176.77(8)				
Sb^1-O^1	1.972(3)	$O^1Sb^1C^1$	103.03(13)	Sb^2-C^{31}	2.103(4)	$C^{41}Sb^2C^{51}$	115.13(14)				
Sb^1-C^1	2.124(4)	$C^1Sb^1O^2$	81.32(13)	Sb^2-C^{51}	2.135(4)	$C^{31}Sb^2C^{41}$	116.34(12)				
$Sb^{1}-C^{21}$	2.091(4)	$C^{21}Sb^1O^2$	86.00(13)	$O^2 - C^7$	1.290(4)	$C^{31}Sb^2C^{51}$	126.87(14)				
Sb^1-C^{11}	2.100(3)	$C^{21}Sb^1C^1$	118.39(15)	$O^3 - C^7$	1.217(4)	$C^{41}Sb^2O^4$	84.39(14)				
Sb^2-O^1	1.956(3)	$C^{21}Sb^1C^{11}$	125.71(13)	O ⁴ -C ¹⁷	1.281(4)	$O^1Sb^2C^{41}$	98.48(14)				
Sb^2-O^4	2.216(3)	$C^{11}Sb^1C^1$	112.90(15)	O ⁵ -C ¹⁷	1.200(4)	$Sb^2O^1Sb^1$	146.69(12)				
2											
Sb^1-O^1	1.9417(13)	$O^1Sb^1O^2$	176.26(8)	Sb ¹ –C ¹¹	2.100(3)	$C^{11}Sb^1O^2$	89.81(14)				
Sb^1-O^2	2.221(3)	$C^1Sb^1C^{21}$	119.57(14)	O^1 – Sb^1 ^a	1.9416(13)	$C^{11}Sb^1C^{21}$	117.19(14)				
Sb^1-C^1	2.100(4)	$C^1Sb^1C^{11}$	122.49(14)	$O^2 - C^7$	1.280(5)	Sb ^{1*} O ¹ Sb ¹	179.999(5)				
Sb^1-C^{21}	2.101(4)	$C^{21}Sb^1O^2$	83.71(14)								
· · · · · · · · · · · · · · · · · · ·											
Sb^1-O^1	1.9393(10)	$O^1Sb^1O^2$	177.66(8)	Sb^1-C^{21}	2.085(4)	$C^{21}Sb^1C^{11}$	114.67(14)				
Sb^1-O^2	2.264(3)	$O^1Sb^1C^{11}$	96.14(11)	O^1 – $Sb^{1 b}$	1.9393(10)	$C^{21}Sb^1C^1$	122.48(15)				
$Sb^{1}-C^{11}$	2.100(4)	$C^1Sb^1C^{11}$	120.81(15)	$O^2 - C^8$	1.243(5)	$\mathbf{Sb}^{1*}\mathbf{O}^{1}\mathbf{Sb}^{1}$	180.0				
Sb^1-C^1	2.091(4)	$C^{21}Sb^1O^2$	87.15(14)								
	1 1		! !	4	I	1	1				
Sb^1-O^2	2.175(5)	$O^1Sb^1O^2$	174.92(13)	Sb^1-C^{21}	2.095(8)	$C^{21}Sb^1C^1$	120.9(3)				
Sb^1-O^1	1.9496(14)	$C^{11}Sb^1C^1$	119.3(3)	$O^2 - C^{37}$	1.233(9)	$C^{37}O^2Sb^1$	128.3(5)				
Sb^1-C^{11}	2.102(8)	$C^1Sb^1O^2$	83.1(2)	$O^1 - Sb^{1 c}$	1.9496(14)	$\mathbf{Sb}^{1*}\mathbf{O}^{1}\mathbf{Sb}^{1}$	179.999(1)				
Sb^1-C^1	2.107(6)	$C^{21}Sb^1C^{11}$	119.4(3)								
	1 1		! !	5	I	1	1				
Sb^1-O^2	2.200(5)	$O^1Sb^1O^2$	176.95(18)	Sb^2-C^{41}	2.110(6)	$O^1Sb^2O^4$	179.12(19)				
Sb^1-O^1	1.981(5)	$O^1Sb^1C^1$	89.2(2)	Sb^2-C^{31}	2.118(7)	$C^{41}Sb^2C^{51}$	113.9(2)				
Sb^1-C^1	2.129(7)	$C^1Sb^1O^2$	88.1(2)	Sb^2-C^{51}	2.118(6)	$C^{31}Sb^2C^{41}$	125.5(3)				
Sb^1-C^{21}	2.109(7)	$C^{21}Sb^1O^2$	98.8(2)	$O^2 - C^7$	1.284(9)	$C^{31}Sb^2C^{51}$	119.1(3)				
Sb^1-C^{11}	2.117(6)	$C^{21}Sb^1C^1$	113.1(3)	$O^3 - C^7$	1.205(10)	$C^{41}Sb^2O^4$	87.6(2)				
Sb^2-O^1	1.956(5)	$C^{21}Sb^1C^{11}$	116.6(3)	$O^4 - C^{17}$	1.286(9)	$O^1Sb^2C^{41}$	91.7(2)				
Sb^2-O^4	2.215(5)	$C^{11}Sb^1C^1$	129.3(2)	$O^{5}-C^{17}$	1.199(10)	$Sb^2O^1Sb^1$	145.2(2)				

Таблица 2. Некоторые межатомные расстояния и валентные углы в молекулах соединений 1-5

^а Преобразования симметрии: (а) 1-*x*, 1-*y*, 1-*z*. (b) 1-*x*, 1-*y*, 1-*z*. (c) -*x*, 1-*y*, 1-*z*.

фрагмента Sb–O–Sb. В большинстве случаев фрагменты имеют угловую форму и лишь иногда линейную. Величина угла SbOSb, который изменяется

от 130° до 180°, и причины, вызывающие его изменение, неясны. В структурно охарактеризованных соединениях [Ph₃SbOC(O)CF₃]₂O [13],

Рис. 1. Общий вид молекулы µ2-оксобис(пентафторпропаноатотрифенилсурьмы) 1.

[Ph₃SbOC(O)C₆H₄OH-2]₂O [14], [Ph₃SbOC(O)C \equiv CH]₂O [10], [Ph₃SbOC(O)(C₅H₃N-3)Cl-2]₂O [12] углы SbOSb равны 137.9°, 151.3°, 141.5°, 165.1° соответственно, в молекуле [Ph₃SbOC(O)CH₂Cl]₂O фрагмент SbOSb линеен [11]. Факторы, влияющие на величину угла при мостиковом атоме кислорода, не выяснены, и нельзя спрогнозировать, линейную или угловую форму будет иметь фрагмент SbOSb той или другой молекулы. Например, в молекулах соединений **1**, **3**, **5** с одинаковыми карбоксилатными лигандами фрагмент SbOSb может иметь как угловое (**1**, **5**), так и линейное строение (**3**) (рис. 1, 2).

В работе [19] при обсуждении строения биядерных элементоорганических соединений с мостиковым атомом кислорода была обнаружена корреляция между длиной связи атома металла с терминальным лигандом и величиной угла МОМ: чем меньше длина связи М–Х, тем ближе значение угла к 180°. В молекулах соединений **1**, **3**, **5** эта корреляция отсутствует, поскольку самая длинная

Рис. 3. Общий вид молекулы µ₂-оксобис[пентафторбензоатотри(3-фторфенил)сурьмы] 4.

Рис. 2. Общий вид молекулы µ2-оксобис[три(4-метилфенил)пентафторпропаноатосурьмы] 3.

связь Sb–О_{терм} наблюдается в молекуле соединения **3** [2.264(3) Å] с линейным строением центрального фрагмента.

Во фрагменте Sb–O–Sb возможно образование делокализованной р-связи, которая тем прочнее, чем больше значение угла [20]. Действительно, в молекуле соединения **3** связь Sb–O_{мост} [1.9393(10) Å] короче, чем в соединениях **1** и **5** [1.972(3), 1.956(3) и 1.981(5), 1.956(5) Å соответственно].

Если считать, что главный фактор, обусловливающий формирование структуры фрагмента Sb-O-Sb, *п,d*-взаимодействие, то основной причиной больших величин углов SbOSb будет близость энергетических уровней неподеленной электронной пары атома кислорода и акцепторной орбитали атома сурьмы. Именно при этом условии n,dвзаимодействие наиболее эффективно. Энергия dорбитали атома сурьмы зависит от его окружения. Поэтому можно предположить, что в комплексах (Ar₃SbX)₂O с линейным строением корпоративное действие многих факторов приводит к сближению уровней донора и акцептора. Таким образом, в соединениях (Ar₃SbX)₂О величина угла SbOSb формируется при одновременном влиянии различных факторов, и наблюдаемые значения углов отражают баланс внутримолекулярных электронных и стерических взаимодействий.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записывали на Фурье-спектрометре Shimadzu IR Affinity-1S в таблетках КВг в области

 cM^{-1} . 4000-400 Рентгеноструктурный анализ проводили на автоматическом четырехкружном дифрактометре D8 QUEST Bruker при 296(2) К (Мо K_{a} -излучение, $\lambda = 0.71073$ Å, графитовый монохроматор). Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам SMART и SAINT-Plus [15]. Все расчеты по определению и уточнению структур выполнены по SHELXL/PC [16], OLEX2 программам [17]. Структуры определены прямым методом И уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Основные кристаллографические данные и результаты уточнения структур приведены в табл. 1, основные длины связей и валентные углы – в табл. 2. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных [CCDC 1840588 (1), 1840587 (2), 1840586 (3), 1840585 (4), 1841803 (5)].

µ₂-**Оксобис(пентафторпропаноатотрифенил**сурьма) (1). Смесь 0.200 г (0.566 ммоль) трифенилсурьмы, 0.093 г (0.566 ммоль) пентафторпропионовой кислоты и 0.073 г (0.566 ммоль) 70%-ного раствора *трет*-бутилгидропероксида в 30 мл диэтилового эфира выдерживали 24 ч при 20°С. После медленного испарения растворителя получили 0.290 г (98%) бесцветных кристаллов, т. разл. 223°С. ИК спектр, v, см⁻¹: 3076, 3061, 2999, 1707, 1577, 1481, 1436, 1377, 1319, 1213, 1159, 1072, 1028, 997, 970, 914, 813, 796, 748, 731, 690, 584, 542, 518, 457, 418. Найдено, %: С 47.97; H 2.89. С₄₂H₃₀F₁₀O₅Sb₂. Вычислено, %: С 48.09; H 2.86.

Аналогично синтезировали соединения 2-5.

µ₂**-Оксобис(гептафторбутаноатотрифенил**сурьма) (2). Выход 98%, т. разл. 214°С. ИК спектр, v, см⁻¹: 3151, 3078, 3057, 3001, 1963, 1886, 1818, 1708, 1577, 1483, 1436, 1379, 1323, 1274, 1228, 1211, 1184, 1149, 1118, 1074, 1022, 997, 964, 929, 844, 802, 763, 719, 690, 638, 594, 547, 526, 449. Найдено, %: С 45.87; H 2.80. С₄₄H₃₀F₁₄O₅Sb₂. Вычислено, %: С 45.99; H 2.61.

µ₂**-Оксобис[три(4-метилфенил)пентафторпро**паноатосурьма] (3). Выход 99%, т. пл. 170°С (из этилового спирта). ИК спектр, v, см⁻¹: 3061, 3024, 2954, 2924, 2870, 1705, 1593, 1494, 1449, 1396, 1375, 1317, 1215, 1190, 1165, 1071, 1026, 802, 727, 698, 634, 586, 540, 486, 418, 375. Найдено, %: С 50.67; H 2.72. С₄₈H₄₂F₁₀O₅Sb₂. Вычислено, %: С 50.88; H 2.65. **µ**₂**-Оксобис[пентафторбензоатотри(3-фторфенил)сурьма] (4).** Выход 99%, т. пл. 106°С. ИК спектр, v, см⁻¹: 3094, 1700, 1600, 1497, 1474. 1419, 1250, 1211, 997, 904, 876, 859, 779, 675, 523, 441, 405. Найдено, %: С 49.13; Н 2.22. С₅₀Н₂₄F₁₆O₅Sb₂. Вычислено, %: С 49.92; Н 1.92.

µ₂-Оксобис[пентафторпропаноатотри(3-фторфенил)сурьма] (5). Выход 97%, т. пл. 199°С. ИК спектр, v, см⁻¹: 3174, 3086, 3068, 3032, 2929, 2856, 1710, 1589, 1577, 1519, 1473, 1425, 1415, 1375, 1319, 1269, 1217, 1172, 1159, 1087, 1056, 1028, 999, 904, 881, 871, 858, 817, 786, 742, 731, 678, 659, 630, 584, 520, 441, 430. Найдено, %: С 43.22; H 2.18. С₄₂H₂₄F₁₆O₅Sb₂. Вычислено, %: С 43.60; H 2.08.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках государственного задания (№ 4.6151.2017/8.9).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Ferguson G., Kaither B., Glidewell C., Ferguson G., Kaither B., Glidewell C., Smith S.J. // J. Organomet. Chem. 1991. Vol. 419. P. 283. doi 10.1016/0022-328X (91)80241-B
- Qin W., Yasuike S., Kakusawa N., Qin W., Yasuike S., Kakusawa N., Sugawara Y., Kawahata M., Yamaguchi K., Kurita J. // J. Organomet. Chem. 2008. Vol. 693. P. 109. doi 10.1016/j.jorganchem.2007.10.030
- Шарутин В.В., Шарутина О.К. // Изв. АН. Сер. хим. 2017. № 4. С. 707; Sharutin V.V., Sharutina O.K. // Russ. Chem. Bull. 2017. Vol. 66. Р. 707. doi 10.1007/ s11172-017-1796-6
- Шарутин В.В., Шарутина О.К., Решетникова Р.В., Лобанова Е.В., Ефремов А.Н. // ЖНХ. 2017. Т. 62.
 № 11. С. 1457. doi 10.7868/S0044457X17110058; Sharutin V.V., Sharutina O.K., Reshetnikova R.V., Lobanova E.V., Efremov A.N. // Russ. J. Inorg. Chem. 2017. Vol. 62. P. 1450. doi 10.1134/ S003602361711016X
- 5. Шарутин В.В., Шарутина О.К., Ефремов А.Н. // ЖНХ. 2016. Т. 61. № 1. С. 46; Sharutin V.V., Sharutina O.K., Efremov A.N. // Russ. J. Inorg. Chem. 2016. Vol. 61. Р. 43. doi 10.1134/S003602361601023X
- 6. *Yu L., Ma Y-Q., Wang G-C., Li J-S. //* Heteroatom Chem. 2004. Vol. 15. P. 32. doi 10.1002/hc.10208

- Yu L., Ma Y-Q., Liu R-C., Yu L., Ma Y.Q., Liu R.C., Wang G.C., Li J.S., Du G.H., Hu J.J. // Polyhedron. 2004. Vol. 23. P. 823. doi 10.1016/j.poly.2003.12.002
- Hadjikakou S.K., Ozturk I.I., Banti C.N., Hadjikakou S.K., Ozturk I.I., Banti C.N., Kourkoumelis N., Hadjiliadis N.// J. Inorg. Biochem. 2015. Vol. 153. P. 293. doi 10.1016/j.jinorgbio.2015.06.006
- Ali M.I., Rauf M.K., Badshah A., Ali M.I., Rauf M.K., Badshah A., Kumar I., Forsyth C.M., Junk P.C., Kedzierski L., Andrews P.C.// Dalton Trans. 2013. Vol. 42. P. 16733. doi 10.1039/C3DT51382C
- Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Коорд. хим. 2014. Т. 40. № 2. С. 108. doi 10.7868/ S0132344X14020108; Sharutin V.V., Sharutina O.K., Senchurin V.S. // Russ. J. Coord. Chem. 2014. Vol. 40. P. 109. doi 10.1134/S1070328414020109
- Quan L., Yin H., Wang D. // Acta Crystallogr. (E). 2008. Vol. 64. P. m349. doi 10.1107/S1600536808000676
- Quan L., Yin H., Wang D. // Acta Crystallogr. (E). 2009. Vol. 65. P. m99. doi 10.1107/S1600536808042335
- Gibbons M.N., Sowerby D.B. // J. Organomet. Chem. 1998. Vol. 555. P. 271. doi 10.1016/S0022-328X(97) 00759-6

- 14. Шарутин В.В., Пакусина А.П., Насонова Н.В., Шарутин В.В., Пакусина А.П., Шарутина О.К., Насонова Н.В., Герасименко А.В., Пушилин М.А. // Химия и компьютерное моделирование. Бутлеровск. сообщ. 2002. № 11. С. 13.
- Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H.J. // J. Appl. Cryst. 2009. Vol. 42. P. 339. doi 10.1107/S0021889808042726
- Шарутин В.В., Сенчурин В.С. Именные реакции в химии элементоорганических соединений. Челябинск: Издательский центр ЮУрГУ, 2011. 427 с.
- Glidewell C. // J. Organomet. Chem. 1988. Vol. 356.
 P. 151. doi 10.1016/0022-328X(88)83084-5
- Tiekink E.R.T. // J. Organomet. Chem. 1987. Vol. 333.
 P. 199. doi 10.1016/0022-328X(87)85152-5

Synthesis and Structure of μ₂-Oxobis(carboxylatotriarylantimony)

V. V. Sharutin*, O. K. Sharutina, A. N. Efremov, E. V. Artem'eva

National Research South Ural State University, pr. Lenina 76, Chelyabinsk, 454080 Russia *e-mail: vvsharutin@rambler.ru

> Received June 28, 2018 Revised June 28, 2018 Accepted July 9, 2018

Binuclear antimony compounds with a bridging oxygen atom $[Ph_3SbOC(O)R]_2O$ (R = CF₂CF₃, CF₂CF₂CF₃), (4-MeC₆H₄)₃SbOC(O)CF₂CF₃]₂O, [(3-FC₆H₄)₃SbOC(O)R]₂O (R = C₆F₅, CF₂CF₃) were synthesized by reacting equimolar amounts of triarylantimony, carboxylic acid and *tert*-butyl hydroperoxide in diethyl ether. According to X-ray diffraction data, in the molecules of compounds obtained, the Sb atoms have a trigonal bipyramid coordination with carboxylate ligands and a bridging oxygen atom in axial positions. The intramolecular distances Sb···O with a carbonyl oxygen atom are less than the sum of the van der Waals radii of Sb and O by ~0.2–0.4 Å.

Keywords: µ2-oxobis(carboxylatotriarylantimony), oxidative synthesis, binuclear triarylantimony carboxylates